用户名: 密码: 验证码:
稻壳主要组分的分离与应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻壳是大米加工过程的主要副产物之一,资源丰富,仅我国稻壳的年产量就达到4000万吨左右。由于稻壳的营养物质少、灰分含量高、硬度大,目前其利用程度较低。大部分的稻壳被当作农业垃圾废弃,造成了严重的污染和浪费。然而,稻壳中含有丰富的半纤维素、木质素、纤维素和无定形二氧化硅,可用于制备木糖、酚醛树脂、酒精、纳米二氧化硅等各种产品。因此,在化石资源匮乏的今天,开展对稻壳中各种组分的分离与利用的研究,植物秸秆资源化综合利用,即开发了可再生资源,又保护了环境。
     本文根据稻壳的微观结构和组成特点,对稻壳四种主要组分的转化与应用方法进行了系统研究,主要研究内容包括四个部分,如下图所示:
     (?)
     第一部分:水解稻壳中的半纤维素制备木糖
     通过控制反应条件,利用稀酸溶液将稻壳中的半纤维素水解,从水解液中分离得到食品级的木糖,同时去除了稻壳中的金属氧化物,为从稻壳中提取高纯度无定形二氧化硅打下了基础。研究结果表明:
     (1)在常压下稀硫酸催化消解稻壳中的半纤维素,木糖的收率与时间成正比,与酸浓度成正比。增加硫酸溶液的浓度,能在较短的时间内得到较高的得率。6%的硫酸溶液以6:1比例(mL:g)下水解7小时,木糖最大收率为15.97%。
     (2)在水解釜中加热进行反应时,温度可以控制在100℃以上,木糖的得率可以进一步提高,达到最大得率的反应时间可以缩短。经过实验证明最佳的水解条件为:130℃下水解3小时,固液比例为1:6,硫酸浓度为4%。木糖得率达到了17.88%。同时,稻壳中的金属氧化物含量由2.38%降低为0.048%。
     (3)通过极差分析可知,硫酸浓度水解温度对木糖得率的影响相对较大,而固液比例和水解时间对木糖得率的影响相对较小。各因素对半纤维素水解为木糖的影响大小依次为:硫酸浓度>水解温度>固液比例>水解时间。
     (4)最佳水解条件下得到的残渣在700℃下灰化1小时后,得到的二氧化硅的纯度为99.87%,此纯度高于沉淀法白炭黑,接近气相法白炭黑。
     第二部分:稻壳残渣Ⅰ中木质素的提取及其在酚醛树脂中的应用
     利用乙醇、乙二醇、1,4丁二醇等有机溶剂提取的方法,分别从稻壳、稻壳残渣Ⅰ中提取木质素,并初步研究了利用这种木质素制备酚醛树脂。此种方法提取的木质素,具有灰分、半纤维素和糖等杂质含量低、反应活性高等特点。此部分的研究结果表明:
     (1)利用乙醇自催化法提取稻壳中木质素时,实验表明反应温度、乙醇浓度、反应时间等因素对木质素的得率有重要影响。在反应温度为220℃,固液比例为1:10,乙醇浓度为65%,反应时间为5小时的条件下,对原始稻壳中木质素的最大得率为12.8%,为木质素理论产量的53%。通过SEM和EDXA分析发现造成得率不高的原因是木质素在稻壳表面的重新沉淀。
     (2)对除去半纤维素后的稻壳残渣Ⅰ进行乙醇自催化法提取木质素的研究,实验表明木质素的最佳提取条件为温度230℃、固液比例1:10,乙醇浓度65%,反应时间为5小时,最高得率为时的10.41%,明显低于未水解半纤维素稻壳的木质素得率。分析其原因,主要是因为稻壳残渣Ⅰ中的乙酰基在水解半纤维素的过程中被除去,无法提供自催化裂解木质素大分子的H~+。
     (3)加入催化剂MgCl_2有利于乙醇法从稻壳残渣Ⅰ中提取木质素的得率。通过加入溶剂质量的0.4%的MgCl_2作为催化剂,在温度230℃、固液比例1:10,乙醇浓度65%,反应时间为5小时条件下,可以提高木质素的得率达到13.18%,较不加催化剂提高了26.73%。催化剂起到的主要作用是与部分反应物乙醇结合,放出H~+对木质素大分子裂解进行催化。
     (4)利用乙醇自催化法从原始稻壳中提取木质素,通过控制条件可得到形貌规则的木质素微球。具体条件为温度220℃,固液比例1:10(g:mL),反应时间3小时,乙醇溶液浓度35%的条件下,木质素微球直径在100-500nm范围。木质素的得率为6.26%。实验证明乙醇浓度是控制木质素的形貌最重要的影响因素。
     (5)以沸点较高的乙二醇水溶液为溶剂,采取自催化法提取稻壳残渣Ⅰ中的木质素时,最佳的条件是200℃下反应4小时,固液比例为1:6,乙二醇浓度为90%,木质素的得率达到了11.11%。各因素对木质素得率的影响大小依次为:反应温度>乙二醇浓度>反应时间>固液比例。硫酸作为催化剂可提高木质素的得率,在其它条件不变的情况下,加入占溶剂体积0.5%的浓硫酸后,木质素的得率达到了18.84%,较不加催化剂得率提高了69.58%。当硫酸浓度超过0.5%之后,原料有轻微炭化现象,同时木质素得率下降。对此现象的解释为硫酸在反应过程中提供了H~+,促进了木质素大分子的裂解。但是硫酸过量也会造成有机物的炭化和木质素裂解的副产物引起木质素的收率下降。
     (6)以1,4丁二醇水溶液为溶剂提取稻壳残渣Ⅰ中的木质素得率最高。在反应温度为200℃,时间2小时,1,4丁二醇的浓度为80%,液固比为1:8(g:mL)的条件下,进行自催化法提取木质素的得率为11.90%。硫酸对木质素的得率有较大提高作用,当加入占溶剂体积的0.5%浓硫酸后,相同条件下木质素的收率达到28.69%,较不加催化剂得率提高了1.41倍。当硫酸浓度超过0.5%之后,原料开始出现轻微的炭化现象,同时木质素得率下降。
     第3步:稻壳残渣Ⅱ中的纤维素水解为葡萄糖并发酵制备燃料乙醇
     通过稀酸水解法,对稻壳残渣Ⅱ中的纤维素进行了水解,将得到的葡萄糖进行了酵母发酵的初步研究。本步骤进一步去除了残渣中的金属元素,排除了其对葡萄糖发酵的影响。本部分的研究结果表明:
     (1)影响葡萄糖产率的因素有硫酸浓度、反应温度、反应时间和固液比例等。通过正交实验的极差分析可知,各因素对葡萄糖得率的影响大小依次为:硫酸浓度>水解温度>水解时间>固液比例。
     (2)硫酸浓度对葡萄糖和甲基糠醛的得率影响最大,在0.25%以前,硫酸浓度与葡萄糖为正比关系,超过0.25%后,易出现碳化现象。
     (3)水解反应温度对葡萄糖的得率影响较大,低于200℃时副产物较少,高于200℃后副反应增加。
     (4)正交试验的结果表明,以浓度为0.20%硫酸为催化剂,固液比例为1:10,在190℃下水解5小时,葡萄糖的收率达到了24.17%的最大值。
     (5)水解液经中和、纯化和浓缩等处理程序后,使用安琪酵母发酵60小时,乙醇的得率达到45%wt.% (乙醇的质量/葡萄糖的质量)。
     第四部分:稻壳残渣热解制备纳米二氧化硅及其表面改性
     以稻壳残渣为原料,通过热解的方法,制备出纳米级无定形二氧化硅粒子,并对其的干法改性进行了初步研究。本部分的研究结果表明:
     (1)稻壳原料的组成不同,则二氧化硅含量和热解温度有明显不同:稻壳残渣Ⅰ、Ⅱ、Ⅲ中二氧化硅的含量逐渐增加,样品对应的热解温度分别为650、660、700℃。稻壳中半纤维素的去除导致了热解温度上升了100℃,而木质素的去除对热解温度影响不大,纤维素的含量增加会导致热解温度的升高。
     (2)对于稻壳残渣Ⅰ,在600℃下一步完成有机物的热解得到二氧化硅,无论是通入空气还是氧气流的条件,制得的二氧化硅均有明显的团聚。可能原因是无定型二氧化硅具有粒子直径小,比表面积大,比表面能高的特点,在600℃高温下团聚以降低表面能。但是如果热解温度低于600℃,则即使在通氧气的条件下,稻壳残渣也无法完全热解,有残余的炭存在。
     (3)改进的二步热解法能制备出了分散性较好的纳米二氧化硅。第一步:在600℃温度下,先通入CO_2进行热解0.5小时,制备炭-二氧化硅复合物。炭作为一种天然的分散剂,阻止二氧化硅纳米粒子的团聚;第二步:同样温度下,再通入氧气热解0.5小时,氧化去除炭,得到分散性较好的纳米二氧化硅。通过高分辨透射电镜分析,二氧化硅纳米粒子为不规则米粒状,宽度约15nm,长度约20nm。
     (4)提高二步法的热解温度,能缩短稻壳中有机热解的速度,但也会加剧纳米二氧化硅的团聚。TEM测试的结果表明,当热解温度提高到680℃后,二氧化硅粒子的平均粒径增加了约20nm。当二步法热解温度提高到780℃后,二氧化硅粒子的团聚现象严重,形成了直径约100nm的聚集体。
     (5)对于稻壳残渣Ⅱ,在热解的温度为650℃下二步法热解,所得二氧化硅为形貌不规则的米粒状微粒,粒径约30nm.
     (6)对于稻壳残渣Ⅲ,在650℃下经过二步法热解得到的纳米二氧化硅形貌相对比较规则,粒径约30nm。其比表面积为136.4 m~2/g,孔径分布为单峰形式,最大比例的孔径为40nm。
     (7)采用二甲基二氯硅烷为改性剂,以稻壳残渣Ⅰ热解得到的纳米二氧化硅为原料,经考察得到最佳改性条件为200℃、活化剂用量为0.3mL/1g,反应时间为40分钟,活化度为100%。改性前后的二氧化硅接触角分别为0~0和115~0, Zeta电位分别为-36.60±2.97mV和14.29±2.45mV,红外谱图表明二氧化硅中的-OH与改性剂发生了反应。
     通过本文的研究,得到了一种综合利用稻壳中四种主要组分的方法。本方法有利于从源头上治理稻壳引起的污染和浪费问题,创造显著的经济效益。根据本文研究的结果,利用10吨稻壳能够生产1吨木糖, 2.19吨有机溶剂木质素、0.5吨乙醇、1.7吨纳米二氧化硅,售价估算约6.5万元。如果我国4000万吨稻壳全部进行利用,可产生产品的价值接近2600亿元。因此对于稻壳资源来说,其开发研究的进展将有力地推动稻壳综合利用的产业化,提高农业产出。我国年产约2亿吨的秸秆,与稻壳一样,均含有四种组分,因此稻壳的利用方法与原理具有一定的普遍适用性,本文的研究结果对其它生物质资源的综合利用具有一定的参考价值。
As a main byproduct of rice producing, rice husk (RH) reaches its annual output of 40 million tons in China. Most of rice husk is abandoned due to its poor nutrition, high ash content and hardness, which arouse the pollution and waste of RH.
     However, rice husk is rich in hemi-cellulose, lignin, cellulose and amorphous silica. The content of amorphous silica in rice husk is the highest among all biomass. Therefore, the research of how to separate and utilize the main content in RH is important, which will be helpful to avoid the environmental pollution and resource waste.
     This dissertation is focus on the separate and utilize of the four main content of rice husk (hemi-cellulose, lignin, cellulose and amorphous silica). The methods of separating and utilizing of them were discussed as the following scheme shown:
     (?)
     There are four parts concluded in above mentioned scheme:
     Part 1:Praparing D-xylose from the hemi-cellulose of rice husk
     The hemi-cellulose in RH was hydrolyzed to be D-xylose by dilute sulfur acid solution under controlled conditions. D-xylose was separated from hydrolysis solution through purify. The metal oxides in rice husk were dissolved at the same time, which purified the silica in residue. The conclusions of this step are shown as bellows:
     (1)When the hemi-cellulose was hydrolyzed at atmosphere, the yield of D-xylose rose with the reaction time and concentration of sulphuric acid. Increasing the concentration of sulphuric acid was helpful to reduce the reaction time. The max yield of 15.97% was reached under the conditions of 6%(wt.%) sulphuric acid, 7 hours, and 6:1(mL:g).
     (2)When the hemi-cellulose was hydrolyzed in an autoclave, the temperature could be controlled above of 100℃. The yield of xylose could be increased to higher level, the reaction time could be reduced. The max yield of 17.88% was reached under the conditions of 4%(wt.%) sulphuric acid, 3 hours, 130℃and 6:1(mL:g).
     (3)The influences of variables on the hydrolysis of hemi-cellulose was analyzed by range analysis. The sequence of importance was concentration of sulphuric acid > temperature > ratio of RH and solution > reaction time. The content of metal oxides was reduced to 0.048% from 2.38% under this condition.
     (4)The residue produced from optimal condition was pyrolyzed at 700℃for an hour. Silica with the purity of 99.87% was obtained. The purity of this silica is almost equal to the fumed silica’s, but higher than the precipitated silica’s.
     Part 2: Extracting lignin from the RH residueⅠand applying of lignin in phenol formaldehyde resin
     Lignin was extracted from the RH residueⅠby the method of organic solvent pulping, the organic solvent used are ethanol, 1,2-ethanediol and 1,4-butanediol. Then the lignin was used in the preparation of phenol formaldehyde resin. The conclusions got from this part of research are shown as bellow:
     (1)For ethanol auto-catalyzed pulping methods, the yield of lignin was influenced by the variables such as temperature, time, concentration of ethanol solution, etc. The max yield of lignin from rice husk reached 12.8% when the conditions were controlled as temperature 220℃, time 5 hours, concentration of ethanol solution 65% and ratio of solid to liquid 1:10. The result of SEM and EDXA analysis proved the lignin precipitated on the surface of rice husk during the separation process, which decreased the yield of lignin.
     (2)For ethanol auto-catalyzed pulping methods, the max yield of lignin from RH residueⅠreached 10.41% when the conditions were controlled as temperature 230℃, time 5 hours, concentration of ethanol solution 65% and ratio of solid to liquid 1:10. This yield was lower than above mentioned 12.8%, because the acetyl group providing H~+ in residueⅠwas less than in the rice husk, which could not support the auto-catalysis reaction of lignin clearage.
     (3)The yield of lignin from residueⅠincreased with the addition of MgCl_2 as catalyst. The optimal dosage of MgCl_2 was 0.4% of solvent weight, other conditions were temperature 230℃, time 5 hours, concentration of ethanol solution 65% and ratio of solid to liquid 1:10.The max yield reached 13.18%,which increased 26.73% from the yield of auto-catalysis.
     (4)The regular microballoons were prepared form rice husk via ethanol auto-catalysis, under conditions of temperature 220℃, time 3 hours, concentration of ethanol solution 35% and ratio of solid to liquid 1:10(g:mL). The diameters of microballoons were between 100-500nm. The yield of lignin was 6.26%. The key variable affecting the regular degree of lignin was proved to be the concentration of ethanol solution.
     (5)For ethanediol auto-catalyzed pulping methods, the max yield of lignin from RH residueⅠreached 11.11% when the conditions were controlled as temperature 200℃, time 4 hours, concentration of ethanediol solution 90% and ratio of solid to liquid 1:6. The sequence of viarables’s importance on the yield was temperature>concentration of ethanediol>reaction time > ratio of RH and solution.
     The yield of lignin from residueⅠincreased with the addition of sulphuric acid as catalyst. The optimal dosage of sulphuric acid was 0.5% of solvent volume, other conditions were temperature 200℃, time 4 hours, concentration of ethanediol solution 90% and ratio of solid to liquid 1:6.The max yield reached 18.84%,which increased 69.58% from the yield of auto-catalysis.
     (6)For 1,4-butanediol auto-catalyzed pulping methods, the max yield of lignin from RH residueⅠreached 11.90% when the conditions were controlled as temperature 200℃, time 2 hours, concentration of ethanediol solution 80% and ratio of solid to liquid 1:8.
     The yield of lignin from residueⅠincreased with the addition of sulphuric acid as catalyst. The optimal dosage of sulphuric acid was 0.5% of solvent volume, other conditions were temperature 200℃, time 2 hours, concentration of ethanediol solution 80% and ratio of solid to liquid 1:8.The max yield reached 28.69%,which increased 141% from the yield of auto-catalysis. When the dosage of sulphuric acid exceed 0.5%, the charry of residueⅠappeared, the yield of lignin decreased.
     Part 3: Preparing ethanol from cellulose of rice husk residueⅡ:
     The cellulose in residueⅡwas hydrolyzed by dilute sulphuric acid solution to prepare glucose, then glucose was fermented to ethanol. The conclusions drawn from this step are as follows:
     (1)The variables affecting the yield of glucose are concentration of sulphuric acid, temperature, reaction time, ratio of RH and solution. The importance of variables on the hydrolysis of cellulose was analyzed by range analysis. The sequence of importance was concentration of sulphuric acid > temperature > reaction time>ratio of RH and solution.
     (2) Concentration of sulphuric acid had the max impact on the yield of glucose. The optimal concentration is 0.25%.
     (3) Temperature had the second important effect on the yield of glucose, the optimal temperature is 200℃.
     (4)The results of orthogonal test shown the optimal conditions were: concentration of sulphuric acid 0.20%, temperature 190℃, reaction time 5 hours, ratio of RH and solution 1:10, the max yield of glucose is 24.17%.
     (5)The solution from cellulose hydrolysis was neutralized and purified, then Anqi yeast was used to ferment the glucose to ethanol under 32-35℃for 60 hours, the max yield of ethanol reached 45%(.wt.%, mass of ethanol/mass of glucose).
     Part 4: Preparing nano silica particle from the RH residue via pyrolysis and the modification of silica
     The nano silica particle was prepared from residue via pyrolysis, then the surface modification of silica was produced, the conclusions drawn from this step were as following:
     (1)The pyrolysis temperature varied with the constitution of rice husk. The pyrolysis temperature of rice husk residueⅠ,Ⅱ,Ⅲwas 650℃、660℃and 700℃respectively. The content of silica increased in the subsequence of rice husk residueⅠ,Ⅱ,Ⅲ.
     (2)For the one steps pyrolysis of residueⅠat 600℃,no matter what the circumstance flow was, the silica was obviously conglobated. The reason might be the high surface energy of micro-silica. If the pyrolysis temperature was lower than 600℃, the residue could not be pyrolyzed completely under oxygen flow circumstance.
     (3)For the two step pyrolysis of residueⅠat 600℃,silica nano particle with good disparity was obtained. The first step was: pyrolyzing the organic substance in residueⅠat 600℃under the CO_2 flow for 0.5 hour. The mixer of silica-carbon was obtained. In this way, the carbon was acted as an disseminating agent to prevent the aggregation of silica;The second step was oxidating the carbon at 600℃under the O_2 flow for 0.5 hour. silica nano particle with good disparity was obtained. The TEM analysis shown the silica nano particle was like irregular rice grains with the width of 15nm and length of 20nm。
     (4)For the two step pyrolysis of RH residueⅠ, the aggregation degree raised with the temperature. TEM analysis indicated that when the temperature enhanced from 600℃to 680℃, the average diameter of silica particle increased 20nm; when the temperature enhanced to 780℃, the average diameter of silica particle increased to 100nm with obvious aggregation.
     (5)For the two step pyrolysis of RH residueⅡunder 650℃,the irregular silica nano particle with average diameter of 30nm was obtained.
     (6)For the two step pyrolysis of RH residueⅢunder 650℃,the regular silica nano particle with average diameter of 30nm was obtained. Its specific surface was 136.4 m~2/g,pore size was 40nm.
     (7)The silica nanoparticle prepared from residueⅠwas modified by dimethyl dichlorosilane (DMCS), the optimal condition was temperature 200℃、dosage of active agent 0.3mL/1g, reaction time 40 minutes,activation grade reached100%。The angle of contact changed from 0~0 to 115~0, Zeta electric potential changed from -36.60±2.97mV to 14.29±2.45 mV,which proved the modification of–OH on the surface of silica nanoparticle。
     A new comprehensive utilization method of rice husk was conducted by the study of this dissertation. This method is helpful to the decrement of pollution caused by rice husk and increment of economy profit. 1 tons of D-xylose, 2.19 tons of organic lignin, 0.5 ton of ethanol and 1.7 tons of silica nanoparticle are produced from 10 tons of rice husk, the value of those products is about 65 thousand Yuan. If the 40 million tons rice husk in China were all utilized by this method, the value of those products would be 260 billions Yuan. Therefore, the development of research on the utilization of rice husk would helpful to the industry of rice husk utilization, increasing the income of farmer. There is billions of agriculture waste produced in China. The method of utilizing rice husk has a kind of generality. Therefore, the conclusions in this dissertation would has the consulting value to the utilization of other agriculture waste.
引文
1. Xu, G. W.; Ji, W. F.; Wan, Y. H.; et al., Energy production with light-industry biomass process residues rich in cellulose[J]. Prog Chem, 2007, 19 (7-8), 1164-1176.
    2. Collinson, S. R.; Thielemans, W., The catalytic oxidation of biomass to new materials focusing on starch, cellulose and lignin[J]. Coordin Chem Rev, 2010, 254 (15-16), 1854-1870.
    3. Morikawa, Y.; Ito, M.; Umeda, S., Continuous Decomposition of Cellulose Biomass by Consecutive Heating and High-Pressure Fluid Milling[J]. Kagaku Kogaku Ronbun, 2010, 36 (4), 259-263.
    4. Meireles, C. D.; Rodrigues, G.; Ferreira, M. F.; et al., Characterization of asymmetric membranes of cellulose acetate from biomass: Newspaper and mango seed. Carbohyd Polym, 2010, 80 (3), 954-961; (b) Ibrahim, M. M.; Agblevor, F. A.; El-Zawawy, W. K., Isolation and Characterization of Cellulose and Lignin from Steam-Exploded Lignocellulosic Biomass[J]. Bioresources, 2010, 5 (1), 397-418.
    5. Gross, A. S.; Chu, J. W., On the Molecular Origins of Biomass Recalcitrance: The Interaction Network and Solvation Structures of Cellulose Microfibrils[J]. J Phys Chem B, 2010, 114 (42), 13333-13341.
    6. Gayubo, A. G.; Valle, B.; Aguayo, A. T.; et al., Pyrolytic lignin removal for the valorization of biomass pyrolysis crude bio-oil by catalytic transformation[J]. J Chem Technol Biot, 2010, 85 (1), 132-144.
    7. Dong, L.; Xu, G. W.; Suda, T.; et al., Potential approaches to improve gasification of high water content biomass rich in cellulose in dual fluidized bed[J]. Fuel Process Technol, 2010, 91 (8), 882-888.
    8. Jensen, P. D.; Hardin, M. T.; Clarke, W. P., Effect of biomass concentration and inoculum source on the rate of anaerobic cellulose solubilization[J]. Bioresource Technol, 2009, 100 (21), 5219-5225.
    9. Fushimi, C.; Katayama, S.; Tasaka, K.; et al., Elucidation of the Interaction Among Cellulose, Xylan, and Lignin in Steam Gasification of Woody Biomass[J]. Aiche J, 2009, 55 (2), 529-537.
    [10] Zerbino, R.; Giaccio, G.; Isaia, G. C., Concrete incorporating rice-husk ash without processing [J]. Constr Build Mater, 2011, 25 (1), 371-378.
    [11] Horsakulthai, V.; Phiuvanna, S.; Kaenbud, W., Investigation on the corrosion resistance of bagasse-rice husk-wood ash blended cement concrete by impressed voltage. [J]Constr Build Mater, 2011, 25 (1), 54-60.
    [12]Lu Qiang, Yang Xu-lai, Zhu Xi-feng. Analysis on chemical and physical properties of bio-oil pyrolyzed from rice husk [J]. J Anal Appl Pyro, 2008, 82:191–198
    [13]Ting Li, TaoWang. Preparation of silica aerogel from rice hull ash by drying at atmospheric pressure [J]. Mate Chem Phys, 2008, 112(2):398-401
    [14]Byung-Dae Park, Seung Gon Wi, Kwang Ho Lee, et al. Characterization of anatomical features and silica distribution in rice husk using microscopic and micro-analytical techniques [J].Biomass and Bioenergy, 2003, 25: 319-327.
    [15]Mansaray. Gasification of rice husk in a fluidized bed reactor [D].DalTech: Dalhousie University.1998.
    [16]吕友军,冀承猛,郭烈锦.农业生物质在超临界水中气化制氢的实验研究[J].西安交通大学学报,2005, 39(3):238-243.
    [17]伊晓路,刘贞先,郭东彦,等.生物质颗粒度对燃烧特性影响[J].现代化工, 2006, 26 (2):230-235.
    [18]E.C.比格尔.稻壳变能源[M].北京:中国对外翻译出版公司,1984.
    [19] Ye, H. P.; Zhu, Q.; Du, D. Y., Adsorptive removal of Cd(II) from aqueous solution using natural and modified rice husk [J]. Bioresource Technol, 2010, 101 (14): 5175-5179.
    [20] Muneer, M.; Bhatti, I. A.; Adeel, S., Removal of Zn, Pb and Cr in Textile Wastewater Using Rice Husk as a Biosorbent [J]. Asian J Chem, 2010, 22 (10): 7453-7459.
    [21] Mimura, A. M. S.; Vieira, T. V. D.; Martelli, P. B.; et al., Utilization of Rice Husk to Remove Cu~(2+), Al~(3+), Ni~(2+) and Zn~(2+) from Wastewater [J]. Quim Nova, 2010, 33 (6): 1279-1284.
    [22] Ganvir, V.; Das, K., Removal of fluoride from drinking water using aluminum hydroxide coated rice husk ash [J]. J Hazard Mate, 2011, 185 (2-3): 1287-94.
    [23] Wang, L. H.; Lin, C. I.; Wu, F. C., Kinetic study of adsorption of copper (II) ion from aqueous solution using rice hull ash [J]. J Taiwan Inst Chem E, 2010, 41 (5): 599-605.
    [24] Sharma, P.; Kaur, R.; Baskar, C.; et al., Removal of methylene blue from aqueous waste using rice husk and rice husk ash [J]. Desalination, 2010, 259 (1-3): 249-257.
    [25] Dahlan, I.; Lee, K. T.; Kamaruddin, A. H.; et al., Sorption of SO2 and NO from simulated flue gas over rice husk ash (RHA)/CaO/CeO_2 sorbent:evaluation of deactivation kinetic parameters [J]. J Hazard Mater, 2011, 185 (2-3): 1609-13.
    [26] Zhao, P. F.; Guo, X.; Zheng, C. G., Removal of elemental mercury by iodine-modified rice husk ash sorbents [J]. J Environ Sci-China, 2010, 22 (10): 1629-1636.
    [27] Fan, C. H.; Zhang, Y. C.; Zhang, Y.; et al., Chefetz, B., Spectroscopic Characterization Analysis on Cr(VI) Removal Mechanism by Low-Cost Adsorbent of Rice Husk Ash. Spectrosc Spect Anal [J]. Spectroscopy and Spectral Analysis, 2010, 30 (10): 2752-2757.
    [28] Fan, C. H.; Zhang, Y.; Zhang, Y. C.; Li, J.; Chefetz, B., [Cr(VI) adsorption mechanism on rice husk ash burned at low temperature by method of IR spectra] [J]. Guang Pu Xue Yu Guang Pu Fen Xi, 2010, 30 (9): 2345-9.
    [29] Wang, L. H.; Lin, C. I., Equilibrium study on chromium (III) ion removal by adsorption onto rice hull ash [J]. J Taiwan Inst Chem E, 2009, 40 (1): 110-112.
    [30] El-Shafey, E. I., Removal of Zn(II) and Hg(II) from aqueous solution on a carbonaceous sorbent chemically prepared from rice husk [J]. J Hazard Mater, 2010, 175 (1-3): 319-27.
    [31] Awwad, N. S.; Gad, H. M.; Ahmad, M. I.; et al., Sorption of lanthanum and erbium from aqueous solution by activated carbon prepared from rice husk [J]. Colloids Surf B Biointerfaces, 2010, 81 (2): 593-599.
    [32] Lataye, D. H.; Mishra, I. M.; Mall, I. D., Adsorption of alpha-picoline onto rice husk ash and granular activated carbon from aqueous solution: Equilibrium and thermodynamic study [J]. Chem Eng J, 2009, 147 (2-3): 139-149.
    [33] Kumagai, S.; Shimizu, Y.; Toida, Y.; et al., Removal of dibenzothiophenes in kerosene by adsorption on rice husk activated carbon [J]. Fuel, 2009, 88 (10): 1975-1982.
    [34] Witoon, T.; Chareonpanich, M.; Limtrakul, J., Synthesis of bimodal porous silica from rice husk ash via sol-gel process using chitosan as template [J] Mater Lett, 2008, 62 (10-11): 1476-1479.
    [35] Ahmed, Y. M. Z.; Ewais, E. M.; Zaki, Z. I., Production of porous silica by the combustion of rice husk ash for tundish lining [J]. J Univ Sci Technol B, 2008, 15 (3): 307-313.
    [36] Adam, F.; Ahmed, A. E.; Min, S. L., Silver modified porous silica from rice husk and its catalytic potential [J]. J Porous Mat, 2008, 15 (4): 433-444.
    [37] Tungkananurak, K.; Kerdsiri, S.; Jadsadapattarakul, D.; et al., Semi-micro preparation and characterization of mesoporous silica microspheres from rice husk sodium silicate using a non-ionic surfactant as a template: application in normal phase HPLC columns [J]. Microchim Acta, 2007, 159 (3-4): 217-222.
    [38] Sanchez-Flores, N. A.; Pacheco-Malagon, G.; Perez-Romo, P.; et al., Mesoporous silica from rice hull ash [J]. J Chem Technol Biot, 2007, 82 (7) : 614-619.
    [39] Suttiruengwong, S.; Puathawee, P.; Chareonpanich, M., Preparation of mesoporous silica from rice husk ash: effect of depolymerizing agents on physico-chemical properties [J]. Func Sen Materi, 2010, 93-94: 664-667
    [40] Bhagiyalakshmi, M.; Yun, L. J.; Anuradha, R.; et al., Utilization of rice husk ash as silica source for the synthesis of mesoporous silicas and their application to CO2 adsorption through TREN/TEPA grafting [J]. J Hazard Mater, 2010, 175 (1-3) : 928-38.
    [41] Satapathy, A.; Jha, A. K.; Mantry, S. et al., Processing and Characterization of Jute-Epoxy Composites Reinforced with SiC Derived from Rice Husk [J]. J Reinf Plast Comp, 2010, 29 (18) : 2869-2878.
    [42] Pavarajarn, V.; Precharyutasin, R.; Praserthdam, P., Synthesis of Silicon Nitride Fibers by the Carbothermal Reduction and Nitridation of Rice Husk Ash [J]. J Am Ceram Soc, 2010, 93 (4): 973-979.
    [43] Nayak, J. P.; Bera, J., Preparation of Silica Aerogel by Ambient Pressure Drying Process using Rice Husk Ash as Raw Material [J]. Trans Indian Ceram S, 2009, 68 (2) : 91-94.
    [44] Maamur, K. N.; Jais, U. S.; Yahya, S. Y. S., Magnetic Phase Development of Iron Oxide-SiO2 Aerogel and Xerogel Prepared using Rice Husk Ash as Precursor [J]. Aip Conf Proc, 2010, 1217: 294-301
    [45] Kordatos, K.; Gavela, S.; Ntziouni, A.; et al., Synthesis of highly siliceous ZSM-5 zeolite using silica from rice husk ash [J]. Micropor Mesopor Mat, 2008, 115 (1-2) : 189-196.
    [46] Azizi, S. N.; Yousefpour, M., Synthesis of zeolites NaA and analcime using rice husk ash as silica source without using organic template [J]. J Mater Sci, 2010, 45 (20) : 5692-5697.
    [47] Yusof, A. M.; Nizam, N. A.; Rashid, N. A. A., Hydrothermal conversion of rice husk ash to faujasite-types and NaA-type of zeolites [J]. J Porous Mat, 2010, 17 (1) : 39-47.
    [48] Umeda, J.; Kondoh, K.; Kawakami, M.; et al., Powder metallurgy magnesium composite with magnesium silicide in using rice husk silica particles [J]. Powder Technol, 2009, 189 (3) :399-403.
    [49] Sarangi, M.; Bhattacharyya, S.; Behera, R. C., Effect of temperature on morphology and phase transformations of nano-crystalline silica obtained from rice husk [J]. Phase Transit, 2009, 82 (5) : 377-386.
    [50] Thuadaij, N.; Nuntiya, A., Preparation of nanosilica powder from rice husk ash by precipitation method [J]. Chiang Mai J Sci, 2008, 35 (1) : 206-211.
    [51] Estevez, M.; Vargas, S.; Castano, V. M.; et al., Silica nano-particles produced by worms through a bio-digestion process of rice husk [J]. J Non-Cryst Solids, 2009, 355 (14-15) : 844-850.
    [52] Rattanasak, U.; Chindaprasirt, P.; Suwanvitaya, P., Development of high volume rice husk ash alumino silicate composites [J]. Int J Min Met Mater, 2010, 17 (5) : 654-659.
    [53] Rozman, H. D.; Zuliahani, A.; Tay, G. S., Effects of Rice Husk (RH) Particle Size, Glass Fiber (GF) Length, RH/GF Ratio, and Addition of Coupling Agent on the Mechanical and Physical Properties of Polypropylene-RH-GF Hybrid Composites [J]. J Appl Polym Sci,2010, 115 (6) : 3456-3462.
    [54] Kumar, V.; Sinha, S.; Saini, M. S.; et al., Effect of Process Parameters on Mechanical Properties of Rice Husk Polypropylene Composites [J]. Int Polym Proc,2010, 25 (4) : 311-314.
    [55] Rahman, W. A. W. A.; Isa, N. M.; Rahmat, A. R.; et al., Rice Husk/High Density Polyethylene Bio-Composite: Effect of Rice Husk Filler Size and Composition on Injection Molding Processability with Respect to Impact Property [J]. Adv Mater Proceg Technol, 2010, 83-86: 367-374.
    [56] Rahman, M. R.; Islam, M. N.; Huque, M. M.; et al., Effect of Chemical Treatment on Rice Husk (Rh) Reinforced Polyethylene (Pe) Composites [J]. Bioresources, 2010, 5 (2) : 854-869.
    [57]Wang, W. H.; Wang, Q. W.; Dang, W. J., Durability of a Rice-Hull-Polyethylene Composite Property Change After Exposed to UV Weathering [J]. J Reinf Plast Comp, 2009, 28 (15) : 1813-1822.
    [58] Chand, N.; Sharma, P.; Fahim, M., Tribology of maleic anhydride modified rice-husk filled polyvinylchloride [J]. Wear, 2010, 269 (11-12) : 847-853.
    [59] Chen, W. S.; Chang, F. W.; Roselin, L. S.; et al., Partial oxidation of methanol over copper catalysts supported on rice husk ash [J]. J Mol Catal a-Chem, 2010, 318 (1-2) : 36-43.
    [60] Adam, F.; Thankappan, R., Oxidation of benzene over bimetallic Cu-Ce incorporated rice husk silica catalysts [J]. Chem Eng J, 2010, 160 (1) : 249-258.
    [61] Adam, F.; Iqbal, A., The oxidation of styrene by chromium-silica heterogeneous catalyst prepared from rice husk [J]. Chem Eng J, 2010, 160 (2) : 742-750.
    [62] Lu, C. Y.; Wey, M. Y.; Chuang, K. H., Catalytic treating of gas pollutants over cobalt catalyst supported on porous carbons derived from rice husk and carbon nanotube [J]. Appl Catal B-Environ, 2009, 90 (3-4) : 652-661.
    [63] Kim, J.; Kwak, B. S.; Kang, M., TiO2/Carbon Composites Prepared from Rice Husk and the Removal of Bisphenol A in Photocatalytic Liquid System [J]. B Korean Chem Soc, 2010, 31 (2) : 344-350.
    [64] Sangarunlert, W.; Piumsomboon, P.; Ngamprasertsith, S., Furfural production by acid hydrolysis and supercritical carbon dioxide extraction from rice husk [J]. Korean J Chem Eng, 2007, 24 (6) : 936-941.
    [65] Zhang, H.; Zhao, X.; Ding, X.; et al., A study on the consecutive preparation of d-xylose and pure superfine silica from rice husk [J]. Bioresour Technol, 2010, 101 (4) : 1263-7.
    [66] Vegas, R.; Moure, A.; Dominguez, H.; et al., Evaluation of ultra- and nanofiltration for refining soluble products from rice husk xylan [J]. Bioresource Technol, 2008, 99 (13) : 5341-5351.
    [67] Vegas, R.; Alonso, J. L.; Dominguez, H.; et al., Enzymatic processing of rice husk autohydrolysis products for obtaining low molecular weight oligosaccharides [J]. Food Biotechnol , 2008, 22 (1-2) : 31-46.
    [68] Vegas, R.; Moure, A.; Dominguez, H.; et al., Purification of oligosaccharides from rice husk autohydrolysis liquors by ultra- and nano-filtration [J]. Desalination, 2006, 199 (1-3) : 541-543.
    [69] Vegas, R.; Alonso, J. L.; Doninguez, H.; et al., Processing of rice husk autohydrolysis liquors for obtaining food ingredients [J]. J Agr Food Chem, 2004, 52 (24) : 7311-7317.
    [70]Megawati; Sediawan, W. B.; Sulistyo, H.; et al., Kinetics of sequential reaction of hydrolysis and sugar degradation of rice husk in ethanol production: effect of catalyst concentration [J]. Bioresour Technol, 2011, 102 (2) : 2062-2067.
    [71] Saha, B. C.; Iten, L. B.; Cotta, M. A.; et al., Fuel ethanol production from rice hull [J]. Abstr Pap Am Chem S, 2004, 227: 202-203.
    [72]Wei, G. Y.; Lee, Y. J.; Kim, Y. J.; et al., Kinetic Study on the Pretreatment and Enzymatic Saccharification of Rice Hull for the Production of Fermentable Sugars [J]. Appl Biochem Biotech, 2010, 162 (5) : 1471-1482.
    [73] Chareonlimkun, A.; Champreda, V.; Shotipruk, A.; et al., Catalytic conversion of sugarcane bagasse, rice husk and corncob in the presence of TiO2, ZrO2 and mixed-oxide TiO2-ZrO2 under hot compressed water (HCW) condition [J]. Bioresour Technol, 2010, 101 (11) : 4179-4186.
    [74] Qu, Y. N.; Tian, Y. M.; Zou, B.; et al.,, A novel mesoporous lignin/silica hybrid from rice husk produced by a sol-gel method [J]. Bioresource Technol, 2010, 101 (21) : 8402-8405.
    [75] Salanti, A.; Zoia, L.; Orlandi, M.; et al., Structural characterization and antioxidant activity evaluation of lignins from rice husk [J]. J Agric Food Chem, 2010, 58 (18) :10049-10055.
    [76] Karagoz, S.; Bhaskar, T.; Muto, A.; et al., Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment [J]. Fuel, 2005, 84 (7-8) : 875-884.
    [77] Eun, J. B.; Lee, M. J.; Lee, J. C., Antimicrobial activities of rice hull lignins and their nitrobenzene-oxidized monomers [J]. Abstr Pap Am Chem S, 2000, 220: 29-30.
    [78] Rozainee, M.; Ngo, S. P.; Salema, A. A.; et al., Computational fluid dynamics modeling of rice husk combustion in a fluidised bed combustor [J]. Powder Technol, 2010, 203 (2) : 331-347.
    [79] Kuprianov, V. I.; Kaewklum, R.; Sirisomboon, K.; et al., Combustion and emission characteristics of a swirling fluidized-bed combustor burning moisturized rice husk [J]. Appl Energ, 2010, 87 (9) : 2899-2906.
    [80] Angel, J. D. M.; Vasquez, T. G. P.; Zapata, J. P. L.; et al., Fluidized bed rice husk combustion experiments for the production of silica-rich ash [J]. Rev Fac Ing-Univ Ant, 2010, (51) : 97-104.
    [81] Sathitruangsak, P.; Madhiyanon, T.; Soponronnarit, S., Rice husk co-firing with coal in a short-combustion-chamber fluidized-bed combustor (SFBC) [J]. Fuel, 2009, 88 (8) : 1394-1402.
    [82] Kuprianov, V. I.; Kaewklum, R.; Sirisomboon, K.; et al., Improvement of Combustion Efficiency and Minimizing CO and NO Emissions of a Swirling Fluidized-Bed Combustor Firing Rice Husk [J]. Inter. Confe. Clean Electrical Power, 2009: 9-16
    [83]. Kaewkohkiat, Y.; Eiamsa-Ard, S.; Wongcharee, K.; et al., Combustion of Rice Husk in a Fluidized Bed Combustor with Wavy-Surfaced Chambers [J]. Pro [J]. Inter. Con. Power Engineering, 2009, 195-199
    [84] Angel, J. D. M.; Vasquez, T. G. P.; Junkes, J. A.; et al., Characterization of Ash from Combustion of Rice Husk in a Fluidized Bed Reactor [J]. Quim Nova, 2009, 32 (5) : 1110-1117.
    [85] Rozainee, M.; Ngo, S. P.; Salema, A. A.; et al., Effect of fluidising velocity on the combustion of rice husk in a bench-scale fluidised bed combustor for the production of amorphous rice husk ash [J]. Bioresource Technol, 2008, 99 (4) : 703-713.
    [86] Li, J. F.; Liu, J. J.; Liao, S. Y.; et al., Hydrogen-rich gas production by air-steam gasification of rice husk using supported nano-NiO/gamma-Al2O3 catalyst [J]. Int J Hydrogen Energ, 2010, 35 (14) : 7399-7404.
    [87] Sun, S. Z.; Zhao, Y. J.; Su, F. M.; et al., Gasification of rice husk in a cyclone gasifier [J]. Korean J Chem Eng, 2009, 26 (2) : 528-533.
    [88] Zhao, Y. J.; Sun, S. Z.; Tian, H. M.; et al., Characteristics of rice husk gasification in an entrained flow reactor [J]. Bioresource Technol, 2009, 100 (23) : 6040-6044.
    [89] Sun, S. Z.; Zhao, Y. J.; Ling, F.; et al., Experimental research on air staged cyclone gasification of rice husk [J]. Fuel Process Technol, 2009, 90 (4) : 465-471.
    [90] Janvijitsakul, K.; Kuprianov, V. I., Major gaseous and PAH emissions from a fluidized-bed combustor firing rice husk with high combustion efficiency [J]. Fuel Process Technol, 2008, 89 (8) : 777-787.
    [91] Ramirez, J. J.; Martinez, J. D.; Petro, S. L., Basic design of a fluidized bed gasifier for rice husk on a pilot scale [J]. Lat Am Appl Res, 2007, 37 (4) : 299-306.
    [92] Zeng, F.; Liu, W.; Jiang, H.; et al., Separation of phthalate esters from bio-oil derived from rice husk by a basification-acidification process and column chromatography [J]. Bioresour Technol, 2011, 102 (2) : 1982-1987.
    [93] Heo, H. S.; Park, H. J.; Dong, J. I.; et al., Fast pyrolysis of rice husk under different reaction conditions [J]. J Ind Eng Chem, 2010, 16 (1) : 27-31.
    [94] Zhao, B. F.; Sun, L.; Zhang, X. D.; etal., Thermodynamic Equilibrium Analysis of Rice Husk Pyrolysis [J]. Proceedings of the Asme Turbo Expo, 2008, 1 : 365-368
    [95] Hu, S.; Xiang, J.; Sun, L. S.; etal., Characterization of char from rapid pyrolysis of rice husk [J]. Fuel Process Technol, 2008, 89 (11) : 1096-1105.
    [96] Zheng, J. L., Bio-oil from fast pyrolysis of rice husk: Yields and related properties and improvement of the pyrolysis system [J]. J Anal Appl Pyrol, 2007, 80 (1) : 30-35.
    [97] Worasuwannarak, N.; Sonobe, T.; Tanthapanichakoon, W., Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique [J]. J Anal Appl Pyrol, 2007, 78 (2) : 265-271.
    [98] Tsai, W. T.; Lee, M. K.; Chang, Y. M., Fast pyrolysis of rice husk: Product yields and compositions [J]. Bioresource Technol, 2007, 98 (1) : 22-28.
    [99] Qi, G. L.; Dong, P.; Zhai, M.; etal., Experimental study on rice husk flash pyrolysis with discontinuity feed for production of bio-oil [J]. Chall Power Engi Envi, 2007, 135-138
    [100]de Melo, R. R.; Santini, E. J.; Haselein, C. R.; etal., Decay and Termite Resistance of Particleboard Made with Different Proportions of Wood and Rice Husk [J]. Cienc Florest, 2010, 20 (3) : 501-511.
    [101]de Melo, R. R.; Santini, E. J.; Haselein, C. R.; etal., Properties of Wood and Rice Husk Particleboard in Different Proportions [J]. Cienc Florest, 2009, 19 (3-4) : 449-460.
    [102]Zerbino, R.; Giaccio, G.; Isaia, G. C., Concrete incorporating rice-husk ash without processing [J]. Constr Build Mater, 2011, 25 (1) : 371-378.
    [103]Horsakulthai, V.; Phiuvanna, S.; Kaenbud, W., Investigation on the corrosion resistance of bagasse-rice husk-wood ash blended cement concrete by impressed voltage [J]. Constr Build Mater, 2011, 25 (1) :, 54-60.
    [104]Chatveera, B.; Lertwattanaruk, P., Durability of conventional concretes containing black rice husk ash [J]. J Environ Manage, 2011, 92 (1) : 59-66.
    [105]Wansom, S.; Janjaturaphan, S.; Sinthupinyo, S., Characterizing pozzolanic activity of rice husk ash by impedance spectroscopy [J]. Cement Concrete Res, 2010, 40 (12) : 1714-1722.
    [106]Saridemir, M., Genetic programming approach for prediction of compressive strength of concretes containing rice husk ash [J]. Constr Build Mater, 2010, 24 (10) : 1911-1919.
    [107]Rodrigues, M. S.; Beraldo, A. L., Physical and Mechanical Characterization on Portland Cement Mortar with Rice Husk Ash Addition [J]. Eng Agric, 2010, 30 (2) : 193-204.
    [108]Ngun, B. K.; Mohamad, H.; Sakai, E.; etal., Effect of rice husk ash and silica fume in ternary system on the properties of blended cement paste and concrete [J]. J Ceram Process Res , 2010, 11 (3) : 311-315.
    [109] Koay, Y. C.; Mahmud, H., Engineering Properties and Durability of High Performance Rice Husk Ash Concrete [J]. Advance in Structural Engineering, 2010, 85-94
    [110] Harish, K. V.; Rangaraju, P. R.; Vempati, R. K., Fundamental Investigations into Performance of Carbon-Neutral Rice Husk Ash as Supplementary Cementitious Material [J]. Transp Res Record, 2010, (2164) :26-35.
    [111] Givi, A. N.; Rashid, S. A.; Aziz, F. N. A.; etal., Assessment of the effects of rice husk ash particle size on strength, water permeability and workability of binary blended concrete [J]. Constr Build Mater, 2010, 24 (11) : 2145-2150
    [1] Zhuang, J. P.; Lin, L.; Liu, J.; Luo, et al., Preparation of Xylose and Kraft Pulp from Poplar Based on Formic/Acetic Acid /Water System Hydrolysis. [J].Bioresources, 2009, 4 (3): 1147-1157.
    [2] Pumiput, P.; Chuntranuluck, S.; Punsuvon, V.; Vaithanomsat, P., Preparation of xylose solution from steam explosion of oil palm trunk chip[C]. Proceedings of 44th Kasetsart University Annual Conference, 2006, 669-676
    [3] Ogaki, Y.; Shinozuka, Y.; Hatakeyama, M.; Hara, et al., Selective Production of Xylose and Xylo-oligosaccharides from Bamboo Biomass by Sulfonated Allophane Solid Acid Catalyst[J].Chem Lett, 2009, 38 (12) : 1176-1177.
    [4] Guerfali, M.; Maalej, I.; Gargouri, A.; et al., Catalytic properties of the immobilized Talaromyces thermophilus beta-xylosidase and its use for xylose and xylooligosaccharides production[J].J Mol Catal B-Enzym, 2009, 57 (1-4) : 242-249.
    [5] Weingarten, R.; Cho, J.; Conner, W. C.; Huber, G. W., Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating[J]. Green Chem, 2010, 12 (8) : 1423-1429.
    [6] Takagaki, A.; Ohara, M.; Nishimura, S.; Ebitani, K., One-pot Formation of Furfural from Xylose via Isomerization and Successive Dehydration Reactions over Heterogeneous Acid and Base Catalysts[J]. Chem Lett, 2010, 39 (8) : 838-840.
    [7] Marcotullio, G.; De Jong, W., Chloride ions enhance furfural formation from D-xylose in dilute aqueous acidic solutions[J]. Green Chem, 2010, 12 (10) : 1739-1746.
    [8] Lima, S.; Fernandes, A.; Antunes, M. M.; et al, Dehydration of Xylose into Furfural in the Presence of Crystalline Microporous Silicoaluminophosphates[J]. Catal Lett, 2010, 135 (1-2) : 41-47.
    [9] Lima, S.; Antunes, M. M.; Fernandes, A.; et al., Catalytic cyclodehydration of xylose to furfural in the presence of zeolite H-Beta and a micro/mesoporous Beta/TUD-1 composite material[J]. Appl Catal a-Gen, 2010, 388 (1-2) : 141-148.
    [10] Nair, N. U.; Zhao, H. M., Selective reduction of xylose to xylitol from a mixture of hemicellulosic sugars[J]. Metab Eng, 2010, 12 (5) : 462-468.
    [11] Tamburini, E.; Bianchini, E.; Bruni, A.; et al., Cosubstrate effect on xylose reductase and xylitol dehydrogenase activity levels, and its consequence on xylitol production by Candida tropicalis[J]. Enzyme Microb Tech, 2010, 46 (5) : 352-359.
    [12] Kim, S. H.; Yun, J. Y.; Kim, S. G.; et al., Production of xylitol from D-xylose and glucose with recombinant Corynebacterium glutamicum[J]. Enzyme Microb Tech, 2010, 46 (5) : 366-371.
    [13] Olofsson, K.; Wiman, M.; Liden, G., Controlled feeding of cellulases improves conversion of xylose in simultaneous saccharification and co-fermentation for bioethanol production[J].J Biotechnol , 2010, 145 (2) : 168-175.
    [14] Zhao, L.; Yu, J. L.; Zhang, X.; et al., The Ethanol Tolerance of Pachysolen tannophilus in Fermentation on Xylose[J]. Appl Biochem Biotech, 2010, 160 (2) : 378-385.
    [15] Zhao, C. X.; Karakashev, D.; Lu, W. J.; et al.; Xylose fermentation to biofuels (hydrogen and ethanol) by extreme thermophilic mixed culture[J]. Int J Hydrogen Energ, 2010, 35 (8) : 3415-3422.
    [16] Sangarunlert, W.; Piumsomboon, P.; Ngamprasertsith, S., Furfural production by acid hydrolysis and supercritical carbon dioxide extraction from rice husk [J]. Korean J Chem Eng, 2007, 24 (6) : 936-941.
    [17] Zhang, H.; Zhao, X.; Ding, X.; et al., A study on the consecutive preparation of d-xylose and pure superfine silica from rice husk [J]. Bioresour Technol, 2010, 101 (4) : 1263-7.
    [18] Vegas, R.; Moure, A.; Dominguez, H.; et al., Evaluation of ultra- and nanofiltration for refining soluble products from rice husk xylan [J]. Bioresource Technol, 2008, 99 (13) : 5341-5351.
    [19] Vegas, R.; Alonso, J. L.; Dominguez, H.; et al., Enzymatic processing of rice husk autohydrolysis products for obtaining low molecular weight oligosaccharides [J]. Food Biotechno, 2008, 22 (1-2) : 31-46.
    [20] Vegas, R.; Moure, A.; Dominguez, H.; et al., Purification of oligosaccharides from rice husk autohydrolysis liquors by ultra- and nano-filtration [J]. Desalination, 2006, 199 (1-3) : 541-543.
    [21] Vegas, R.; Alonso, J. L.; Doninguez, H.; et al., Processing of rice husk autohydrolysis liquors for obtaining food ingredients [J]. J Agr Food Chem, 2004, 52 (24) : 7311-7317.
    [22]邬义明主编.植物纤维化学(第二版).[M].中国轻工业出版社.1995
    [23]Mohammad J. Taherzadeh; Keikhosro Karimi. Acid-baded hydrolysis processes for ethanol from lignocellulosic materials: a review [J]. BorResources, 2007, 2(3): 472-499
    [24] Rodr??guez-Chong, A.; Ram?′rez, J. A.; Garrote, G.; et al., Hydrolysis of sugar cane bagasse using nitric acid: a kinetics assessment[J].J. Food Eng, 2004, 61: 143-152
    [25]北京大学生物系生物化学教研室[M].生物化学实验指导,高等教育出版社,1985
    [26] Ebringerova A, Heinze T. Xylan and xylan derivatives-biopolymers with valuable properties, 1. Naturally occurring xylans structures, isolation procedures and properties[J]. Macromolecular Rapid Communications, 2000, 21: 542-556.
    [1]蒋挺大.木质素[M].北京:化学工业出版社,2001.
    [2]中野准三.木质素的化学—基础与应用[M].北京:轻工业出版社,1988.
    [3]Guojuan Cui, Wenbing Xia, Guangjun Chen, et al. Enhanced Mechanical Performances of aterborne Polyurethane Loaded with Lignosulfonate and its Supramolecular Complexes [J].J Appl Poly Sci, 2007,106: 4257–4263.
    [4]Hansj(o|¨)rg Nitz, Hinnerk Semke, Rolf Mülhaupt. Influence of Lignin Type on the Mechanical Properties of Lignin Based Compounds[J].Macromol. Mater. Eng. 2001, 286(12): 737-743.
    [5]Charlyse Pouteau ,Stéphanie Baumberger, Bernard Cathala, et al. Lignin–polymer blends: evaluation of compatibility by image analysis[J].C. R. Biologies, 2004, 327: 935–943.
    [6]Yan Li, Juraj Mlynár, Simo Sarkanen. The first 85% Kraft lignin-based thermoplastics[J]. J Poly Sci B, 1997, 35: 1899–1910.
    [7]Jaafar, S. N. S.; Zakaria, S.; Rasid, R.; Zulkifli, N. A.; Ahmadzadeh, A., Effect of Catalysts on Biopolymer Phenolic Resin by Liquefaction Process of Soda Lignin[J].Sains Malays, 2010, 39 (1) : 73-76.
    [8]Akhtar, T.; Lutfullah, G.; Nazli, R., Synthesis of Lignin Based Phenolic Resin and its Utilization in the Exterior Grade Plywood[J].J Chem Soc Pakistan, 2009, 31 (2) : 304-308.
    [9]Samal, S. K.; Fernandes, E. G.; Corti, A.; etal., Hybrid polymeric composites based on polyethylene and lignin[J]. Int J Mater Prod Tec, 2009, 36 (1-4) : 62-72.
    [10]Kumar, M. N. S.; Mohanty, A. K.; Erickson, L.; et al., Lignin and Its Applications with Polymers[J].J Biobased Mater Bio, 2009, 3 (1) : 21-24.
    [11]Shulga, G.; Betkers, T.; Brovkina, J.; et al., New lignin-based polymers for ecological rehabilitation[J].Mol Cryst Liq Cryst, 2008, 486: 1333-1347.
    [12]Michinobu, T.; Inazawa, Y.; Hiraki, K.; et al., A novel biomass-based polymer prepared from lignin-derived stable metabolic intermediate by copper(I)-catalyzed azide-alkyne click reaction[J].Chem Lett, 2008, 37 (2) : 154-155.
    [13]Liu, C.; Wu, G. X.; Mu, H. Z.; et al., Synthesis and application of lignin-based copolymer LSAA on controlling non-point source pollution resulted from surface runoff[J].J Environ Sci-China, 2008, 20 (7) : 820-826.
    [14]Shulga, G.; Betkers, T.; Shakels, V.; et al.; Ambrazaitene, D.; Zukauskaite, A., Effect of the Modification of Lignocellulosic Materials with a Lignin-Polymer Complex on Their Mulching Properties[J].Bioresources, 2007, 2 (4) : 572-582.
    [15]Mohan, D.; Pittman, C. U.; Steele, P. H., Single, binary and multi-component adsorption of copper and cadmium from aqueous solutions on Kraft lignin - a biosorbent[J].J Colloid Interf Sci, 2006, 297 (2) : 489-504.
    [16]Liu, M. H.; Huang, J. H., Removal and recovery of cationic dyes from aqueous solutions using spherical sulfonic lignin adsorbent[J].J Appl Polym Sci, 2006, 101 (4) : 2284-2291.
    [17]Baklanova, O. N.; Plaksin, G. V.; Drozdov, V. A.;et al., Preparation of microporous sorbents from cedar nutshells and hydrolytic lignin[J].Carbon, 2003, 41 (9) : 1793-1800.
    [18]Norgren, M.; Mackin, S., Sulfate and Surfactants as Boosters of Kraft Lignin Precipitation[J].Ind Eng Chem Res, 2009, 48 (10) : 5098-5104.
    [19]Lalvani, S.B., Wiltowski, T.S., Murphy, D., et al., Metal removal from process water by lignin[J]. EnvironTechnol. 1997.18: 1163–1168.
    [20]Lalvani, S.B., Hübner, A., Wiltowski, T.S., Chromium adsorption by lignin[J].Energy Sources, 2000, 22: 45–56.
    [21]Norgren, M.; Mackin, S., Sulfate and Surfactants as Boosters of Kraft Lignin Precipitation[J].Ind Eng Chem Res, 2009, 48 (10) : 5098-5104.
    [22]Homma, H.; Kubo, S.; Yamada, T.; et al., Preparation and Characterization of Amphiphilic Lignin Derivatives as Surfactants[J].J Wood Chem Technol, 2008, 28 (4) : 270-282.
    [23]Matsushita, Y.; Yasuda, S., Reactivity of a condensed-type lignin model compound in the Mannich reaction and preparation of cationic surfactant from sulfuric acid lignin[J].J Wood Sci, 2003, 49 (2) : 166-171.
    [24]Jiao, Y. H.; Qiao, W. H.; Li, Z. S.; et al., Studies on a novel modified lignin surfactant[J].Tenside Surfact Det, 2003, 40 (2) : 77-79.
    [25]Huang, X. R.; Wang, D.; Liu, C. X.;et al., The roles of veratryl alcohol and nonionic surfactant in the oxidation of phenolic compounds by lignin peroxidase[J].Biochem Bioph Res Co, 2003, 311 (2) : 491-494.
    [26]Norgren, M.; Edlund, H., Stabilisation of kraft lignin solutions by surfactant additions[J].Colloid Surface A, 2001, 194 (1-3) : 239-248.
    [27]Joniak, D.; Polakova, M.; Kosikova, B.; et al., Synthesis and properties of novel lignin surfactants[J].Drev Vysk, 1999, 44 (3-4) : 60-66.
    [28]张莹,雷中方.造纸黑液提取木质素的抗氧化性研究[J].复旦学报(自然科学版), 2010, 49(1):60-65
    [29]李长亮,张美云,夏新兴,催化的有机溶剂制浆工艺和机理[J].西南造纸,2005,34(5):30-33
    [30]Lin H. Hoo; Kyosti V. Sarkanen; Charles D. Anderson. Formation of C6 C2 -Enol Ethers in the Acid-Catalyzed Hydrolysis of Erythro-Veratrylglycerol-β-(2-Methoxyphenyl) Ether [J].J Wood Chem Technol, 1983,3(2): 223 - 243
    [31]Chen, Y. P.; Chen, R. Q.; Chen, X. S.; et al., Spectra and structural analysis of high boiling solvent lignin from bagasse[J].Spectrosc Spect Anal, 2006, 26 (10) : 1880-1883.
    [32]Oliet, M.; Rodriguez, F.; Garcia, J.;et al., The effect of autocatalyzed ethanol pulping on lignin characteristics[J].J Wood Chem Technol, 2001, 21 (1) : 81-95.
    [33]Liu, Y.; Carriero, S.; Pye, K.; Argyropoulos, D. S., A comparison of the structural changes occurring in lignin during Alcell and kraft pulping of hardwoods and softwoods[J].Lignin, 2000, 742: 447-464.
    [34]Hergert, H. L.; Goyal, G. C.; Lora, J. H., Limiting molecular weight of lignin from autocatalyzed organosolv pulping of hardwood[J].Lignin, 2000, 742: 265-277.
    [35]Gilarranz, M. A.; Rodriguez, F.; Oliet, M., Lignin behavior during the autocatalyzed methanol pulping of Eucalyptus globulus - Changes in molecular weight and functionality[J].Holzforschung, 2000, 54 (4) : 373-380.
    [36]Nada, A. A. M. A.; Ibrahem, A. A.; Fahmy, Y.; et al., Peroxyacetic acid pulping of bagasse and characterization of the lignin and pulp[J].J Sci Ind Res India, 1999, 58 (8) : 620-628.
    [1]Xu, J. M.; Jiang, J. C.; Lv, W.; et al., Rice husk bio-oil upgrading by means of phase separation and the production of esters from the water phase, and novolac resins from the insoluble phase[J]. Biomass Bioenerg, 2010, 34 (7), 1059-1063.
    [2]Bharadwaj, A.; Wang, Y.; Sridhar, S.; Arunachalam, V. S., Pyrolysis of rice husk[J]. Curr Sci India, 2004, 87 (7), 981-986.
    [3]Vegas, R.; Alonso, J. L.; Doninguez, H.; et al., Processing of rice husk autohydrolysis liquors for obtaining food ingredients[J]. J Agr Food Chem, 2004, 52 (24), 7311-7317.
    [4]Qiang, L.; Xu-Lai, Y.; Xi-Feng, Z., Analysis on chemical and physical properties of bio-oil pyrolyzed from rice husk[J].J Anal Appl Pyrol, 2008, 82 (2), 191-198.
    [5]Karagoz, S.; Bhaskar, T.; Muto, A.; et al., Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment[J].Fuel, 2005, 84 (7-8), 875-884.
    [6]Worasuwannarak, N.; Sonobe, T.; Tanthapanichakoon, W., Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique[J]. J Anal Appl Pyrol, 2007, 78 (2), 265-271.
    [7]Arora, S.; Kumar, M.; Dubey, G. P., Thermal decomposition kinetics of rice husk: activation energy with dynamic thermogravimetric analysis[J].J Energy Inst, 2009, 82 (3), 138-143.
    [8]Zhou, J. X.; Chen, D.; Zhu, Y. H.; et al., Simultaneous wet ball milling and mild acid hydrolysis of rice hull[J].J Chem Technol Biot, 2010, 85 (1), 85-90.
    [9]Megawati; Sediawan, W. B.; Sulistyo, H.; Hidayat, M., Kinetics of sequential reaction of hydrolysis and sugar degradation of rice husk in ethanol production: effect of catalyst concentration[J].Bioresour Technol, 2011, 102 (2), 2062-7.
    [10]Saha, B. C.; Iten, L. B.; Cotta, M. A.; et al., Fuel ethanol production from rice hull[J]. Abstr Pap Am Chem S, 2004, 227, 202-202.
    [11]Crespo, J. E.; Sanchez, L.; Garcia, D.; et al., Study of the mechanical and morphological properties of plasticized PVC composites containing rice husk fillers[J].J Reinf Plast Comp, 2008, 27 (3), 229-243.
    [12]Bera, J.; Kale, D. D., Effect of particle size of chemically treated rice husk powder on the properties of filled polypropylene[J].J Polym Mater, 2006, 23 (2), 203-209.
    [13]Zurina, M.; Ismail, H.; Bakar, A. A., Rice husk powder-filled polystyrene/styrene butadiene rubber blends[J]. J Appl Polym Sci, 2004, 92 (5), 3320-3332.
    [14]Shafiei, M.; Karimi, K.; Taherzadeh, M. J., Pretreatment of spruce and oak by N-methylmorpholine-N-oxide (NMMO) for efficient conversion of their cellulose to ethanol[J]. Bioresource Technol, 2010, 101 (13), 4914-4918.
    [15]Park, I.; Kim, I.; Kang, K.; et al., Cellulose ethanol production from waste newsprint by simultaneous saccharification and fermentation using Saccharomyces cerevisiae KNU5377[J].Process Biochem, 2010, 45 (4), 487-492.
    [16]Jeihanipour, A.; Karimi, K.; Taherzadeh, M. J., Enhancement of Ethanol and Biogas Production From High-Crystalline Cellulose by Different Modes of NMO Pretreatment[J]. Biotechnol Bioeng, 2010, 105 (3), 469-476.
    [17]Chen, Y. F.; Dong, B. Y.; Qin, W. J.; et al., Xylose and cellulose fractionation from corncob with three different strategies and separate fermentation of them to bioethanol[J]. Bioresource Technol, 2010, 101 (18), 6994-6999.
    [18]Ladisch, M.; Dale, B.; Tyner, W.; et al., Cellulose conversion in dry grind ethanol plants[J]. Bioresource Technol, 2008, 99 (12), 5157-5159.
    [19]Frederick, W. J.; Lien, S. J.; Courchene, C. E.; et al., Co-production of ethanol and cellulose fiber from Southern Pine: A technical and economic assessment[J]. Biomass Bioenerg, 2008, 32 (12), 1293-1302.
    [20]Bezerra, R. M. F.; Dias, A. A.; Fraga, I.; et al., Simultaneous ethanol and cellobiose inhibition of cellulose hydrolysis studied with integrated equationsassuming constant or variable substrate concentration[J]. Appl Biochem Biotech, 2006, 134 (1), 27-38.
    [21]蔡再生,纤维化学与物理[M].2004年08月第1版,中国纺织出版社
    [22]陈嘉川等编著,天然高分子化学[M].2008年第1版,科学出版社
    [23]Demirbas, A., Bioethanol from cellulosic materials: a renewable motor fuel from biomass[J]. Energy Sour. 2005, 27, 327–337.
    [24]Abbas, A., Ansumali, S., Global Potential of Rice Husk as a Renewable Feedstock for Ethanol Biofuel Production[J]. Bioenerg. Res, 2010, 14 April 2010.
    [25]Canettieri, E.V., Rocha, G.J.M., Carvalho, J.A., et al., Evaluation of the kinetics of xylose formation from dilute sulfuric acid hydrolysis of forest residues of Eucalyptus grandis[J]. Ind. Eng. Chem. Res. 2007, 46, 1938–1944.
    [26]Mohammad J. Taherzadeh, Keikhosro Karimi. Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review[J].BioResources, 2007, 2(3):472-499
    [27]Mosier, N.S., Ladish, C.M., Ladish, M.R., Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation[J]. Biotechnol. Bioeng. 2002, 79, 610–618.
    [28]Torget, R.W., Kim, J.S., Lee, Y.Y., Fundamental aspects of dilute acid hydrolysis/fractionation kinetics of hardwood carbohydrates. 1. cellulose hydrolysis[J].Ind.Eng. Chem. Res, 2000, 39, 2817–2825.
    [29]Koksimovic, G., Markovic, Z., Investigation of the mechanism of acidic hydrolysis of cellulose[J].Acta Agric. Serbia, 2007, 12, 51–57.
    [30]Herrera, A., Tellez-Luis, S., Gonzalez-Cabriales, J.J., et al., Effect of hydrochloric acid concentration on the hydrolysis of sorghum straw at atmospheric pressure[J].J. Food Eng. 2004, 63, 103–109.
    [31]Xiang, Q., Lee, Y.Y., Torget, T.W., Kinetics of glucose decomposition during dilute-acid hydrolysis of lignocellulosic biomass. Appl. Biochem[J]. Biotechmol. 2004, 115, 1127–1138.
    [1]瞿其曙,何友昭等.超细二氧化硅的制备及研究进展[J].硅酸盐通报,2005, 5:57-64
    [2]洪立福,金鑫.超细二氧化硅的制备与改性[J].北京化工大学学报, 2004, 31(5): 69-73
    [3]Percy. MJ; Michailidou. V; Armes. SP, et al. Synthesis of vinyl polymer-silica colloidal nanocomposites via aqueous dispersion polymerization[J]. Langmuir, 2003,19( 6 ) : 2072-2079
    [4]Korytkova. EN; Chepik. LF; Mashchenko. TS, et al. Effects of the starting material and hydrothermal treatment conditions on the crystallization of ultrafine silica [J].Inorganic Material, 2002, 38(3): 227-235
    [5]Mizutani. Y; Nago. S. Microporous polypropylene films containing ultrafine silica particles [J]. J Appl Polymer Sci, 1999, 72(11)1489-1494
    [6]Tang. QW; Wu. JH; Ao. HY, et al.Preparation and conductivity of polyaniline/SiO2 composites[J].Polymer Polymer composites, 2007, 15(8): 605-610
    [7]Reddy. CS; Das. CK. Propylene-ethylene copolymer filled nanocomposites: Influence of Zn-ion coating upon nano-SiO2 on structural, thermal, and dynamic mechanical properties[J].Polymer-plasticTechnol Enginee, 2006, 45(7): 815-820
    [8]周产力,寇战峰,刘钧等.超细二氧化硅的制备及应用[J].无机盐工业,2007,33(4):22-26
    [9]周良玉,尹荔松,周克省等.白炭黑的制备、表面改性及应用研究进展[J].材料导报, 2003, 17(11):56-59
    [10]王子忱,王莉玮,赵敬哲等.沉淀法合成高比表面积超细SiO2[J].无机材料学报,1997,12(3):391-396
    [11]R.R. Zaky, M.M. Hessien , A.A. El-Midany, et al. Preparation of silica nanoparticles from semi-burned rice straw ash[J]. Powder Technol, 2008,185:31–35
    [12]Chandrasekhar, S; Satyanarayana, KG; Pramada, PN, et al. Processing, properties and applications of reactive silica from rice husk - an overview [J].J Material Sci, 2003, 38(15): 3159-3168
    [13]R. F. Abreu and J. Schneider. Structure and Hydration Kinetics of Silica Particles in Rice Husk Ash-Studied by 29Si High-Resolution Nuclear Magnetic Resonance[J]. J. Am. Ceram. Soc., 2005,88 (6):1514–1520
    [14]Concha Real, María D. Alcalá, and JoséM. Criado.Preparation of silica from rice husks[J]. J. Am. Ceram. Soc.,1996,79 (8):2012–2016
    [15]Dean J. Benke, Mark S. Wainwright, K. D. P. Nigam. Kinetics of Silica Dissolution from Rice Husk Char[J]. Candian J Chem. Enginee, 2006, 84:688-692
    [16]U. Kalapathy, A. Proctor, J. Shultz. A simple method for production of pure silica from rice hull ash[J]. Bioresource Technology, 2000,73 :257-262
    [17]Tzong-Horng Liou. Preparation and characterization of nano-structured silica from rice husk[J]. Materials Sci Engin, 2004, 364:313–323
    [18]V.P. Della, I. Kühn, D. Hotza. Rice husk ash as an alternate source for active silica production[J]. Materials Letters, 2002, 57:818–821
    [19] N. Yalc?in , V. Sevinc. Studies on silica obtained from rice husk[J]. Ceramics International, 2001, 27: 219-224
    [20] Suttiruengwong, S., P. Puathawee, et al. Preparation of mesoporous silica from rice husk ash: effect of depolymerizing agents on physico-chemical properties[J]. Functionalized and Sensing Materials. 2010, 93-94: 664-667
    [21]Ta-Chi Luan and Tse-Chuan Chou. Recovery of Silica from the Gasification of Rice Husks/Coal in the Presence of a Pilot Flame in a Modified Fluidized Bed[J]. Ind. Eng. Chem. Res. 1990, 29:1922-1927
    [22]Luyi Sun. Silicon-Based Materials from Rice Husks and Their Applications[J]. Ind. Eng. Chem. Res. 2001, 40:5861-5877
    [23]Kazuhiro Mochidzuki, Akiyoshi Sakoda, Motoyuki Suzuki. Structural Behavior of Rice Husk Silica in Pressurized Hot-Water Treatment Processes[J]. Ind. Eng. Chem. Res. 2001, 40:5705-5709
    [24]Ting Li, Tao Wang. Preparation of silica aerogel from rice hull ash by drying at atmospheric pressure[J]. Material Chem Physics, 2008, 11(2): 398-401
    [25]Y.M.Z. Ahmed, E.M. Ewais, and Z.I. Zaki. Production of porous silica by the combustion of rice husk ash for tundish lining[J]. J Univer Sci Technol Beijing, 2008,15(3): 307-313

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700