矿质营养对烤烟烟碱的调控及其生理机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟碱含量是重要的烤烟品质指标。矿质营养是影响烤烟烟碱含量的关键因素之一,因此,开展矿质营养对烟碱合成及其生理机制的研究对于开发有效的烟碱调控技术措施意义重大。本项研究旨在解决鄂西北部分烟区烤烟烟碱含量偏高、化学协调性不够等问题,通过土壤盆栽试验、水培试验、15N示踪技术、田间试验与示范多种措施,探讨了磷钾配比、氮素形态、硼(B)水平对烤烟打顶后7d较短时间内烟碱合成和烟叶品质形成的影响,研究了它们调控烟碱、影响烟叶品质的作用机理,取得的重要研究结果如下:
     1.采用土壤盆栽试验研究了不同磷钾营养水平对烤烟打顶前后烟碱合成及养分吸收和分配的影响。研究结果表明,增施磷肥能增加烤烟地上部分烟碱的积累8%-69%、相应增加根部腐胺-N-甲基转移酶(PMT)、精氨酸脱羧酶(ADC)、鸟氨酸脱羧酶(ODC)的活性,并增加地上部对氮、磷、钾的吸收。而增施钾肥则降低烤烟地上部分烟碱的积累8%-45%、降低根部PMT、ADC和ODC活性,降低地上部氮和磷的吸收,但增加地上部钾的吸收。结果说明,烤烟磷钾营养通过调控烟碱合成酶活性及影响养分积累从而调控烤烟烟碱的合成与积累。
     2.采用土壤盆栽试验研究了不同氮素形态及其配合对烤烟烟碱含量及烟碱合成相关酶活性的影响。结果表明,100%铵态氮最有利于合成烟碱,而50%硝态氮+50%铵态氮或30%有机肥+35%硝态氮+35%铵态氮则有利于控制烟碱含量。打顶后中、上部叶片的烟碱含量,以100%铵态氮最高、50%硝态氮+50%铵态氮或30%有机肥+35%硝态氮+35%铵态氮最低。打顶后中、上部叶片烟碱含量的增幅,以及根部PMT、ODC、ADC活性的增幅均以50%硝态氮+50%铵态氮最小。
     3、土壤盆栽试验表明,烤烟各部位叶片N含量均随着施用的硝态氮比例的上升而提高。烤烟根、茎、叶的含氮量以100%硝态氮处理最高,100%铵态氮处理最低;100%硝态氮、30%有机肥+35%硝态氮+35%铵态氮较100%铵态氮更有利于烤烟各部位叶片对钾的吸收;100%酰胺态氮和30%有机肥+35%硝态氮+35%铵态氮促进烤烟叶部干物质积累效果明显,而100%的硝态氮和100%铵态氮促进干物质积累效果最差。
     4、15N同位素示踪盆栽试验研究发现,烤烟氮肥利用率以100%硝态氮和30%有机肥+35%硝态氮+35%铵态氮处理最高,达到38%,而以100%铵态氮处理最低,只有25%;各部位叶片所吸收的肥料氮占总氮含量的比例均为100%硝态氮处理最高,100%铵态氮处理居中,而以30%有机肥+35%硝态氮+35%铵态氮处理最低。
     5、烤烟叶片淀粉酶(AMS)、硝酸还原酶(NR)、蔗糖转化酶(INV)、谷氨酰胺合成酶(GS)的活性在打顶后均呈下降趋势。AMS、NR酶活在打顶前后均以100%硝态氮处理最高,100%铵态氮处理最低。GS活性烤烟打顶前后均以100%铵态氮最高,50%铵态氮和30%有机肥+35%硝态氮+35%铵态氮较低。INV活性打顶后以100%铵态氮和30%有机肥+35%硝态氮+35%铵态氮降幅较为剧烈。
     6、烤烟水培试验表明,在B水平10μmo1/L、50gmo1/L、200μmo1/L时,中烟100打顶前后叶片的烟碱含量以及增幅,均以200μmo1/L最高,其打顶前后叶部烟碱的含量均随B水平的升高而增加。而K326、鄂烟1号打顶前后叶部烟碱的含量,以及烟碱含量的增幅均以10μmol/L最高;B水平变化对各品种根部烟碱合成相关酶(PMT、ODC、ADC)活性也有一定的影响,但规律性不明显。
     7、水培实验表明,随B水平变化,各品种打顶后叶部NR、INV、谷氨酰胺合成酶(GS)活性、叶绿素含量、净光合速率仍呈上升趋势,而AMS活性、叶片胞间CO2浓度呈下降趋势。总体而言,打顶效应对这些生理指标的影响要大于B水平的变化。
     8、烤烟的N、B、K积累主要以叶部为主。中烟100、K326、鄂烟1号对N、B的吸收能力都较强,叶片中N、B的含量随B水平的升高而增加,鄂烟1号叶部B积累量明显低于中烟100和K326。各品种地上部分全叶的钾含量均以B水平50μmo1/L最高,200μmol/L最低。
     9、叶部烟碱含量与氮肥利用率、叶部淀粉酶、硝酸还原酶、转化酶活性呈显著负相关,与根部PMT、ODC、ADC活性、胞间CO2浓度显著正相关;叶部烟碱含量还与净光合速率、叶绿素含量呈负相关,但均不显著。
     10、在大田条件下,研究了叶面调理剂的不同施用方法对烤烟的施用效果。田间试验示范表明,所研制的叶面调理剂具有促进烟株生长,缩短大田生育期,增强烟株抗逆性能,提高经济效益和改善烟叶品质的效果。
Nicotine content is one of the important indicators for quality of flue-cured tobacco. As mineral nutrition is the key factor to influence nicotine content of flue-cured tobacco, understanding of the role and its physiological mechanism of mineral nutrients in nicotine synthesis is significant to develop an effective nicotine regulation technology. Aimed to solve the problems of high level nicotine content of flue-cured tobacco (FCT) and bad chemical coordination of FCT quality in tobacco production area of northwest Hubei Province, this study studied the effects of phosphorus and potassium nutrition levels, nitrogen fertilizer forms, and boron nutrition level on nicotine synthesis and formation of tobacco quality during the topping stage by use of soil pot experiments, hydroponic experiments,15N tracing experiments, and field experiments. The main results were summarized as follows:
     1. The effects of P and K level on tobacco's nicotine synthesis, nutrient uptake and distribution before and after topping were studied with soil-pot experiment. The results suggested that P fertilizer improved nicotine accumulation8%-69%of upper parts of FCT, correspondingly increased the activity of putrescine-N-methyltransferase (PMT), arginine decarboxylase (ADC), and ornithine decarboxylase (ODC) in roots, and the intake of N, P and K. Meanwhile, the increase of potash fertilizer decreased the nicotine accumulation by8%-45%, the activity of PMT, ADC and ODC in roots, and the uptake of N and P, but increased the uptake of K. The result indicated that the P/K nutrition of FCT could control the nicotine synthesis and accumulation through the regulation of nicotine synthase activity and the influence of nutrition accumulation.
     2. The influence of different N fertilizer forms and its coordination to nicotine content and relevant nicotine synthase activity were investigated with soil-pot experiment. The results indicated that100%ammonium-N was beneficial to nicotine accumulation most, while50%nitrate-N/50%ammonium-N or30%manure/35%nitrate-N/35%ammonium-N was beneficial to control the nicotine content. After topping, the nicotine content of middle and upper leaves of FCT was the highest with100%ammonium-N while the lowest with50%nitrate-N/50%ammonium-N or30%manure/35%nitrate-N/35%ammonium-N. After topping, the increase amplitude of middle and upper leaves' nicotine content and the activity of PMT, ODC and ADC in roots was the lowest with50%nitrate-N/50%ammonium-N.
     3. The soil-pot experiment indicated that the N content in all parts of FCTleaves was increased along with the increase of nitrate nitrogen. The N contents in root, stem and leaf were the highest with the application of100%nitrate-N, and the lowest with100%ammonium-N. There was a better uptake of K for all leaves with100%nitrate-N, and30%manure/35%nitrate-N/35%ammonium-N than100%ammonium-N, and an obvious effect in dry matter accumulation in leaves with100%amide N, and30%manure/35%nitrate-N/35%ammonium-N. The worst effects for dry matter accumulation were with100%nitrate-N and100%ammonium-N.
     4. The soil pot research with15N isotope tracer found that the utilization of N fertilizer was highest with the application of100%nitrate-N and30%manure/35%nitrate-N/35%ammonium-N, up to38%, while lowest with100%ammonium-N, down to25%only. The N nutrition absorbed by all leaves in the whole N content was the highest with100%nitrate-N, middle with100%ammonium-N, and the lowest with30%manure/35%nitrate-N/35%ammonium-N.
     5. The activity of amylase (AMS), nitrate reductase (NR), sucrose invertase (INV) and glutamine synthetase (GS) was on a declining curve in leaves after topping. The enzyme activity of AMS and NR was the highest and lowest with the application of100%nitrate-N and100%ammonium-N individually before and after topping. The activity of GS was the highest with100%nitrate-N, and the lowest with50%ammonium-N and30%manure/35%nitrate-N/35%ammonium-N before and after topping. The activity of INV had a sharp reduction after topping with100%ammonium-N, and30%manure/35%nitrate-N/35%ammonium-N.
     6. The hydroponic experiments of FCT showed that the leaves'nicotine content and amplification was the highest with200μmol/L B treatment, and the leaves' nicotine content increased with the rise of B level before and after topping of variety Zhongyan100. However, for variety K326and Eyan1, the leaves'nicotine content and its amplification were the highest with10μmol/L B treatment. The change of level B had a certain influence on the activity of nicotine synthesis enzymes (PMT, ODC and ADC) for different varieties.
     7. The hydroponic experiment showed that along with the change of B level, the activity of NR, INV, and glutamine synthetase (GS), the chlorophyll content, and the net photosynthetic rate were in a rise curve to different varieties in leaves after topping, while the activity of AMS and the concentration of CO2in leaves intercellular were in a declining curve. In general, the influence of topping to those physical signs was heavier than the change of level B.
     8. The accumulation of N, B and K was mainly in leaves of FCT. Zhongyan100, K326, Eyan1had a strong ability of N and B uptake, and the N and B content in leaves increased along with the increase of B level. However, the accumulation B in leaves of Eyan1was obviously lower than that of Zhongyan100and K326. The whole leaves'K to different varieties above-ground was the highest with B level of50μmol/L, and the lowest with B level of200μmol/L.
     9. The leaves' nicotine content had an obvious negative correlation with the utilization rate of N fertilizer, amylase, nitrate reductase and invertase activity, and an obvious positive correlation with PMT, ODC, ADC activity and CO2concentration in leaves intercellular in roots. The leaves' nicotine content also had a negative correlation with net photosynthetic rate and chlorophyll content, but not obviously.
     10. In field conditions, the research of application effect with several methods of the foliage conditioner was carried out. The demonstration of field experiment showed that the foliage conditioners in research had an effect in promoting the tobacco-plant growth, shortening the growing stage, strengthening the tobacco-plant's resisting performance, and improving the economic benefit and tobacco quality.
引文
1.鲍士旦主编.土壤农化分析(第三版).北京:中国农业出版社,2000,56-323
    2.常思敏,马新明,张贵龙,熊淑萍,詹克惠,刘国顺.砷对烤烟碳氮代谢及其产量和品质的影响.植物生态学报,2006,(04):682-688
    3.陈爱国,王树声,申国明,梁晓芳,刘光亮.烤烟叶片成熟期间碳氮代谢主要物质流分析.中国烟草学报,2010,(04):30-34
    4.陈江华,刘建利,李志宏.中国植烟土壤及烟草养分综合管理.北京:科学出版社,2008,142-217
    5.陈胜勇,李观康,汪云,何霭如,陈傲,余小丽.GS的研究进展.中国农学通报,2010,26(22):45-49
    6.杜君,介晓磊,刘世亮,王维超,王雪芬,化党领.有机酸对烤烟生长发育及生理代谢的影响.河南农业科学,2008,02:35-38
    7.杜咏梅,郭承芳,张怀宝,商耀,王晓玲,邱军,艾红丽.水溶性糖、烟碱、总氮含量与烤烟吃味品质的关系研究.中国烟草科学,2000,1:7-10
    8.杜昌文,王运华.植物硼素营养研究进展.山地农业生物学报,1999,(06):423-430
    9.代飞.平衡施肥对烟叶产量及质量的影响.[硕士学位论文].杭州:浙江大学图书馆,2005
    10.代晓燕,苏以荣,魏文学,范艺宽,陈香碧.打顶对烤烟烟碱累积和烟碱合成关键酶表达调控研究.见:李保国,张福锁主编,中国土壤学会第十一届全国会员代表大会暨第七届海峡两岸土壤肥料学术交流研讨会论文集(上).中国土壤学会第十一届全国会员代表大会暨第七届海峡两岸土壤肥料学术交流研讨会,北京,2008,204-212
    11.戴冕.烟草科技论文选集.广州:广东科技出版社,1997,35-50
    12.戴冕.烟草植物体内中的烟碱积累.中国烟草,1981,1:40-45
    13.戴维斯(Davis, D. L.),尼尔森(Nielsen, M. T.)编著.国家烟草专卖局科教司组织翻译.烟草——生产,化学和技术.北京:化学工业出版社,2002,272-274
    14.董彩霞,徐新娟,卢颖林,周毅,沈其荣.不同形态氮素调控番茄果实和叶片内有机酸代谢的研究进展.南京农业大学学报,2009,(03):139-145
    15.董惠萍.不同施肥量对烤烟烟叶氮碳代谢的影响.云南农业大学学报,1992,7(4):237-243
    16.段凤云,李采兴,赵国明,周伟,郭山虎,周廷中.磷水平对烤烟品种生长发育及烟叶产质量的影响.昆明学院学报,2009,(3):23-27
    17.方传斌.美国烤烟生产的主要技术措施.中国烟草,1985,(3):23-30
    18.冯柱安,彭桂芬.不同氮素形态对烤烟品质影响的研究.中国烟草科学,1998,(4):11-15
    19.符云鹏,杨燕,薛剑波.低磷胁迫对晒红烟内源激素和根系活力的影响.中国农学通报,2005,21(6):227-229
    20.顾也萍,程承士,冯雪钢.钾肥对皖南红壤烟叶含钾量及烟碱含量的影响.安徽师范大学学报,1998,21(1):78-81
    21.宫长荣,刘东洋.烤烟烟叶内几种酶活性变化及对化学成分的影响.中国烟草科学,2003,(01):1-2
    22.巩永凯,龙怀玉,王豹,张燕.我国烤烟中部烟叶硼含量特征研究.中国土壤与肥料,2008,6:35-38
    23.关广晟.烟草镁吸收积累规律与调控研究.[博士学位论文].长沙:湖南农业大学图书馆,2007
    24.郭红祥,刘卫群,岳俊勤,石永春.氮素形态及饼肥浸提液对烤烟功能叶片光合特性的影响.华北农学报,2005,20(4):62-65
    25.郭红祥,刘卫群,岳俊勤,石永春.烤烟根系激素水平、GS、PMT对氮素形态的响应.华北农学报,2006,21(1):72-75
    26.郭培国,陈建军,郑燕玲.氮素形态对烤烟光合特性影响的研究.植物学通报,1999,16:262-267
    27.郭月清,齐群刚,汪耀富.打顶对烟草根系不同部位合成烟碱能力的影响.烟草科技,1990,(2):36-38
    28.韩锦峰,王瑞新,刘国顺.烟草栽培生理.北京:农业出版社,1986,163-177
    29.韩锦峰,史宏志,官春云,杨素勤,薛超群,谢德平,王廷选,付庆跃.不同施氮水平和氮素来源烟叶碳氮比及其与碳氮代谢的关系.中国烟草学报,1996a,3(1):19-25
    30.韩锦峰,史宏志,王彦亭.不同氮量和氮源的烟叶高级脂肪酸及其与香吃味的关系.作物学报,1996b,(24):125-128
    31.何远兰.硼营养对烤烟碳氮代谢和品质的影响及机理的研究.[硕士学位论文].南宁:广西大学图书馆,2007
    32.胡国松,郑伟,王震东等著.烤烟营养原理.北京:科学出版社,2000,83+186-187
    33.胡国松,王志彬,王凌.烤烟烟碱累积特点及部分营养元素对烟碱含量的影响.河南农业科学,1999,(1):10-14
    34.胡国松,李志勇,穆琳,韩锦峰.烤烟烟碱累积特点研究.中国烟草学报,2000,6(2):6-9
    35.胡皓月,许自成,李志刚,张蕊,冉法芬,王满.不同种类有机酸及其配施对烤烟生长和叶片非酶促活性氧代谢的影响.中国土壤与肥料,2011,01:53-58+63
    36.胡雪平.不同施钾量对烤烟产量和品质的影响.[硕士学位论文].长沙:湖南农业大学图书馆,2003
    37.化党领,杜君,刘世亮,刘芳,王维超,王雪芬,介晓磊.施用有机酸对不同成熟度烤烟生理代谢和营养代谢的影响.干旱地区农业研究,2008,04:59-64
    38.华水金,杨宇虹,赵菊英,王光贤,王利云,王学德.氮肥对水田与旱地烤烟烟叶氮浓度和相关酶活性的影响.植物营养与肥料学报,2007,(04):689-694
    39.黄小萍.低尼古丁转基因烟草.[硕士学位论文].浙江大学图书馆,2007
    40.黄泽春,彭海峰,屠乃美,易镇邪,黄志刚.不同农艺措施对烟草根系生长影响的研究进展.作物研究,2008,(S1):466-469
    41.介晓磊,杜君,刘世亮,于永强,化党领,韩富根.不同有机酸营养对不同成熟度烤烟内在品质的影响.植物营养与肥料学报,2008,04:734-741
    42.江力,张荣铣.不同氮钾水平对烤烟光合作用的影响.安徽农业大学学报,2000,27(4):328-331
    43.巨晓棠,晁逢春,李春俭,江荣风,张福锁,石俊雄,刘建利,陈江华.土壤后期供氮对烤烟产量和烟碱含量的影响.中国烟草学报,2003,B11:48-53
    44.康佳慧.钾营养对烤烟打顶期养分积累和烟碱合成的影响及烟碱合成酶的酶学性质研究.[硕士学位论文].武汉:华中农业大学图书馆,2011
    45.雷丽萍,夏振远,郭荣君,吴玉萍,崔国民,廖德智.节杆菌对烟叶的降烟碱作用.烟草科技,2008,3:56-58
    46.路永宪.氮素对烤烟生长、养分吸收和分配及品质的影响.[硕士学位论文].北京:中国农业大学图书馆,2003
    47.李建伟,郑少清,石俊雄,蔡刘体,李卫红.不同氮素形态配比对烤烟品质的影响.西南农业大学学报(自然科学版),2003,25(5):436-439
    48.李立新,何宽信,肖仁平,张德远,彭耀东.不同施磷量对烤烟主要产质性状的影响.中国烟草科学,2004,1:28-31
    49.李良勇,朱列书,李帆,黄松青,周世民,邹喜明.烤烟新品种(系)试验初报.中国农学通报,2007,23(7):227-231
    50.李庆平,王玉红,赵瑾,布云红,刘敬业.烤烟K326接种野火病菌后游离氨基酸动态的研究.云南农业大学学报,2002,17(1):10-15
    51.李仕良,刘有才,徐建平,徐志刚,朱树良,年夫照,张庆刚.不同施硼方式对初烤烟叶主要化学成分的影响.湖北农业科学,2011,12:2407-2408+2415
    52.李文卿,陈顺辉,江荣风,张福锁,张仁椒,李春英,李春俭,巨晓棠,林祖 斌.不同施氮量对烤烟总氮和烟碱积累的影响.中国烟草学报,2007,13(4):31-35
    53.李雪利,叶协锋,顾建国,李彦涛,马静思,刘国顺.土壤C/N比对烤烟碳氮代谢关键酶活性和烟叶品质影响的研究.中国烟草学报,2011,17(3):32-36
    54.李雪梅,陈育如,骆跃军,魏霞.两株芽胞菌对烟草废料烟碱与绿原酸降解的研究.生物加工工程,2005,3(4):58-61+70
    55.李雪梅,杨伟祖,祝明亮,李冰,邓国宾,周瑾.烟碱降解菌的选育及改善上部烟叶品质研究.工业微生物,2006,36(1):16-22
    56.李玉潜,谢九生,谭中文.甘蔗叶片碳、氮代谢与产量、品质关系研究初探.中国农业科学,1995,28(4):46-51
    57.李章海,徐晓燕,季学军,陈治锋,冯磊.不同栽培条件对烤烟上部烟叶烟碱和总氮含量的影响.中国烟草科学,2005,26(1):28-30
    58.李章海,宋泽民,黄刚,杨梅林,周慧玲.缺钼烟田施钼对烟草光合作用和氮代谢及烟叶品质的影响.烟草科技,2008,11:56-58+66
    59.李志.皖南土壤质地和施氮量对烟叶碳氮代谢和焦甜香风格的影响[硕士学位论文].郑州:河南农业大学图书馆,2010
    60.李中民,杨铁钊,段旺军,李亚培.不同基因型烤烟苗期氮代谢对相关酶活性的影响.浙江农业学报,2011a,03:470-474
    61.李中民,杨铁钊,段旺军,刘中伟.不同基因型烟草苗期对硝态氮和铵态氮吸收动力学特征研究.江苏农业科学,2011b,02:155-157
    62.梁晓红.不同供氮水平对烤烟碳氮代谢及烟叶品质的影响.[硕士学位论文].福州:福建农林大学图书馆,2009
    63.梁峥,郑光植.高等植物的次级代谢.植物生理学通讯,1981,(1):18-21
    64.林彩丽,杨铁钊,杨述元,李伟.不同基因型烟草生长过程中主要化学成分的变化.烟草科技,2003,(1):30-34
    65.林勇.不同施氮水平下烤烟光合特性和氮代谢的研究.[硕士学位论文].福州:福建农林大学,2009
    66.刘百战,徐玉田,孙哲建,朱显林,陈家林,阐颖.加料前后烟草中游离及糖苷结合态香味成分的分析研究.中国烟草学报,1998,4(1):1-8
    67.刘国顺,朱凯,武雪萍,郭桥燕,彭飒.施用有机酸和氨基酸对烤烟生长及氮素吸收的影响.华北农学报,2004,04:51-54
    68.刘国顺,云菲,史宏志,王可,张春华,宋晶.光、氮及其互作对烤烟含氮化合物含量、抗氧化系统及品质的影响.中国农业科学,2010,(18):3732-3741
    69.刘国顺,彭智良,黄元炯,李立丹.N、P互作对烤烟碳氮代谢关键酶活性的影 响.中国烟草学报,2009,(05):33-37
    70.刘好宝,吕作新.烤烟不同生育期的钾素营养对烟叶产量和含钾量的影响.中国烟草学报,1998,4(1):60-64
    71.刘华山,朱大恒,韩锦峰,毕庆文,曾涛.外源植物生长调节物质对烟草根中烟碱含量和烟碱合成酶活性变化的生理效应.植物生理学通讯,2005,41(3):319-321
    72.刘华山,孟凡庭,韩锦峰,李连利,王勇,魏跃伟.2.4-D对烤烟烟碱和钾含量的影响.中国烟草科学,2007,28(5):15-18
    73.刘华山,籍越,王方,韩锦峰,郭传滨,田效园,白海群.不同浓度IAA对烤烟酶活性及钾和烟碱含量的影响.安徽农业科学,2007,35(5):1394-1395
    74.刘华山,田效园,韩锦峰,王方,郭传滨,白海群,李晶新.施钾量对上部烟叶钾和烟碱含量及相关酶活性的影响.安徽农业科学,2008,36(29):2787-2789
    75.刘世亮,杨素勤,刘芳,化党领,刘中阳,介晓磊,韩富根.植物生长调节剂对烟草生长发育及钾素吸收与分配影响研究.干旱地区农业研究,2008,26(2):106-110+115
    76.刘世亮,化党领,介晓磊,雷广海,张弘韬,刘芳,朱金峰.不同铵态氮/硝态氮配比营养液对烟草矿质营养吸收与积累的影响.土壤通报,2010,06:1423-1427
    77.刘卫群,丁永乐,张联合,陈江华.烤烟打顶前后根系激素水平与物质代谢的关系初探.植物生理学通讯,2002,4:330-332
    78.刘卫群,张新要,李天福,姜占省,饶学明.饼肥对烤烟碳水化合物代谢及酶活性的影响.烟草科技,2003,196(11):37-40
    79.刘卫群,岳俊芹,汪庆昌,祁峰.不同氮素形态及配比对烤烟叶片氮代谢的影响.河南农业科学,2004a,(06):53-55
    80.刘卫群,陈良存.烟株生长后期碳氮代谢关键酶活性对追肥的响应.中国烟草学会2004年学术年会论文集.2004b,425-429
    81.刘卫群,王卫民,郭群召,王德琴,孙建英,王爱武.植烟土壤供氮状况与叶片烟碱含量关系的研究.河南农业大学学报.2005a,39(1):26-29
    82.刘卫群,陈良存,徐鑫丽.硝酸铵追肥对生长后期NC 89叶片中NR和INV活性的影响.烟草科技,2005b,217(8):35-37
    83.刘卫群,崔振伟,陈旭初.打顶对烤烟GS和天冬酰胺合成酶活性的影响.植物生理学通讯,2006,42(6):1121-1122
    84.刘卫群,韩锦峰,史宏志,王延亭,李怀方.数种烤烟品种中碳氮代谢与酶活性的研究.中国农业大学学报,1998,3(1):22-26
    85.刘有才,徐建平,徐志刚,朱树良,年夫照,张庆刚,姜存仓.硼对上部烟叶 组织结构及对降低烟气焦油含量的影响.土壤通报,2011,42(2):448-451
    86.刘振业,刘贞琦.光合作用的遗传与育种.贵阳:贵州人民出版社,1984
    87.芦根怀.腐植酸氮磷钾肥料在烟草上的试验应用.烟草科技,1983,(2):40-41
    88.吕中显,赵铭钦,赵进恒,张迪,张学杰,刘洪华.烤烟打顶后不同部位烟叶碳氮代谢关键酶活性的动态变化及相关分析.江西农业大学学报,2010,32(4):700-704
    89.马红辉.烤烟的质量评价.重庆烟草,2004,6:32-33
    90.马雷,戚元成,刘卫群.利用半定量RT-PCR检测烟碱生物合成的方法.江西农业学报,2009,21(8):12-13
    91.马林,武怡,曾晓鹰,袁友贵,孙君社.降解烟碱微生物的筛选及其酶在烟草中的应用.烟草科技,2005,218(9):6-8+19
    92.潘瑞炽,董愚得.植物生理学(第三版).北京:高等教育出版社,1995,51-59
    93.潘文杰.不同生态的烤烟硼素营养和烟叶品质的研究.[硕士学位论文].重庆:西南农业大学图书馆,2002
    94.彭智良.N、P肥互作对烤烟碳氮代谢规律及品质形成的影响.[硕士学位论文].郑州:河南农业大学图书馆,2009
    95.裘宗海,黎文文,王文松.氮、钾对烤烟营养元素吸收规律及产质影响的研究.土壤通报,1990,20(2):65-70
    96.全国烟草标准化技术委员会.YC/T142-2010烟草农艺性状调查测量方法.北京:国家烟草专卖局,2010
    97.全国烟草标准化技术委员会.GB/T23222-2008烟草病害分级及调查方法.北京:中国标准出版社,2009
    98.全国烟草标准化技术委员会.GB2635-92烤烟.北京:中国标准出版社,1993
    99.全国烟草标准化技术委员会.YC/T 160-2002流动注射分析法测定样品中的烟碱.北京:国家烟草专卖局,2002
    100.任广伟,王新伟,王秀芳,陈丹.烟草对烟粉虱的抗性与烟草化学成分的相关性.应用昆虫学报,2011,48(4):948-955
    101.阮妙鸿.钾钙镁营养的相互关系及其对烤烟碳氮代谢的影响.[硕士学位论文].福州:福建农林大学图书馆,2004
    102.邵惠芳,胡亚杰,焦桂珍,吴军.INV种类与生理功能及对烟草品质的影响.中国农学通报,2007,(07):318-321
    103.沈方科,李婷,王蕾,韦建玉,等.钾素营养对烟株氮代谢及烟叶品质形成的影响.中国农学通报,2010,(09):214-219
    104.沈丽,石磊,王曼,朴世领.不同氮素形态对延边烤烟几种关键酶活性的影响.延 边大学农学学报,2011,01:25-29
    105.石秋梅,陶芾,李春俭,张福锁.机械损伤对烤烟植株氮素吸收及体内烟碱含量的影响.植物营养与肥料学报,2007,13(2):292-298
    106.史宏志,韩锦峰,刘国顺,王彦亭.烤烟碳氮代谢与烟叶香吃味关系的研究.中国烟草学报,1998a,4(2):56-62
    107.史宏志,韩锦峰.烤烟碳氮代谢几个问题的探讨.烟草科技,1998b,(2):34-36
    108.史宏志,黄元炯,刘国顺,于建军,赵明钦,L.P. Bush我国烟草和卷烟生物碱含量和组成比例分析.中国烟草学报,2001,7(2):8-12
    109.史宏志,李志,刘国顺,王道支,祖朝龙,杨永峰.皖南焦甜香烤烟碳氮代谢差异分析及糖分积累变化动态.华北农学报,2009,24(3):144-148
    110.史金钟.有机物料对烤烟形态特征、生理特性及品质的影响.[硕士学位论文].郑州:河南农业大学图书馆,2007
    111.宋建民,田纪春,赵世杰.植物光合碳和氮代谢之间的关系及其调节.植物生理学通讯,1998,(03):230-238
    112.苏贤坤,陈松,张国平.不同烤烟品种叶片光合特性和相关酶活性的叶位差异性分析.浙江大学学报(农业与生命科学版),2009,(05):537-542
    113.孙丹.打顶后涂抹NAA对烤烟碳氮代谢及品质调节效应的研究.[硕士学位论文].福州:福建农林大学图书馆,2010
    114.孙建锋.烤烟叶片不同区位生理特性及理化指标的比较研究.[硕士学位论文].郑州:河南农业大学图书馆,2006
    115.孙伟奇.日照烟区土壤养分状况评价与平衡施肥技术的研究.[硕士学位论文].泰安:山东农业大学,2008
    116.田华,段美洋,王兰.植物NR功能的研究进展.中国农学通报,2009,(10):96-99
    117.唐启楹,王学龙.襄樊烟区土壤施肥区划研究.北京:中国农业出版社,2006,117-121
    118.拓阳阳,赵铭钦,张广富,刘洪华.不同烤烟品种叶片碳氮代谢及相关产物差异性.西北农业学报,2011,(04):82-86
    119.武雪萍,刘国顺,朱凯,彭飒,郭桥燕.外源氨基酸对烟叶氨基酸含量的影响.中国农业科学,2004,37(3):357-361
    120.武雪萍,刘国顺,朱凯,杨超,荆水锋.施用有机酸对烟草生理特性及烟叶化学成分的影响.中国烟草学报,2003,02:24-28
    121.吴礼树,刘武定,皮美美.硼钾营养及其相互作用棉花光合作用的影响.华中农业大学学报,1995,S(21):24-27
    122.汪邓民,周冀衡.综合栽培措施对烟草根系特征参数及叶片质量的影响.土壤肥料,1998,(4):28-31
    123.汪耀富,杨天旭,孙德梅,叶红潮.灌水及氮素形态对烤烟营养元素含量及产量品质的影响.河南农业大学学报,2006,(05):477-481
    124.王伯毅.烟碱的形成及提高烟碱量的栽培措施.烟草科技,1984,(2):22-24
    125.王丹,杨虹琦,周冀衡,柳立,彭艳.光照强度昼变化对烟叶蔗糖INV和蛋白酶活性的影响.湖南农业大学学报(自然科学版),2007,(03):294-297
    126.王东胜,刘贯山,李章海.烟草栽培学.合肥:中国科学技术出版社,2002,29-70
    127.王峰吉,陈朝阳,高文霞,江豪,林彦铨.外源化学物质调节烟碱生物合成的机理Ⅰ.外源化学物质对烟碱生物合成中间产物的影响.福建农林大学学报(自然科学版),2006,35(1):11-16
    128.王广山,陈卫华,薛超群,胡晨曦.烟碱形成的相关因素分析及降低烟碱技术措施.烟草科技,2001,153(2):38-42
    129.王广山,尹启生,张树摸,谭辞平,张祥林,段效林.白肋烟硼肥用量试验研究初报.中国烟草科学,2002,(1):16-18
    130.王连君,冯喜生,焦玉生.硝酸钾肥对提高烟叶质量的效果研究.黑龙江烟草,2002,9:31-33
    131.王亮,朱建国,曾青,谢祖斌,刘钢.大气C02浓度升高对水稻氮代谢影响的研究进展.土壤,2010,(03):344-351
    132.王鹏,曾玲玲,王发鹏,张维理,李志宏.肥料~(15)N对烟叶氮和烟碱含量的影响.土壤通报,2010,41(02):389-393
    133.王少先,彭克勤,夏石头,王勇.烟草碳、氮代谢及氮肥施用对烟草产量和品质的影响.中国农学通报,2004,20(2):135-138
    134.韦建玉,王军,何远兰,顾明华,邹凯,胡建斌.硼对烤烟碳氮代谢及产、质量的影响研究.中国烟草学会2006年学术年会论文集.广州:2007,252-259
    135.韦建玉,邹凯,王军,顾明华,周俊,曾祥难,杨启港.硝态氮和铵态氮配施对烤烟光合作用及碳水化合物代谢的影响.广西农学报,2008,23(2):17-21
    136.魏克强,宋欣,魏治中.光合细菌对烟草与药用植物远缘杂种后代生长及化学成分的影响.中国生态农业学报,2008,(3):655-658
    137.魏克强,宋欣,杨俊仙,魏治中.光合细菌对烟草与药用植物科间远缘杂种后代农艺性状及品质的影响.中山大学学报(自然科学版),2007,46(S2):248-252
    138.温玉转,符云鹏,田香华,黄若平,余杏珍,刘建军,崔慧敏.小分子有机酸对香料烟生理生化特性及化学成分的影响.浙江农业学报,2011,23(2):292-297
    139.习向银,晁逢春,陈亚,李春俭.不同施氮量对烤烟氮素和烟碱累积的影响.西 南大学学报(自然科学版),2008,30(5):110-116
    140.习向银.烟碱氮素来源和供氮对烤烟生长、氮素吸收、烟碱含量的影响.[博士学位论文].北京:中国农业大学,2005
    141.解燕,王文楷,赵杰,董建新,梁洪波.烟草钾素营养与钾肥研究.中国农学通报,2006,22(8):302-306
    142.谢志坚.移栽期和氮肥对烤烟氮素吸收利用及烟碱积累的影响.[硕士学位论文].武汉:华中农业大学图书馆,2009
    143.谢祝捷,姜东,戴廷波,曹卫星.植物的糖信号及其对碳氮代谢基因的调控.植物生理学通讯,2002,(04):399-405
    144.徐晓燕,孙五三,李章海.烟碱的生物合成及控制烟碱形成.安徽农业科学,2001,29(5):663-664
    145.徐宜民,王树声,赖禄祥,任明波.烟草生物碱的研究现状.中国烟草科学,2003,(2):12-16
    146.徐莹.硫素胁迫对烟草生长和生理过程的影响研究.[硕士学位论文].福州:福建农林大学图书馆,2010
    147.徐照丽,卢秀萍,焦芳婵.氮水平和NO3-N比例对烤烟新品种YH05烟叶化学成分的影响.华北农学报,2010,S2:226-229
    148.许振柱,周广胜.植物氮代谢及其环境调节研究进展.应用生态学报,2004,15(3):511-516
    149.许自成,张会芳,张莉,石俊雄,张长云,郑伟才.不同氮素形态和用量对烤烟硝酸盐和亚硝酸盐含量的影响.郑州轻工业学院学报,2005,(02):4-7
    150.许自成,张婷,卢秀萍,张延军.打顶后施用生长素(IAA)和钾肥对烤烟碳氮代谢的影响.生态学杂志,2007,26(4):461-465
    151.许自成,张婷,卢秀萍,张延军.打顶后施用生长素和钾肥对烤烟根系性状及品质的影响.中国烟草学报,2008,14(2):26-30
    152.薛剑波,符云鹏,尹永强.影响烟草中烟碱含量的因素及调控措施.安徽农业科学,2005,33(6):1053-1055
    153.喻奇伟.水钾耦合对烤烟钾含量及碳氮代谢的影响.[硕士论文].郑州:河南农业大学图书馆,2008
    154.颜合洪,胡雪平,张锦韬.不同施钾水平对烤烟生长和品质的影响.湖南农业大学学报,2005,31(1):20-23
    155.阎克玉,袁志永,吴殿信,李兴波,屈剑波.烤烟质量评价指标体系研究.郑州轻工业学院学报,2001,16(4):57-61
    156.杨燕.磷肥用量和磷肥种类对晒红烟生长发育及品质形成的影响.[硕士学位论 文].郑州:河南农业大学图书馆,2005
    157.杨焕文,耿宗泽,李佛琳,丁金玲,温永琴.不同施氮量的烤烟烟叶大田生长期碳水化合物的变化.云南农业大学学报,2003,18(2):153-157
    158.尹启生,陈江华,王信民,宋纪真,刘建利,周汉平,蔡宪杰.2002年度全国烟叶质量评价分析.中国烟草学报,2003,B11:59-70
    159.袁勇军. OchroBactrum interedium DN2烟碱降解途径及其在烟草中的应用研究.[博士学位论文].南京:南京农业大学图书馆,2007
    160.岳红宾.不同氮素水平对烟草碳氮代谢关键酶活性的影响.中国烟草科学,2007,28(1):18-20+24
    161.岳俊芹.不同氮素形态配比对烤烟叶片碳氮代谢的影响.[硕士学位论文].郑州:河南农业大学图书馆,2004
    162.曾凌,张丹,孙五三,张云芳.农艺栽培措施对烟草烟碱合成与积累的影响.辽宁农业科学,2002,(6):8-10
    163.曾希柏,侯光炯,青长乐.土壤-植物系统中光照与氮素的相互关系研究.生态学报,2000,20(1):103-108.
    164.宗毓铮,王雯玥,韩清芳,丁瑞霞,贾志宽,聂俊峰.喷施硼肥对紫花苜蓿光合作用及可溶性糖源库间运转的影响.作物学报,2010,36(4):665-672
    165.张春,周冀衡,杨荣生,郭汉华,杨述远,夏开宝,张一杨,解燕.云南曲靖不同海拔烟区土壤和烟叶硼含量的分布状况及相关性.中国烟草学报,2010,(06):48-53
    166.张贵龙.土壤汞污染对烤烟生长发育的影响和毒害阈值的研究.[硕士学位论文].郑州:河南农业大学图书馆,2006
    167.张联合.有机肥与无机肥配施对烤烟生长发育及品质影响研究.[硕士学位论文].郑州:河南农业大学图书馆,2002
    168.张淑贞,卢朝军,靳志丽,梁文旭,胡卫东.硼对烤烟生长及烟叶、烟种产质量影响的研究.作物研究,2007,04:442-444
    169.张生杰,黄元炯,任庆成,杨铁钊.不同基因型烤烟烟叶碳氮代谢差异研究.华北农学报,2010,03:217-220
    170.张婷.打顶后施用生长素和钾肥对烤烟生理特性与品质的影响.[硕士学位论文].郑州:河南农业大学图书馆,2006
    171.张晓蕴,赵铭钦,卢叶,刘云,习红昂,王传兴.南阳烟区不同品种烤烟打顶后酶活性及化学成分分析.湖南农业大学学报(自然科学版),2010a,36(2):155-159
    172.张晓蕴,赵铭钦,卢叶,刘云,刘乐.不同生物制剂(油菜素内酯为主的多元 素叶面肥)处理对烤烟打顶后碳氮代谢关键酶活性和Inv/NR比值的影响.江西农业学报,2010b,22(3):43-46
    173.张新要,李天福,刘卫群,姜占省,周文辉.配施饼肥对烤烟叶片含氮化合物代谢及酶活性的影响.中国烟草科学,2004,25(3):31-34
    174.张新要,刘卫群,易建华,陈良存,周文辉.红壤、水稻土上不同氮素形态配比对烤烟碳氮代谢关键酶活性的影响.云南农业大学学报,2005,(02):225-230
    175.张瑞霞.烤烟激素与多胺对水分迫和氮肥形态的响应及其调节研究.[硕士学位论文].郑州:河南农业大学图书馆,2004
    176.郑宪滨,曹一平,张福锁,朱尊权,李春俭,刘国顺,谢德平.不同钾水平下烤烟体内钾的循环积累与分配.植物营养与肥料学报,2000,6(2):166-172
    177.张一扬,肖汉乾,李明德,余崇祥,郭志强,汤海涛,何英豪.钾素营养对烤烟生长及养分吸收的影响.土壤通报,2004,35(4):466-470
    178.张志良,瞿伟菁.植物学实验实习指导(第三版).北京:高等教育出版社,2003,41-43+230-232
    179.招启柏,王广志,王宏武,汤一卒.烤烟烟碱含量与其他化学成分的相关关系及其阈值的研究.中国烟草学报,2006,2:1-5
    180.赵春华.施氮量对烤烟氮代谢及品质形成的影响.[硕士学位论文].郑州:河南农业大学图书馆,2007
    181.赵福庚,刘友良.大麦幼苗多胺合成比脯氨酸合成对盐胁迫更敏感[J].植物生理学报,2000,26(4):343-349
    182.朱凯,武雪萍,李文璧,刘国顺,景泽龙,程凌云,徐发华.施用苹果酸对烤烟氮代谢的影响.植物营养与肥料学报,2007,13(4):695-699
    183.周和,周冀衡,陈习羽,张春.不同氮肥形态培土对烤烟生长及产量与品质的影响.安徽农业科学,2011,(29):17891-17893
    184.周冀衡,朱小平,王彦亭,刘国顺,张明农等.烟草生理与生物化学.合肥:中国科学技术大学出版社,1996,115-118+342-367
    185.邹琦.植物生理生化实验指导.北京:中国农业出版社,1995
    186.周伟.磷肥用量对烤烟生长发育及产质量的影响.[硕士学位论文].湖南农业大学图书馆,2008
    187.邹焱,苏以荣.打顶及施用生理调节剂对烤烟主要化学成分的影响.中国烟草科学,2008,29(2):1-4
    188.左天觉著,朱樽权等译.烟草的生产、生理和生物化学.上海:上海远东出版社,1993,35-186
    190. Atkinson WO, Kasperbauter J. Influence of sublethal foliar application of 2,4-D on burley tobacco yield and composition. Agron,1970,62:421-424
    191. Bloom A J, Caldwell R M,Finazzo J, Oxygen and carbon dioxide fluxes from barley shoots depend on nitrate assimilation. Plant Physiol,1989, (91):352-356
    192. Brandsch R, Faller W, Schneider K. Plasmid pA01 of Arthrobacter oxidans encodes 6-hydroxy-D-nicotine oxidase:cloning and expression of the gene in Escherichia coli. Mol Gen Genet,1986,202:96-101
    193. Brandsch R, Hinkkanen A E, Decker K. Plasmid mediated nicotine degradation in Arthrobacter Oxidans. Arch MicroBiol, 1982,132:26-30
    194. Cane, Karen A.; Mayer, Melinda; Lidgett, Angela J.; Michael. Anthony J.; Hamill, John D. Molecular analysis of alkaloid metabolism in AABB v. aabb genotype Nicotiana taBacum in response to wounding of aerial tissues and methyl jasmonate treatment of cultured roots. Functional Plant Biology,2005,32(4),305-320
    195. Coussirat J C. Influence of tobacco bacteria on biodegradation and production of alkaloids. A Du TaBac Sect,1978,2(15):5-134
    196. Crockford, R.H. Effect of amount and time of application of nitrogen on the nicotine content of tobacco leaves. Journal of Experimental Agriculture and Animal Husbandry (Australian),1977,17 (86):469-474.
    197. DEV T. BRITTO & HERBERT J. KRONZUCKER. Nitrogen acquisition, PEP carboxylase, and cellular pH homeostasis:new views on old paradigms. Plant Cell and Environment,2005,28:1396-1409
    198. Engels C, H. Marschner. Influence of the form of nitrogen supply on root uptake and translocation of cations in the xylem exudate of maize (Zea Mays L.), Journal of Experimental Botany.1993,(44):1695-1701.
    199. Estruch J J, Beltran J P. Changes in invertase activities precede ovary growth induced by gibberelic acid in pisum sativum. Physiol Plant,1991,81:319-326.
    200. Evans J. R. Nitrogen and photosynthesis in the flag leaf of wheat. Plant Physiol, 1983, (72):297-302.
    201. Frankenburg W G, Vaitekunas A A. Chemical studies on nicotine degradation by microorganisms from the surface of tobacco seeds. Arch Biochem and Biophys,1955, 58:418-425
    202. Garnett TP, Tester MA, NaBle RO. The control of boron accumulation by two genotypes of wheat. Plant and Soil,1993,155:305-308.
    203. Gravely L E, Geiss V L, Newton R P. Process for maximizing the growth and nicotine degrading activity of microorganisms. US Patent, No.4011141,1977
    204. Hashimoto, Takashi; Kajikawa, Masataka. Genes and enzymes for increasing levels of nicotinic alkaloids in plants. US Patent,20080120737,2008-05-22
    205. Hiatt A C, Mcndoo J, Malmberg L. Regulation of polyamine Biosunthesis in tobacco: effects of inhibitors and exogenous polyamines on arginine decarboxylase, omithine decarboxylase and S-adenosylmethionine decarboxylase. Boil Chem,1986,261: 1293-1298
    206. Hibi, N., Fujita, T., Hatano, M. et al. Putrescine N-methyltransferase in cultured roots of Hyoscyamus albus:N-butylamine as a potent inhibitor of the transferase both in vitro and in vivo. Plant Physiology.1992,100:826-835.
    207. Hibi N, Higashiguchi S, Hashimoto T, Yamada Y. Gene expression in tobacco low-nicotine mutants. Plant cell,1994,6:723-725
    208. Hill J M, Mann P J G. Some properties of plant dianmine oxidase, a copper-containing enzyme. HEWITTEJ, CUTTNGCV. In Recent A spects of Nitrongen Metabolism In Plants London:Academic Press,1968:149-161
    209. Jackanicz TM, Byerrum RU. Incorporation of aspartate and malate into the pyridine ring of nicotine. J Biol Chem,1966,241:1246-1249
    210. Janardhan, K. V. Effect of split and foliar application of potassium on yield and quality of flue-cured tobacco. Tobacco Research,1997,1-2:1-5
    211. Kidd SK, Melillo AA, Lu RH, Reed DG, Kuno N, Uchida K, Furuya M, Jelesko JG. The A and B loci in tobacco regulate a network of stress response genes, few of which are associated with nicotine biosynthesis. Plant Molecular Biology,2006, 60(5),699-716.
    212. Krishna S Kasturi, Reddy S V Krishna, Singh K Deo, Kumar P Harishu, Chandrase-khararao C, Krishnamurthy V. Effect of organic and inorganic sources of nitrogen on productivity, quality and economics of FCV tobacco (Nicotiana tabacum). Indian Journal of Agronomy,2009,54(3):336-341.
    213. Legg P D, Chaplin J F, Collins G B. Inheritance of percent total alkaloids in nicotiana tobacum L. Populations derived from crosses of low alkaloid lines with burley and flue cured varieties. Heredity,1969,60:213-17
    214. Legg P D, Collins G B, Inheritance of percent total alkaloids in Nicotiana tobacum L Ⅱ.Genetic effects of two loci in Burley 21LA Burley 21 populations. (Can.) Genet. Cytol.,1971,13:287-91
    215. Mann DF, Byerrum RV. Activation of the denovo pathway for pyridine nucleotide biosynthesis prior to ricinine biosynthesis in Castor Beans. Plant Physiol,1974,53: 603-609
    216. McCants, C.B.& Woltz, W.G. Growth and mineral nutrition of tobacco. Adv. Agron. 1967,19,211-65
    217. Martin Antoine, Lee Judy, Kichey Thomas, Gerentes Denise, Zivy Michel, Tatout Christophe, DuBois Frederic, Balliau Thierry, Valot Benoit, Davanture Marlene, Terce-Laforgue Therese, Quillere IsaBelle, Coque Marie, Gallais Andre, Gonzalez-Moro Maria-Begona, Bethencourt Linda, HaBash Dimah Z., Lea Peter J., Charcosset Alain, Perez Pascual, et al.Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. The Plant Cell, 2006,18:3252-3274.
    218. Matt P, Krapp A, Haake V, Mock HP, Stitt M. Decreased Rubisco activity leads to dramatic changes of nitrate metabolism, amino acid metabolism and the levels of phenylpropanoids and nicotine in tobacco antisense RBCS transformants.Plant Journal,2002,30 (6):663-677
    219. Meizal. The effect of B and Cu micro nutrients on virginia tobacco (Nicotiana tabacum L.) on peat soil. Jurnal-Penelitian-Pertanian (Indonesia),1996,15(2): 69-75
    220. Miner G. S., S. L. Sims. Changing fertilization practices and utilization of added plant nutrients for efficient production of burley and flue-cured tobacco. Recent Advance in ToBacco Science,1983, (9):74-76
    221. Misuzaki S, TanaBe Y, Noguchi M, Tamaki E. Changes in the activities of ornithine decarboxylase, putrescine N-methyltransferase and N-methylputrescine oxidase in tobacco roots to nicotine Biosynthesis. Plant cell physiology,1973,14:103-10
    222. Mizusaki S, TanaBe Y, Noguchi M, Tamaki E. Photochemical Studies on Tobacco Alkaloids. ⅩⅣ. The Occurrence and Properties of putrescine N-methyltransferase in Tobacco Plants. Plant Cell Physiol,1971,640(4):633-640
    223. Newton, Richard P, Geiss, Vernon L, Jewell, John N, Gravely, Lawrence E. Process for reduction of nicotine content of tobacco by microbial treatment.USA Patent, 4037609,1977-07-26
    224. Paul M. J., S. P. Driscoll. Suguar repression of photosynthesis:the role of carbohydrates in signaling nitrogen deficiency through source:sink imbalance. Plant, Cell and Environment,1997, (20):110-116.
    225. Pearson J., G.R. Stewart. The deposition of atmospheric ammonia and its effect on plants. New Phytologist,1993, (125):283-305.
    226. Rao, J. A. V. P.; Reddy, P. R. S.; Chandrasekhararao, C.; Anjaneyulu, C.:RamaBai, Y. Phosphorus requirement of flue cured tobacco grown in Northern Light Soils of Andhra Pradesh. Tobacco Research (Indian).2001.27:2,174-180.
    227. Ratnavathi C.V., Nageswara Rao K.. Nitrate reductase of tobacco in relation to age and nitrogen fertilization. Tob. Res.,1992,18(1&2):121-124.
    228. Reddy, S. V. Krishna; Krishna, S. Kasturi; Kumar, P. Harishu; Reddy, P. R. S.; Krishnamurthy, V. Effect of rice (Oryza sativa) stuBBle and nitrogen on performance of tobacco (Nicotiana tabacum) in rice-tobacco cropping system. Indian Journal of Agronomy,2008,53(3):217-222.
    229. Reed, DeBorah G.; Jelesko, John G. The A and B loci of Nicotiana tabacum have non-equivalent effects on the mRNA levels of four alkaloid biosynthetic genes. Plant Science (Amsterdam, Netherlands),2004,167(5),1123-1130
    230. Ruiz, J, M. Lopez-LefeBre, L. R. Sanchez, E. Rivero, R. M. Garcia, P. C. Romero, L. Preliminary studies on the influence of boron on the foliar biomass and quality of tobacco leaves subjected to NO-3 fertilisation. Journal of the Science of Food and Agriculture.2001.81(8):739-744
    231. Sachan Nita; Falcone Deane L. Wound-induced gene expression of putrescine N-methyltransferase in leaves of Nicotiana tabacum. Phytochemistry,2002,61(7), 797-805
    232. Sandoval V. M., C.W. Wood, E. A. Guertal. Effects of nitrogen form nighttime nutrient solution strength, and cultivar on greenhouse tomato production. Journal of Plant Nutrition,1999,(22):1931-1945.
    233. Saunders, JW. Bush LP. Nicotine biosynthetic enzyme activities in Nicotiana tabacum L. Genotypes with different alkaloids levels. Plant Physiol,1979,64: 236-240
    234. Scheible W R,Gonzalez-Fontes A.LauererM, et al. Nitrate acts as a signal to induce organic acid metabolism and repress starch metaBolism in tobacco. The Plant Cell, 1997,9 (5):783-798
    235. Sguros P L. MicroBial transformation of the tobacco alkaloids. I. Cultural and morphological characteristics of a nicotinophile. J Bacteriol,1955,69:28-37
    236. Steinburg RA. Effect of boron deficiency on nicotine formation in tobacco. Plant Physiology,1955,30:84-86.
    237. Tabuchi T. Microbial degradation of nicotine and nicotinic acid. I. Isolation of nicotine-decomposing bacteria and these morphological and physiological proerties. JAgr Chem Soc Japan,1954,28:807-810
    238. Takizawa, Mari; Hori, Koichi; Inai, Koji; Takase, Hisabumi; Hashimoto, Takashi; Watanabe, Yuichiro. A virus-induced gene silencing approach for the suppression of nicotine content in Nicotiana Benthamiana. Plant Biotechnology (Tokyo, Japan), 2007,24(3):295-300
    239. Tiessen, A., Hendriks, J.H.M., et al. Starch synthesis in potato tubers is regulated by post-translational redox modification of ADP-glucose pyrophosphorylase:a novel regulatory mechanism linking starch synthesis to the sucrose supply. Plant Cell, 2002,14:2191-2213
    240. TeuBer, Michael; Azemi, Mohammad E.; Namjoyan, Foroogh; et al. Putrescine N-methyltransferases-a structure-function analysis. Plant Molecular Biology,2007, 63(6),787-801
    241. Tso, T.C. Tobacco as a potential food source and smoke materia. Beitrage Zur Tabakforschung,1977,9:63-6
    242. WeyBrew J A, Wanismail W.A., Long R.C.. The cultural management of flue-cured tobacco quality. Tobacco international,1983,185(10):82-87.
    243. Whitty B, McCants E B, Show L. Influence of width of fertilizer band of soil burley tobacco to nitrogen and phosphorus. Tobacco Science,1966,10:17-22
    244. Wuxueping, Liuguoshun, Zhukai, Pengsa and Guoqiaoyan. Effects of exogenous amino acids on the contents of amino acids in tobacco leaves. Agricultural Sciences in China,2005,4(2):113-117
    245. Xi X Y, Li C J, Zhang F S. Nitrogen supply after removing the shoot apex increases the nicotine concentration and nitrogen contents in tobacco plants. Annals of Botany, 2005,96:793-797
    246. Yoshida D. Mechanisms of tobacco plants containing lower alkaloid. Bull Hatano, Tob. Exp Sta.,1973,73:245-257

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700