氮素营养对芥蓝(Brassica alboglabra L.)芥子油苷含量的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芥蓝(Brassica alboglabra L.)是我国特有的芸薹属蔬菜,原产于中国南方,因营养丰富、味道鲜美而受到消费者欢迎。最近研究发现,芥蓝富含抗癌次生代谢物质芥子油苷,因而,作为抗癌蔬菜备受国内、日本及欧美关注。芥子油苷是以氨基酸为前体的含氮、硫次生代谢物,其含量及组分不仅受遗传、环境和气候条件等因子影响,也受大量及微量营养元素供应状况的制约。芥蓝的生长及高产对氮素营养需求较大,但是,如何通过氮素营养的调控,在确保高产的同时提高芥子油苷含量目前还知之甚少。为此,本文以芥蓝为材料,在对芥蓝芥子油苷的提取、分离鉴定方法进行优化的基础上,研究了供氮水平、氮素形态、氨基酸(甲硫氨酸和色氨酸)叶面喷施以及环境CO_2与供氮水平互作对芥蓝芥子油苷组分和含量的影响,取得主要结果如下:
     (1)通过比较HPLC不同流动相及柱长对芥子油苷组分的分离效果,筛选出以乙腈/水体系为流动相和长柱(250mm×4.6mm)等有利于芥子油苷分离的优化条件。通过比较不同提取温度、提取剂甲醇浓度、提取时间及料液比等对芥蓝菜薹芥子油苷的提取效果,发现提取温度和料液比对总芥子油苷、总脂肪族芥子油苷和总吲哚族芥子油苷的提取量均有影响显著,确定75℃,料液比1:45(g:mL)为优化提取条件。在10种不同基因型芥蓝菜薹中共分离检测到11种芥子油苷组分,其中脂肪族芥子油苷7种,吲哚族芥子油苷4种,未检出芳香族芥子油苷。
     (2)水培试验结果表明,供氮水平(5mmol N L~(-1)~30mmol N L~(-1))对芥蓝的地上部生物量、菜薹总芥子油苷、总脂肪族及均有显著或极显著影响,但是对总吲哚族芥子油苷含量影响不显著。尽管低氮水平(5mmol N L~(-1))下,芥蓝菜薹总芥子油苷含量最高,但芥蓝的生长因氮素营养缺乏而明显受阻;供氮水平提高到15mmol N L~(-1)时,芥蓝地上部生物量最高并有较高的芥子油苷含量;供氮水平提高到20~30mmol N L~(-1),芥蓝地上部生物量并不再显著增加,而且菜薹芥子油苷含量却显著降低。低氮水平下(5mmol N L~(-1))的芥蓝菜薹高芥子油苷含量可能缘于生物量过小所导致的浓缩效应;而高氮水平下(20~30mmol N L~(-1))芥子油苷含量降低的原因,可能在于过高的供氮水平使芥蓝氮素吸收量显著增加而降低了硫的吸收比例,进而导致植株体内过高的氮硫比(7左右),因而可能不利于芥子油苷的合成和积累。
     (3)芥蓝不同NH_4~+-N/NO_3~--N比的水培试验结果表明,100%铵态氮处理的芥蓝植株矮小,并出现萎蔫和氨毒现象,收获时无膨大菜薹生成,部分植株死亡,生物量显著低于其余各处理。除100%铵态氮处理外,不同NH_4~+-N/NO_3~--N比处理对芥蓝菜薹中硝酸盐含量、总芥子油苷、总脂肪族芥子油苷和总吲哚族芥子油苷含量影响显著,对生物量并无显著影响。硝酸盐含量随着铵态氮比例的增加而显著降低。其中50%铵态氮处理的总芥子油苷、总脂肪族芥子油苷含量最高;75%铵态氮处理的总吲哚族芥子油苷含量最高。可见,适当的NH_4~+-N/NO_3~--N比有利于芥子油苷的合成和积累。虽然,NH_4~+-N/NO_3~--N比对菜薹全氮影响显著,但菜薹全硫含量及氮硫比却无显著变化,可见NH_4~+-N/NO_3~--N比对芥子油苷含量的影响可能不是由于植株氮硫比的改变而引起的,其影响机制有待进一步研究。
     (4)表面活性剂辅助的甲硫氨酸、色氨酸喷施芥蓝基质栽培试验结果表明,与喷清水对照相比,甲硫氨酸、色氨酸单独喷施及表面活性剂辅助的色氨酸叶面喷施,对芥蓝菜薹总芥子油苷、总脂肪族芥子油苷和总吲哚族芥子油苷含量及芥蓝产量均无显著影响。表面活性剂辅助的甲硫氨酸叶面喷施显著提高了芥蓝菜薹总芥子油苷、总脂肪族芥子油苷含量,尤其是3-丁烯基芥子油苷含量,而对总吲哚族芥子油苷含量无显著影响。说明有效供给甲硫氨酸能明显促进脂肪族芥子油苷的合成和积累,而辅之以表面活性剂能增进叶面对甲硫氨酸的吸收效果。
     (5)CO_2浓度(350和800μL L~(-1))与供氮水平(5、10和20mmol N L~(-1))两因子芥蓝水培试验结果表明,无论CO_2浓度高低,低氮(5mmol N L~(-1))水平下,芥蓝生长明显受阻;中、高氮水平(10~20mmol N L~(-1))下芥蓝地上部及菜薹鲜重均显著增加,而且CO_2浓度升高对此具有显著的增进作用。芥蓝菜薹总芥子油苷、总脂肪族芥子油苷含量随供氮水平的提高显著降低,而吲哚族芥子油苷含量反而所提高。中、低氮水平下CO_2浓度升高有利于芥蓝菜薹总芥子油苷、总脂肪族芥子油苷含量的提高,高氮水平下CO_2浓度升高的增进作用并不显著。其原因可能在于CO_2浓度升高使芥蓝菜薹全C含量及C/N比增加,而全N及全S含量显著降低,导致中、低氮水平下的N/S比显著降低,可能更有利于脂肪族芥子油苷的合成与积累;高氮水平下的N/S比并无显著变化,仍处于较高的水平(6左右),因此可能对脂肪族芥子油苷的合成与积累也无显著影响。
Chinese kale(Brassica alboglabra L.) is a kind of Chinese native Brassica vegetables,which was consumed originally in southern China for its rich nutrition and delicious taste and now has been gaining popular in whole China and Japan as well as Europe and America due to its high content of glucosinolates(GSs) with anti-carcinogenic function.GSs are secondary metabolites derived from amino acids. The concentration and composition of GSs in plant tissue is not only determined by genetic,environmental and seasonal factors,but also by the amount and form of macro- and micro-nutrient elements supplied.The growth and high biomass accumulation of Chinese kale required a large amount of nitrogen nutrition. However it is still unclear whether the GS concentration could be increased by improving nitrogen fertilizing strategy.To reveal this issue,after modifying the methods for GS separation and extraction from Chinese kale bolting stems,the effects of nitrogen levels,nitrogen forms in culture solution,and top dressing of methionine and tryptophan with or without surfactant as well as the interactions between CO_2 concentration and N levels on the GS concentration based on hydroponic and artificial medium culture experiments were investigated.The main results were as follows:
     (1) To improve the procedure of GSs separation by HPLC,the different mobile phases and different lengths of C18 column were compared.The results showed that desulpho-GS compounds could be completely separated by HPLC with C18 column of 250 mm×4.6 mm and the mobile phase of the acetonitrile/water system.The concentration of GSs extracted from Chinese kale under different extract temperatures,methanol concentrations of extract solution,extract times,and ratios of sample to extract solution were compared.The results revealed that the concentration of the total GSs,the total aliphatic GSs as well as the total indolyl GSs extracted were significantly affected by ratio of sample to solution and extract temperature.The optimal extracting temperature and ratio of sample to extract solution were 75℃and 1:45(g:mL),respectively.And 11 GS compounds were detected in 10 genotypes of Chinese kale bolting stems,including 7 aliphatic and 4 indolyl GSs,while no aromatic GS was identified.
     (2) The results of the hydroponics experiment with five nitrogen(N) levels of 5 mmol L~(-1) to 30 mmol L~(-1) showed that the biomass of Chinese kale and the concentrations of total GSs,total aliphatic GSs and total indolyl GSs were significantly affected by N levels in culture solution.Although the highest concentration of total GSs was obtained at the lowest N level of 5 mmol L~(-1),the growth of Chinese kale was badly suppressed because of nitrogen deficiency.The highest biomass and relative higher total GS concentration were gained at middle N level of 15 mmol L~(-1).The biomass did not significantly increase while the total GS concentration was obviously decreased under the higher N levels of 20~30 mmol L~(-1) compared to that at 15 mmol N L~(-1) treatment.It suggested that the highest GS concentration at lowest N level of 5 mmol L~(-1) maybe caused by the "concentration effect" of low biomass,while the lowest GS concentration at higher N levels of 20~30 mmol N L~(-1) perhaps resulted from the imbalance of N/S ratio due to over uptake of nitrogen.
     (3) The hydroponics experiment with 5 ratios of ammonium(NH_4~+-N) to nitrate (NO_3~--N) from 100/0 to 0/100 was conducted for Chinese kale.It is found that Chinese kale supplied with complete NH_4~+-N grown very slowly and appeared obvious ammonium toxic symptom with partial plants died.Besides no bolting stem formed the lowest biomass was observed in this treatment.Except for the biomass of Chinese kale,the concentrations of total GSs,total aliphatic GSs and total indolyl GSs were all significantly different among the other four treatments supplied with partial or complete NO_3~--N.Nitrate content sharply decreased with increasing percentages of ammonium.The highest concentration of total GSs and total aliphatic GSs in bolting stems were detected at the treatment supplied with 50%NH_4~+-N and the highest total indolyl GS concentration was achieved at the treatment with 75% NH_4~+-N,which indicated that the appropriate ratio of ammonium to nitrate in nutrient solution may be helpful for the GS synthesis and accumulation in Chinese kale bolting stems.The sulfur content and N/S ratio but not nitrogen content in bolting stems were not significantly affected by the ratio of ammonium to nitrate, which indicated that the differences of GS concentrations among the treatments with different ratio of ammonium to nitrate was not caused by the change of N/S ratio. Detailed mechanism of ammonium to nitrate ratio on the GS concentration in Chinese kale needs to be further explored.
     (4) The artificial medium culture experiment was carried out to investigate the top dressing effects of methionine and tryptophan with or without surfactant on the GS concentrations in Chinese kale bolting stems.The results revealed that top dressing of methionine,tryptophan and tryptophan with surfactant did not affect the concentrations of total GSs,total aliphatic and total indolyl GSs as well as the biomass.Top dressing of tryptophan combined with surfactant significantly increased the total GSs and the total aliphatic GS concentrations,especially the concentration of gluconapin,but not for total indolyl concentration.It implied that methionine absorbed from leaves surface may promote the synthesis and accumulation of GSs and the surfactant could assistant the absorption of methionine through the Chinese kale leaves covered with a heavy layer of waxiness.
     (5) The results of the hydroponic experiment with two CO_2 concentrations of 350 and 800μL L~(-1) and three N levels of 5,10 and 20 mmol L~(-1) showed that at both normal and high CO_2 concentration,the growth of Chinese kale was suppressed at the lowest N level and the biomass was increased significantly as N level increased. Furthermore,enrichment of CO_2 concentration considerably enhanced the biomass under higher three nitrogen levels and fresh weight of bolting stems at N levels of 10 and 20 mmol L~(-1).The concentrations of total GSs and total aliphatic GSs were decreased significantly as nitrogen level increased,while the total indolyl GS concentration increased.Enrichment of CO_2 concentration from 350 to 800μL L~(-1) elevated concentrations of total GSs and total aliphatic GSs under low and middle N levels,but not at high N level.The C content and C/N ratios of Chinese kale bolting stems were increased as CO_2 enriched under all three nitrogen levels,while both the N content and the S contents decreased.The N/S ratios decreased at lower N levels of 5 and 10 mmol L~(-1) because the degree of N content reduced was larger than that of S content,which may be one of the reasons why the total aliphatic GS concentrations under lower N levels with lower N/S ratio were higher than that at the higher nitrogen level when CO_2 elevated.
引文
Anon. Joint report for the period April 1989 to March 1990 on the effects of agronomy and husbandry on glucosinolates and nutritional value of oilseed rapeagronmy. London: Rothamsted Exp Stat and Univ of Newcastle-upon-Tyne,1990:80
    Anon. Joint report for the period November 1987 to March 1989 on the effects of agronomy and husbandry on glucosinolates and nitrition value of oilseed rapeagronmy. London: Rothamsted Exp Stat and Univ of Newcastle-upon-Tyne,1989: 92
    Antonious G F, Kasperbauer Michael J, Byers M E. Light reflected from colored mulches to growing turnip leaves affects glucosinolate and sugar contents of edible roots. Photochem Photobiol, 1996, 64: 605-610
    Aries A, Rosa E, Carvalho R. Effect of nitrogen and sulfur fertilization on glucosinolates in the leaves and roots of broccoli sprouts (Brassica oleracea var Italica). J Sci Food Agr, 2006, 86: 1512-1516
    Asare E, Scarisbrick D H. Rate of nitrogen and sulphur fertilizers on yield, yield components and seed quality of oilseed rape (B. napus L.). Field Crops Res,1995,44:41-46
    Assuncao A G L, Schat H and Aarts M G M. Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytologist,2003,159:351-360
    Barillari J, Canistro D, Paolini M, Ferroni F, Pedulli G F, Iori R, and Valgimigli L.Direct antioxidant activity of purified glucoerucin, the dietary secondary metabolite contained in rocket (Eruca sativa Mill) seeds and sprouts. J. Agr Food Chem, 2005, 53: 2475-2482
    Bartel B and Fink G R. Differential regulation of an auxin-producing nitrilase gene family in Arabidopsis thaliana. PNAS, 1994, 91: 6649-6653
    Bartel B, Fink G R. Difeontial regulation of an auxin—producing nitrilase gene family in Aradidopsis thaliana. Proc Natl USA Acad Sci, 1994, 91: 6649-6653
    Bartel B. Auxin biosynthesis. Annual Review Plant Physiol Plant Molecular Biolog,1997,48:51-66
    Baxter R, Ashenden T W and Farrar J F. Effects of elevated carbon dioxide on three grass species from montane pasture. II. Nutrient uptake, allocation and efficiency of use. J Exp Bot, 1994, 45: 1267-1278
    Behrens T. Stickstoffeffizienz vonWinterraps (Brassica napus L.) in Abha"ngigkeit von der Sorte sowie einer in Menge. In: Zeit und Form variierten Stickstoffdu"ngung, Cuvillier Verlag, Gottingen, 2002: 301
    Bennett R N, Mellon F A, and Kroon P A. Screening crucifer seeds as sources of specific intact glucosinolates using ion-pair high-performance liquid chromatography negative ion electrospray mass spectrometry. J Agr Food Chem,2004, 52:428-38.
    Bidart-Bouzat M G, Mithen R, Berenbaum M R. Elevated CO_2 influences herbivory-induced defense responses of Arabidopsis thaliana. Oecologia, 2005,145: 415-424
    Bilsborrow P E, Evans E J, Zhao F J. The influence of spring nitrogen on yield, yield components and glucosinolate content of antumn-sown oilseed rape (Brassica napus). J Agr Sci, 1993, 120: 219-224
    Bilsborrow P E, Evans E J and Zhao F J. Glucosinolate changes in developing pods of single and double low varieties of autumn-sown oilseed rape (Brassica napus).Ann Appl Biol, 1993b, 122: 135-143
    Bones A M, Rossitar J T. The myrosinase-glucosinolate system. Its organization and biochemistry. Physol Phant, 1996, 97: 194-208
    Bones A M, Visvalingam S and Thangstad O P. Sulphate can induce differential expression of thioglucoside glucohydrolases (myrosinases). Planta, 1994, 193:558-566
    Booth E J, Walker K C, Grffiths D W. A time course study of the effect of sulfur on glucosinolates in oilseed rape (Brassica napus) from the vegetative stage to maturity. J Sci Food Agr, 1991, 56: 479-493
    Bouchereau A, Clossais-Besnard N, Bensaoud A, Leport L and Renard M. Water stress effects on rapeseed quality. European J Agro, 1996, 5: 19-30
    Bovet L, Kammer P M, Meylan-Bettex M, Guadagnuolo R and Matera V. Cadmium accumulation capacities of Arabis alpina under environmental conditions.Environ Experimental Botany, 2006, 57: 80-88
    Bringmann G, Kajahn I, Neususs C, Pelzing M, Laug S, Unger M, Holzgrabe U.Analysis of the glucosinolate pattern of Arabidopsis thaliana seeds by capillary zone electrophoresis coupled to electrospray ionization-mass spectrometry.Electrophoresis, 2005, 26: 1513-1522
    Britto D T, Kronzucker H J. NH_4~+ toxicity in higher plants: a critical review. J Plant Physiol,2002, 159:567-584
    Brown P D, Tokuhisa J G, Reichelt M, Gershenzon J. Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochem, 2003, 62: 471-481
    Brown A F, Yousef G G, Jeffery E H, Klein B P, Wallig M A, Kushad M M, Juvik J A.Glucosinolate profiles in Broccoli: Variation in levels and implications in breeding for cancer chemoprotection. J Ame Society Hortic Sci, 2002,127:807-813
    Brudenell A J P, Griffiths H, Rossiter J T, Baker D A. The phloem mobility of glucosinolates. J Exp Bot, 1999, 50: 745-756
    Bryant J P, Chapin F S and Klein D R. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos, 1983, 40: 357-368
    Burel C, Boujard T, Escaffre A M, Kaushik S J, Boeuf G, Mol K A, van der Geyten S,Kuhn E R. Dietary low glucosinolate rapeseed meal affect thyroid status and nutrient utilization in rainbow trout(Oncorhynchus mykiss). Brit J Nutr, 2000, 83:653-664
    Burmeister W P, Cottaz S, Driguez H, Iori R, Palmieri S and Henrissat B. The crystal structures of Sinapis alba myrosinase and a covalent glycosyl-enzyme intermediate provide insights into the substrate recognition and active-site machinery of an S-glycosidase. Structure, 1997, 5: 663-675
    Cartea M E and Velasco P. Glucosinolates in Brassica foods: bioavailability in food and significance for human health. Phytochem Reviews, 2008, 7: 213-229
    Caswell H. Advances in Ecological Research. New York : Academic Press, 2004: 146
    
    Celenza J L. Metabolism of tyrosine and tryptophan - new genes for old pathways.Plant Biology, 2001 4: 234-240
    Charron C S, Kopsell D A, Randle W M, Sams1 C E. Sodium selenate fertilisation increases selenium accumulation and decreases glucosinolate concentration in rapid-cycling Brassica oleracea. J Sci Food Agr, 2001, 81: 962-966
    Charron C S, Sams C E. Glucosinolate content and myrosinase activity in rapid-cycling Brassica oleracea grown in a controlled environment. J Ame Society Hortic Sci, 2004, 129:321-330
    Charron C S, Saxton A M, Sams C E. Relationship of climate and genotype to seasonal variation in the glucosinolate-myrosinase system.I.Glucosinolate content in ten cultivars of Brassica oleracea grown in fall and spring seasons. J Sci Food Agr, 2005, 85: 671-681
    Chen S X and Andreasson E. Update on glucosinolate metabolism and transport. Plant Physiol Biochem, 2001, 39: 743-758
    Chen S X, Halkier B A. Characterization of glucosinolate uptake by leaf protoplasts of Brassica napus. J Biol Chem, 2000, 275: 22955-22960
    Chen S, Halkier B A. Functional expression and characterization of the myrosinase MYR1 from Brassica napus in Saccharomyces cerevisiae. Protein Expr Purif,1999,17:414-420
    Chen S, Petersen B L, Olsen C E, Schulz A, Halkier B A. Long-distance phloem transport of glucosinolates in Arabidopsis: Plant Physiol, 2001, 127: 194-201
    Chen X J ,Zhu Z J, Ni X L and Qian Q Q. Effect of nitrogen and sulfur supply on glucosinolates in Brassica campestris ssp. Chinensis . Agr Sci in China, 2006,5: 603-608
    Cheng D L, Hashimoto K, Uda Y. In vitro digestion of sinigrin and glucotropaeoliri by single strains of Bifidobacterium and identification of the digestive products. Food Chem Toxicol, 2004, 42: 351-357
    Ciska E, Martyniak-Przybyszewska B, Kozlowska H. Content of glucosinolates in Cruciferous vegetables grown at the same site for two years under different climatic conditions. J Agr Food Chem, 2000, 48: 2862 -2867
    Clossais-Besnard N and Larher F. Physiological role of glucosinolates in Brassica napus: concentration and distribution pattern of glucosinolates among plant organs using a complete life cycle. J Sci Food Agr, 1991, 56: 25-38
    Cohen J D, Slovin J P, Hendrickson A M. Two genetically discrete pathways convert tryptophan to auxin: more redundancy in auxin biosynthesis. Trends Plant Sci,2003, 8: 197-199
    Cswri. Long term feeding effect of high glucosinolate mustard meal on rabbits.Annual Report Avikanagar: Central Sheep and Wool Research institute, 2002:2002-2003
    Curtin D, Syers J K. Extractability and adsorption of sulphate in soils. Eur J Soil Sci, 1990,41:305-312
    Das M, Pal M, Zaidi P H, Raj A and Sengupta U K. Stage sensitivity of mung bean (Vigna radiata L. Wilczek) to an elevated level of carbon dioxide. J Agron Crop Sci,2002, 188:219-224
    Davis M A, Boyd R S. Dynamics of Ni-based defence and organic defences in the Nihyperaccumulator, Streptanthus polygaloides (Brassicaceae). New Phytologist,2000,146:211-217
    Drake B G, Gonzalez-Meier M A, Long S P. More efficient plants: A consequence of rising atmospheric CO_2. Annual Review Plant Biology, 1997, 48: 609-639
    Eckardt N A. New insights into auxin biosynthesis. Plant Cell, 2001, 13: 1-3
    Engel E, Baty C, Le C D, Souchon I, Martin N. Flavor-active compounds potentially imp licated in cooked cauliflower acceptance. J Agr Food Chem, 2002, 50:6459-6467
    Engelen-Eigles G, Holden E, Cohen J D, Garder G. The effect of temperature, photoperiod,and light quality on gluconasturtiin concentration in watercress (Nasturtium officinale R.Bk). J Agr Food Chem, 2006, 54: 328-334
    Epron D, Liozon R and Mousseau M. Effects of elevated CO_2 concentration on leaf characteristics and photosynthetic capacity of beech (Fagus sylvatica) during the growing season. Tree Physiol., 1996, 16: 425-432
    Ettinger M G and Lundeen A J. The structure of sinigrin and sinalbin; an enzymatic rearrangement. J Am Chem Soc, 1956, 78: 4172-4173.
    Ettlinger M G, Kjaer A. Sulfur compounds in plants. Rec Adv Phytochem, 1968, 1:59-144
    Fahey J W, Haristoy X, Dolan P M, Kensler T W, Scholtus I. Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors. Proc Natl Acad Sci USA,2002,99:7610-7615
    Fahey J W, Zalcmann A T, Talalay P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants . Phytochem, 2001, 56: 5-51
    Fahey J W, Zhang Y, Talalay P. Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. National Acad Sci, 1997: 10367-10372.
    Fahey J W and Talalay P. Antioxidant functions of sulforaphane: a potent inducer of phase II detoxication enzymes. Food Chem Toxicol, 1999, 37: 973-979.
    Faulkner K, Mithen R, Williamson G. Selective increase of the potential anticarcinogen 4- methylsulphinylbutyl glucosinolate in broccoli. Carcinogenesis,1998, 19: 605-609
    Fenwick G R, Heaney R K, Mullin W J. Glucosinolates and their breakdown products in food and food plants. CRC Crit Rev Food Sci Nutr, 1983, 18: 123-201
    Fischer J. The influence of different nitrogen and potassium fertilization on the chemical flavour composition of kohlrabi(Brassica oleracea var gongylodes L.).J Sci Food Agr, 1992, 60: 465-470
    Gachon C M M, Langlois-Meurinne M , Henry Y and Saindrenan P. Transcriptional co-regulation of secondary metabolism enzymes in Arabidopsis: functional and evolutionary implications. Plant Mole Biology, 2005, 58: 229-245
    Gardner G, Eaglesham A, Carlson C, Hardy R W F(Eds.). Integrating Agriculture,Medicine and Food for Future Health.New York:National Agricultural Biotechnology Council, 2002: 299-308
    Gijzen M, McGregor I, Seguinswartz G. Glucosinolate uptake by developing rape-seed embryos. Plant Physiol, 1989, 89: 260-263
    Gill, C I R, Haldar S, Porter S, Matthews S, Sullivan S, Coulter J, McGlynn H and Rowland I. The effect of Cruciferous and Leguminous sprouts on genotoxicity, in vitro and in vivo, Cancer Epidemiol Biomarkers Prev, 2004, 13: 1-7.
    Gols R, Raaijmakersb C E, Van Damb N M, Dickea M, Bukovinszkya T, Harveyb J A.Temporal changes affect plant chemistry and tritrophic interactions. Basic Applied Ecology, 2007, 8: 421-433
    Goodman I, Fouts J R, Bresnick E, Menegas R and Hitchings G H. A mammalian thioglucosidase. Science, 1959, 130: 450-451
    Goyal S S, Huffaker R C, Lorenz O A. Inhibitory effects of ammoniacal nitrogen on growth of radish plants. II. Investigation on the possible causes of ammonium toxicity to radish plants and its reversal by nitrate. Journal-American Society Hortic Sci, 1982,107:130-135
    Grubb C D, Zipp B J, Ludwig-Muller J, Masuno M N, Molinski T F, Abel S.Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. Plant J, 2004, 40: 893-908
    Gueyrard D, Grumel V, Leoni O, Palmieri S, Rollin P. Reactivity range of a chiral 1,3-oxazolidine-2-thione obtained from vegetable source through chemo-enzymatic processing. Heterocycles, 2000, 52: 827-843
    Gustine D L and Jung G A. Influence of some management parameters on glucosinolate levels in Brassica forage. Agron J, 1985,77:593-597
    Haynes R J and Goh K M. Ammonium and nitrate nutrition of plants. Biological Reviews, 1978, 53:465-510
    Heaney R K and Fenwick G R. The glucosinolate content of Brassica vegetables: a chemotaxonomic approach to cultivar identification. J Sci Food Agr,1980,31:794-801
    Heaney R K and Fnwick G R. Methods for glucosinolate analysis. In: Watersman(ed-),Methods in plant biochemistry. London: Academic press , 1993, 6: 531-550
    Hesse H, Nikiforova V, Gakiere B and Hoefgen R. Molecular analysis and control of cysteine biosynthesis: integration of nitrogen and sulphur metabolism. J Exp Bot,2004,55: 1283-1292
    
    Hill R. Rapeseed meal in the diet of ruminants. Nutr Abstr Rev, 1991, 61: 139-155
    Himanen S J, Nissinen A, Auriola S, Poppy G M, Stewart C N, Holopainen J K, NergA-M. Constitutive and herbivore-inducible glucosinolate concentrations in oilseed rape (Brassica napus) leaves are not affected by Bt Cry 1 Ac insertion but change under elevated atmospheric CO_2 and O_3. Planta, 2008, 227: 427-437
    Hoagland D R, Arnon D I. The water culture method for growing plants without soil,Circ 347. Berkley: California Agr Expt Sta, 1938: 38
    Hoecker U, Toledo-Ortiz G, Bender J and Quail P H. The photomorphogenesis-related mutant red1 is defective in CYP83B1, a red light-induced gene encoding a cytochrome P450 required for normal auxin homeostasis. Planta, 2004, 219:195-200
    Hogge L R, Reed D W, Underhill E W, Haughn G W. HPLC separation of glucosinolates from leaves and seeds of Arabidopsis thaliana and their identification using thermospray liquid chromatography/mass spectrometry. J Chromatogr Sci, 1988, 26: 551-556
    Hoglund A S, Lenman M, Falk A, Rask L. Distribution of myrosinase in rapeseed tissues. Plant Physiol, 1991, 95: 213-221
    Hull A K, Vij R, Celenza J L. Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. PNAS, 2000, 97:2379-2384
    Imai K. Carbon dioxide and crop production. Jap J Crop Sci, 1988, 57: 380-391
    IPCC (Intergovernmental panel on climate change). Climate Change 2007. Cambridge:Cambridge University Press, 2007: 30-40
    Ishii G. Glucosinolate in Japanese radish, Raphanus sativus L. Jpn Agr Res Quart,1991,24:273-279
    Islam M S, Matsui T and Yoshida Y. Effect of carbon dioxide enrichment on physico-chemical and enzymatic changes in tomato fruits at various stages of maturity. Sci Hortic, 1996, 65: 137-149
    James D C, Rossiter J T. Development and characteristics of myrosinase in Brassica napus during early seedling growth. Physiol Plantarum, 1991, 82: 163-170
    Jensen C R, Mogensen V O, Mortensen G, Fieldsend J K, Milford G F J, Andersenc M N and Thagea J H. Seed glucosinolate, oil and protein contents of field-grown rape (Brassica napus L.) affected by soil drying and evaporative demand . Field Crops Res, 1996,47:93-105
    Josefsson E. Glucosinolate content and amino acid composition of rapeseed (Brassica napus) meal as affected by sulphur and nitrogen nutrition. J Sci Food Agr, 1970,21:98-103
    Karcher A, Melouk H A, Rassi E Z. High-performance liquid-phase separation of glycosides.III.Determination of total glucosinolates in cabbage and rapeseed by capillary electrophoresis via the enzymatically released glucose. Anal-Biochem,1999, 267:92-99
    Karowe D N, Seimens D H and Mitchell-olds T, Species-specific response of glucosinolate content to elevated atmospheric CO_2. J Chem Ecol, 1997. 23:2569-2582
    Kessel B. Genetische Variation und Vererbung der Stickstoff-Effizienz bei Winterraps (Brassica napus L.) Cuvillier Verlag, Go¨ttingen, 2000: 46
    Kiddle G, Bennett R N, Botting N P. High-performance liquid chromatographic separation of natural and synthetic desulphoglucosinolates and their chemical validation by UV, NMR and chemical ionisation-MS methods. Phytochemical analysis, 2001, 12:226-242
    Kim H Y, Lieffering M, Miura S, Kobayashi K, Okada M. Growth and nitrogen uptake of CO_2-enriched rice under field conditions. New Phytol, 2001, 150:223-229
    Kim S J, Ishida M, Matsuo T, Watanabe M, Watanabe Y. Separation and identification of glucosinolates of vegetable turnip rape by LC/APCIMS and comparison of theircontents in ten cultivars of vegetable turnip rape (Brassica rapa L.). Soil sci plant nutrition, 2001, 47: 167-178
    Kim S J, Kawaharada C and Ishii G. Effect of ammonium: nitrate nutrient ratio on nitrate and glucosinolate contents of hydroponically-grown rocket salad (Eruca saliva Mill.). Soil Sci Plant Nutrition, 2006, 52: 387-393
    Kim S J, Matsuo T, Watanabe M, Watanabe Y. Effect of Nitrogen and Sulphur Application on the Glucosinolate Content in Vegetable Turnip Rape (Brassica rapa L.). Soil Sci Plant Nutr, 2002, 48: 43-49
    Kimball B A. Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations. Agronomy Journal, 1983, 75: 779-782
    Kjaer. Glucosinolates and related compounds. Food Chem, 1980, 6: 2223-2234
    Kliebenstein D J, Kroymann J, Brown P, Figuth A, Pedersen D, Gershenzon J,Mitchell-Olds T. Genetic control of natural variation in Arabidopsis thaliana glucosinolate accumulation. Plant Physiol, 2001, 126: 811-825
    Kobayashi K, Lieffering M, Kim H Y. Structure and Function in Agroecosystem Design and Management. Florida: CRC Press, 2001: 37-45
    Kozlowska H J, Nowak H, Nowak J. Characterisation of myrosinase in polish varieties of rapeseed. J Sci Food Agr, 1983, 34: 1171-1178
    Krumbein A, Schonhof I, Schreiner M. Composition and contents of phytochemicals (glucosinolates, carotenoids and chlorophylls) and ascorbic acid in selected Brassica species (B. juncea, B. rapa subsp. nipposinica var. chinoleifera, B.rapa subsp. chinensis and B. rapa subsp. rapa). J Appl Bot Food Qual, 2005, 79:168-174
    Krumbein A,Schonhof I, Ruhlmann J, Widell S. Influence of sulphur and nitrogen supply on flavour and health-affecting compounds in Brassicaceae. In:Horst W(ed) plant nutrition-Food security and sustainability of agro-ecosystems. Netherlands: Kluwer Academic Publishers 2001: 294-295.
    Kuang Y F, Chen Y H. Induction of apoptosis in a non-small cell human lung cancer cell line by isothiocyanatesis associated with P53 and P21. Food Chem Toxicol,2004,42: 1711-1718
    Lanos P M, Smiths J P, Brink B. Degradation of sinigrin by Lactobacillus agih strain R16. Int J Food Microbiol, 1995, 26: 219-229
    Larigauderie A, Hilbert D W and Oechel W C. Effect of CO_2 enrichment and nitrogen availability on resource acquisition and resource allocation in a grass, Bromus mollis. Oecologia, 1988, 77: 544-549
    Lewis J, Fenwick G R. Glucosinolate content of Brassica vegetables : analysis of twenty-four cultivars of Calabrese (green sprouting broccoli, Brassica oleracea L. var botrytis subvar. cymosa Lam.). Food chem, 1987, 25: 259-268
    Li J, Zhou J M, Duan Z Q, Du C W and Wang H Y. Effect of CO_2 enrichment on the growth and nutrient uptake of tomato seedlings. Pedosphere, 2007, 17:343-351
    Lila E, Sylvie R, Nasser K, et al. Formation of allyl isothiocyanate from sinigrin in the digestive tract of rats monoassociated with a human colonic strain of Bacteroides thetaiotaomicron. FEMS Microbiol Lett, 2001, 197: 99-103
    Ludikhuyze L, Ooms V, Weemaes C and Hendrickx M. Kinetic Study of the Irreversible Thermal and Pressure Inactivation of Myrosinase from Broccoli (Brassica oleracea L. Cv. Italica). Agr Food Chem, 1999, 47 : 1794-1800
    Ludwig-M(?)ller J, Pieper K, Ruppel M, Cohen J D, Epstein E, Kiddle G and Bennett R. Indole glucosinolate and auxin biosynthesis in Arabidopsis thaliana (L.) Heynh. glucosinolate mutants and the development of clubroot disease. Planta, 1999,208:409-419
    Lykkesfeldt J and Moller B L. Synthesis of Benzylglucosinolate in Tropaeolum majus L. (Isothiocyanates as Potent Enzyme Inhibitors). Plant Physiology, 1993, 102:609-613
    Magrath R, Mithen R. Maternal effects on the expression of individual aliphatic glucosinolates in seeds and seedlings of Brassica napus. Plant Breeding, 1993,111:249-252
    Mah(?)o K, Morel F, Langouet S, Kramer H, Ferrec E L, Ketterer B and Guillouzo A.Inhibition of cytochromes P-450 and induction of glutathione S-transferases by sulforaphane in primary human and rat hepatocytes. Cancer Res, 1997,57:3649-3652
    Mailer R J and Wratten N. Comparison and estimation of glucosinolate levels in Australian rapeseed cultivars. Aust J Exp Agr, 1985, 25: 932-938
    Mailer R J. Effect of applied sulfur on glucosinolate and oil concentrations in the seeds of rape (Brassica napus L.) and turnip rape (Brassica rapa L. var.silvestris(Lam.) Briggs.1989, 40: 617-624
    Manici L M, Lazzeri L, Palmieri S. In vitro fungi toxic activity of some glucosinolates and their enzyme2 derived products toward plant pathogenic fungi. J Agr Food Chem, 1997,45:2768-2773
    Marillia E F, MacPherson J M, Tsang E W T, Audenhove K V, Keller W A and GrootWassink J W D. Molecular cloning of a Brassica napus thiohydroximate S-glucosyltransferase gene and its expression in Escherichia coli. Physiolog Planta,2001, 113: 176-184
    Maruyama-Nakashita A, Nakamura Y, Yamaya T, Takahashi H. Regulation of high-affinity sulfate transporters in plants: Towards systematic analysis of sulfur signaling and regulation. J Exp Bot, 2004, 55: 1843-1849
    Mathys W. The role of malate, oxalate, and mustard oil glucosides in the evolution of zinc resistance in herbage plants. Physiologia Plantarum, 1977, 40: 130-136
    Matthaus B and Luftmann H. Glucosinolates in members of the family Brassicaceae: separation and identification by LC/ESI-MS-MS. J Agr Food Chem, 2000, 48:2234-2239
    McDonald R C, Manley T R, Barry T N, Forss B A, Sinclair A G. Nutritional evaluation of kale (Brassica oleracea) diets,3:changes in plant composition induced by soil fertility practices, with special reference to SMCO and glucosinolate concentration. J Agr Sci Camb, 1981, 97: 13-23
    McGregor D I, Mullin W J, Fenwick G R. Analytical methodology for determining glucosinolate composition and content. J Assoc Off Anal Chem. 1983, 66:825-849
    Mellon F, Chapman J, Pratt J. Thermospray liquid chromatography-mass spectrometry in food and agricultural research. J Chromatogr, 1987, 394: 209-22
    Merren A, Merle C, Quinsac A, et al. Accumulation of glucosinolates during the ripening period in the seeds and pod walls of winter oilseed rape. Proceeding 8th International Rapeseed Conference, 1991: 1720-1726
    Merrien, A. Double low oilseed rape in France: factors affecting glucosinolate levels.Asp Appl Biol, 1989,23: 109-116
    Merritt S Z. Within-plant variation in concentrations of amino acids, sugar, and sinigrin in phloem sap of black mustard, Brassica nigra (L) Koch (Cruciferae). J Chem Ecol, 1996,22: 1133-1145
    Mikkelsen M D, Petersen B, Olsen C and Halkier B A. Biosynthesis and metabolic engineering of glucosinolates. Amino Acids, 2002, 22: 279-295
    Milford G F J. Agronomic and environmental factors influencing the accumulation of glucosinolates in winter oilseed rape. J Sci Food Agr, 1991, 57 :454-455
    Milford G F J, Fieldsend J K, Porter A J R, Rawlinson C J,Evans, E J and. Bilsborrow P E. Changes in glucosinolate concentration during growth of single-and double-low cultivars of winter oilseed rape. Asp Appl Biol, 1989, 23: 83-90
    Mithen R F, Dekker M, Verkerk R, Rabot S, Johnson I T. The nutritional significance,biosynthesis and bioavailability of glucosinolates in human foods. J Sci Food Agr,2000, 80: 967-984
    Mithen R, Lewis B G, Heaney R K, Fenwick G R. Glucosinolates of wild and cultivated Brassica species. Phytochemistry, 1987, 26: 1969-1973
    Nilsson J, Olsson K, Engqvist G, Ekvall J, Olsson M, Nyman M, Kesson B. Variation in the content of glucosinolates, hydroxycinnamic acids, carotenoids, total antioxidant capacity and low-molecular-weight carbohy-drates in Brassica vegetables. J Sci Food Agr, 2006, 86: 528-538
    Normanly J, Slovin J P and Cohen J D. Rethinking auxin biosynthesis and metabolism.Plant physiology, 1995, 107: 323-329
    Nugon-Baudon L, Szylit O, Raibaud P. Production of toxic glucosinolate derivatives from rapeseed meal by intestinal microflora of rat and chicken. J Sci Food Agri,1988,43:299-308
    Nugon-Baudon L, Szylit O, Raibaud P. Production of toxic glucosinolate derivatives from rapeseed meal by intestinal microflora of rat and chicken. J Sci Food Agri,1988,43:299-308
    Ohtsuru M, Hata T. Molecular properties of multiple forms of plant myrosinase. Agr Biol Chem, 1972, 36: 2495-2503
    Pardales J R, Yamauchi A. Regulation of root development in sweetpotato and cassava by soil moisture during their establishment period. Plant Soil, 2003, 255:201-208
    Paschold P J, Kleber J, Adam S T, Bognar A. Einfluss von Bewasserung und N-Dungung auf Ertrag und Sulforaphangehalt von Brokkoli (Brassica oleracea).Karlsruhe: Deutsche Gesellschaft fur Qualit(?)tsforschung, 2000: 147
    Paugam L, M(?)nard R, Larue J P and Thouvenot D. Optimization of glucosinolate separation by micellar electrokinetic capillary chromatography using a Doehlert's experimental design. Journal of Chromatography A, 1999, 864:155-162
    Penuelas J and Estiarte M. Can elevated CO_2 affect secondary metabolism and ecosystem function? . Trends Ecol Evol, 1998, 13: 20-24
    Pereira F M V, Rosa E, Fahey J W, Stephenson K K, Carvalho R, Aires A. Influence of temperature and ontogeny on the levels of glucosinolates in Broccoli (Brassica oleracea Var. italica) sprouts and their effect on the induction of mammalian phase 2 enzymes. J Agr Food Chem, 2002, 50 : 6239-6244
    Pessina A, Thomas R M, Palmieri S, Luisi P L. An improved method for the purification of myrosinase and its physicochemical characterization. Arch Biochem Biophys, 1990, 280: 383-389
    Petersen B L, Chen S X, Hansen C H, Olsen C E, Halkier B A. Composition and content of glucosinolates in developing Arabidopsis thaliana. Planta, 2002, 214:562-571
    Pocock K, Heaney R K, Wilkinson A P, Beaumont J E, Vaughan J G, Fenwick G R.Changes in myrosinase activity and isoenzyme pattern, glucosinolate content and the cytology of myrosin cells in the leaves of heads of three cultivars of English white cabbage. J Sci Food Agr, 1987, 41: 245-257
    
    Poulton J E, Moller B L. Glucosinolates. Meth Plant Biochem, 1993, 9: 209-237
    Rabot S, Nugon-Baudon L, Raibaud P, Szylit O. Rapeseed meal toxicity in gnotobiotic rats: influence of a whole human faecal flora or single human strains of Escherichia coli and Bacteroides vulgatus. Brit J Nutr, 1993, 70: 323-331
    Rada B, Hanus ovska T, Dr obnica L, Nemec P. Inhibition of virus multiplication by selected isothiocyanates. Acta Virol, 1971, 15: 329-332
    Radovich T J K, Kleinhenz M D, Streeter J G, Miller A R, et al. Planting date affects total glucosinolate concentrations in six commercial cultivars of cabbage (Brassica olereacea L., Capitata Group). Hortic Sci, 2004, 40: 106-110
    Radovich T J K, Kleinhenz M D, Streeter J G. Irrigation timing relative to head development influences yield components, sugar levels, and glucosinolate concentrations in cabbage. J Am Soc Hortic Sci, 2005, 130: 943-949
    Rangkadilok N, Nicolas M E, Bennett R N, Eagling D R, Premier R R, and Taylor P1 W J. The effect of eulfur fertilizer on glucoraphanin levels in Broccoli (B.oleracea L. var. italica) at different growth stages. J Agr Food Chem, 2004, 52:2632-2639
    Rangkadiloka N, Nicolasa M E, Bennettc R N, Premierb R R, Eaglingb D R, Taylora P W J. Developmental changes of sinigrin and glucoraphanin in three Brassica species(Brassica nigra, Brassica juncea and Brassica oleracea var. italica). Sci Hortic, 2002, 96: 11-26
    Rathke G W, Behrens T, Diepenbrock W. Integrated nitrogen management strategies to improve seed yield oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.). Agriculture, Ecosys Environ, 2006, 117: 80-108
    Reddy G V P, Tossavainen P, Nerg A-M and Holopainen J K. Elevated atmospheric CO_2 affects the chemical quality of Brassica plants and the growth rate of the specialist Plutella xylostella, but not the generalist, Spodoptera littoralis. J Agr Food Chem, 2004, 52: 4185-4191
    Reichelt M, Brown P D, Schneider B, Oldham N J, Stauber E,Tokuhisa J,Kliebenstein D J, Mitchell-Olds T, Gershenzon J. Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana. Phytochem, 2002, 59:663-671
    Robbins R J, Keck A, Banuelos G S, Finley J W. Cultivation conditions and selenium fertilization alter the phenolic profile, glucosinolate, and sulforaphane content of Broccoli. J Med Food, 2005, 8: 204-214
    Robert P. Bodnaryk Potent effect of jasmonates on indole glucosinolates in oilseed rape and mustard. Phytochem, 1994, 35: 301-305
    Rodman J E, A taxonomic analysis of glucosinolate-producing plants, Part 1:Phenetics. Systematic Botany, 1991, 16: 598-618
    Rodman J E, A taxonomic analysis of glucosinolate-pro-ducing plants, Part 2:Cladistics. Systematic Botany, 1991, 16: 619-629
    Rodman J E. Divergence, convergence, and parallelism in phytochemical characters: the glucosinolate-myrosinase system. In: Young D A, Seigler D S (Eds.),Phytochemistry and Angiosperm Phylogeny. New York: Praeger, 1981: 43-79
    
    Rodman J E.1980. Population variation and hybridization in sea-rockets(Cakile Cruciferae):seed glucosinolate caracters. Am J Bot, 67:1145-1159
    
    Rodrigues M L, Pacheco C M A, Chaves M M. Soil-plant water relations, root distribution and biomass partitioning in Lupinus albus L. under drought conditions. J Exp Bot, 1995, 46: 947-956
    Rosa E A S, Heaney R K, Fenwick G R, Portas C A M. Glucosinolates in crop plants.Hortic Reviews, 1997, 19: 99-215
    Rosa E A S, Rodrigues A S. Total and individual glucosinolate content in 11 broccoli cultivars grown in early and lateseasons. Hortic Sci, 2001, 36: 56-59
    Rosa E A S. Glucosinolates in cabbage. A Study of their variation throughout the growing season. Vila Real: UTAD, 1992: 49
    Rosa E and Gomes M H. Relationship between free amino acids and glucosinolates in primary and secondary inflorescences of 11 broccoli (Brassica olerace L varitalica) cultivars grown in early and late seasons. J Sci Food Aagr, 2001, 82:61-64
    Rose P, Huang Q, Ong C N, Whiteman M. Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells. Toxicol Appl Pharmacol, 2005, 209:105-113
    Rosen C A, Woodson G E, Thompson J W, Hengesteg A P, Bradlow H L. Preliminary results of the use of indole-3-carbinol for recurrent respiratory papillomatosis.Otolaryngology-Head Neck Surgery, 1998, 118: 810-815
    Rosen C J, Fritz V A, Gardner G M, Hecht S S, Carmella S G, Kenney P M. Cabbage yield and glucosinolate concentrations as affected by nitrogen and sulfur fertility.HortScience, 2005, 40: 1493-1498
    Sang J P, Bluett C A, Elliott B R, Truscott R JW. Effect of time of sowing on oil content, erucic acid and glucosinolate contents in rapeseed (Brassica napus L.cv.Marnoo). Austral J Exp Agr, 1986, 26: 607-611
    Scheuner E T, Krumbein A, Schonhof I, Schreiner M. Increasing the alkyl glucosinolate level in broccoli by leafstalk infusion of methionine. J Applied Botany Food Quality, 2005, 79: 175-178
    Scheuner E T, Schmidt S, Krumbein A, Schonhof I, Schreiner M. Effect of methionine foliar fertilization on glucosinolate concentration in broccoli and radish. J Plant Nutr Soil Sci, 2005, 168: 275-278
    Schnug E. Double low oilseed rape in West Germany: sulphur nutrition and glucosinolate levels. Aspects Applied Biology, 1989, 23: 67-82
    Schonhof I, Blankenburg D, M(?)ller S, Krumbein A. Sulfur and nitrogen supply influence growth, product appearance, and glucosinolate concentration of broccoli. J Plant Nutr Soil Sci, 2007, 170: 65-72
    Schonhof I, Kla¨ring H P, Krumbein A, Clauβen W, Schreiner M. Effect of temperature increase under low radiation conditions on phytochemicals and ascorbic acid in greenhouse grown broccoli. Agr, Ecosystems Environ, 2007, 119:103-111
    Schonhof I, Kl(?)ring H-P, Krumbein A, Schreiner M. Interaction between atmospheric CO_2 and glucosinolates in Broccoli. J Chem Ecol, 2007, 33: 105-114
    Schonhof I, Krumbein A, Bruckner B. Genotypic effects on glucosinolates and sensory properties of broccoli and cauliflower. Food, 2004, 48: 25-33
    Schonhof, I., Blankenburg, D.,M(?)ller, S., Krumbein, A., Sulfur and nitrogen supply influence growth, product appearance, and glucosinolate concentration of broccoli, J Plant Nutr Soil Sci, 2007, 170: 65 -72.
    Seegm(?)ller S, Schulte M, Herschbach C and Rennenberg H. Interactive effects of mycorrhization and elevated atmospheric CO_2 on sulphur nutrition of young pedunculate oak (Quercus robur L.) trees. Plant, Cell Environ, 1996, 19: 418-426
    Shattuck V I, Wang W. Nitrogen dioxide fumigation alters the glucosinolate and nitrate levels in pak choy (Brassica campestris ssp. Chinensis). Sci Hortic, 1993,56: 87-100
    Shikita M, Fahey J W, Golden T R. An unusual case of uncompetitive activation by ascorbic acid: purification and kinetic properties of a myrosinase from Raphanus sativus seedlings. Biochem J, 1999, 341: 725-732
    Smith B J, Kirkegaard J A. In vitro inhibition of soil micoorganisms by 2- phenylethyl is othi ocyanate. Plant Path, 2002, 51: 585-593
    Sochting H P, Verreet J A. Effects of different cultivation systems (soil management,nitrogen fertilization) on the epidemics of fungal diseases in oilseed rape (Brassica napus L. var. napus). J Plant Dis Prot, 2004, 111: 1-29
    Songsak T, Lockwood G B. Glucosinolates of seven medicinal plants from Thailand.Fitoterapia, 2002, 73: 209-216
    S0rensen H. Glucosinolatess:tructure-properties-function. In: Shahidi F(ED). Canola and rapeseed: production, chemistry, nutrition and processing technology, New York: Van Nostrand Reinhold, 1990: 149-172
    Spak J. The effect of the glucosinolate sinigrin and of ally is othiocyanate on the infectivity of turnip mosaic virus. Biol Plant, 1988, 30: 465-470
    Talalay P, Zhang Y. Chemoprotection against cancer by isothiocyanates and glucosinolates. Biochem Soc Trans, 1996, 24: 806-810
    Telang N G, Katdare M, Bradlow H K, Osborne M P, Fishman J. Inhibition of proliferation and modulation of estradiol metabolism: novel mechanisms for breast .cancer prevention by the phytochemical indole-3-carbinol. Proc Soc Experim Biol Medicine, 1997, 216: 246-252
    Tierens K F M J, Thomma B P H, Brouwer M, Schmidt J, Kistner K, Porzel A,Mauch-Mani B, Cammue B P A, Broekaert W F. Study of the role of antimicrobial glucosinolate-derived is othi ocyanates in resistance of arabidopsis to microbial pathogens. Plant Physiol, 2001, 125: 1688-1699
    Tolra R P, Poschenrieder C, Alonso R, Barcelo D and Barcelo J. Influence of Zinc hyperaccumulation on glucosinolates in Thlaspi caerulescens. New Phytologist,2001,151:621-626
    
    Tolra R, Alonso R, Poschenrieder C, Barcelo D, Barcelo J. Determination of glucosinolates in rapeseed and Thlaspi caerulescens plants by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J Chromato A, 2000, 889: 75-81
    
    Tookey H L, VanEtten C H, Daxenbichler M E. Glucosinolate. In: Liener I E (ed.)Toxic constituents of food crops. New York: Academic press, 1980: 103-142
    
    Tripathi M K, Mishra A S. Glucosinolates in animal nutrition: A review . Animal Feed Sci Technol,2007, 132: 1-27
    Underhill E W, Glucosinolates, Bell E A, Charlwood B C. Encyclopedia of plant physiology(Vol.8). New York: Springer, 1980, 493-511
    
    Vallejo F, Tomas-Baberan F A, Benavente-Garcia A G, Garcia-Viguera C. Total and individual glucosinolate contents in inflorescences of eight broccoli cultivars grown under various climatic and fertilisation conditions. J Sci Food Agr, 2003,83:307-313
    
    Vallejo, F, Tomas-Baberan, F. A., Benavente-Garcia, A. G., Garcia-Viguera, C., Total and individual glucosinolate contents in inflorescences of eight broccoli cultivars grown under various climatic and fertilisation conditions, J Sci Food Agr, 2003,83,307-313.
    
    Van Dam N M , Witjes L and SvatoS A. Interactions between aboveground and belowground induction of glucosinolates in two wild Brassica species. New Phytologist, 2003, 161: 801-810
    
    Van Doom H E, Van der Kruk G C, Van Hoist G-J, Raaijmakers-Ruijs N, Postma E,Groeneweg B and Jongen W. The glucosinolates sinigrin and progoitrin are important determinants for taste preference and bitterness of Brussels sprouts. J Sci Food Agr, 1998, 78: 30-38
    
    Vegeeshbabu H S, Chopra V L. Genetic and biotechnological approaches for reducing glucosinolates from rapeseed-mustard meal. J Plant Biochem Biotechnol, 1997, 6:53-62
    
    Verkerk R, Schreiner M, Krumbein A, Ciska E, Hoist B, Rowland I, De Schrijver R,Hansen M, Gerhauser C, Mithen R, Dekker M. Glucosinolates in Brassica vegetables: The influence of the food supply chain on intake, bioavailability and human health. Mol Nutr Food Res. 2009,53 (in press)
    Wathelet J P, Marlier M, Severin M, Boenke A, Wagstaffe P J. Measurement of glucosinolates in rapeseeds. Natural Toxins, 1995, 3:299-304
    Wilkinson A P, Rhodes M J C, Fenwick G R. Myrosinase activity of cruciferous vegetables. J Sci Food Agr, 1984, 35: 543-552
    Withers P J A, O'Donnell F M. The response of double-low winter oilseed rape to fertiliser sulphur. J Sci Food Agr, 1994, 66: 93-101
    Wittstock U and Halkier B A. Glucosinolate research in the Arabidopsis era. Trends Plant Sci, 2002, 7: 263-270
    Zhang H Y, Schonhof I, Krumbein A, Gutezeit B, Li H, St ii zel H, Schreiner M.Water supply and growing season influence glucosinolate concentration and composition in turnip root (Brassica rapa L.). J Plant Nutr Soil Sci, 2008, 171:255-265
    Zhang Y, Talalay P, Cho C G, Posner G H. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Nat Acad Sci, USA, 1992, 89: 2399-2403
    Zhang Y, Talalay P. Anticarcinogenic activities of organic isothiocyanates: chemistry and mechanisms. Cancer Res, 1994, 54: 1976-1981
    Zhang Y, Wade K L, Prestera T, Talalay P. Quantitative determination of isothiocyanates,dithiocarbamates,carbon disulfide, and related thiocarbonyl compounds by cyclocondensation with 1,2-benzenedithiol. Analytical Biochem,1996,239: 160-167.
    Zhao F J, Evans E J,Bilsborrow P E, Syers J K. Influence of sulphur and nitrogen on seed yield and quality of low glucosinolate oilseed rspe(Brassica napus L.). J Sci Food Agr, 1993, 63:29-37
    Zhao F, Bilsborrow P E, Evans E J, Syers J K. Sulphur turnover in the developing pods of single and double low varieties of oilseed rape (Brassica napus L.). J Sci Food Agr, 1993,62:111-119
    Zhao F, Evans E J, Bilsborrow P E and Syers J K. Influence of nitrogen and sulphur on the glucosinolate profile of rapeseed (Brassica napus L.). J Sci Food Agr,1994,64:295-304
    Zhao Y D, Christensen S K, Fankhauser C, Cashman J R, Cohen J D, Weigel D,Chory J. A Role for Flavin Monooxygenase-Like Enzymes in Auxin Biosynthesis.Science,2001,291 306-309
    鲍士旦.土壤农化分析(土壤、农业化学、资源与环境专业用).北京:中国农业出版社,2000:267-268
    曹翠玲,李生秀.氮素形态对作物生理特性及生长的影响.华中农业大学学报,2004.23:581-586
    陈日远,刘厚诚,宋传珍,孙光闻.氮素营养对芥蓝生长和品质的影响.农业工程学报,2005,21:143-146
    陈新娟,朱祝军,杨静,刘永华.芥蓝叶和薹的硫代葡萄糖苷组分及含量.园艺学报2006,33:741-744
    陈新娟.中国芸薹属蔬菜硫代葡萄糖苷及其影响因子研究.杭州:浙江大学出版社,2006:21-22
    陈亚州,陈思学,阎秀峰.环境对植物芥子油苷代谢的影响.生态学报,2008,28:2828-2834
    褚庆华,倪昕路.油菜籽及其饼粕中硫代葡萄糖苷总量快速测定方法的研究.中国粮油学报,2004,19:79-83
    单毓娟,吴坤.十字花科蔬菜的癌症预防作用.国外医学卫生学分册,2005,32:269-273
    杜应琼,王富华,李乃坚,邓义才,苏青云,殷秋妙,赖穗春,徐爱平.广东省蔬菜硝酸盐含量的调查与分析,生态环境,2004,13:19-22.
    符淙斌,严中伟.全球变化与我国未来的生存环境.北京:气象出版社,1996:19-49
    甘莉,金良,邹国岭.氯化钯法测定硫代葡萄糖甙含量的最佳测定条件探讨 华中农业大学学报,1999,18:592-595
    何洪巨,Schnitzler W H.芸薹属蔬菜中硫代葡萄糖苷鉴定与含量分析.中国农业科学,2002,35:192-197
    何洪巨,宋曙辉,王文琪.HPLC鉴定芥蓝中完形硫代葡萄糖苷.现代仪器,2002:10-12
    季宇彬,武晓丹,邹翔.硫代葡萄糖苷的研究.哈尔滨商业大学学报(自然科学版),2005,1:550-562
    康绍忠,张富仓,梁银丽,马清林,胡笑涛.土壤水分和CO_2浓度增加对小麦,玉 米,棉花蒸散,光合及生长的影响.作物学报,1999,25:55-63
    李鲜,陈昆松,张明方,Mosbah K M.十字花科植物中硫代葡萄糖苷的研究进展.园艺学报,2006,33:675-679
    李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000:125-127
    李建伟,郑少清,石俊雄,蔡刘体,李卫红.不同氮素形态配比对烤烟品质的影响.西南农业大学学报(自然科学版),2003,25:436-439
    李建文.蔬菜中次生代谢物质硫苷葡萄糖苷及类黄铜化合物的研究.保定:河北农业大学硕士学位论文,2003:31-35
    李建中,马良,崔同,赵仁邦,齐小菊.山楂果实中主要活性物质的高效液相色谱分析.色谱,2005,23:112-112
    李秋云,戴绍军,陈思学,阎秀峰.施氮对萝卜芽芥子油苷含量的影响.黑龙江大学自然科学学报,2008,25:385-388
    李志邈,曹家树.蔬菜的抗癌特性.北方园艺,2001,4:4-7
    鲁如坤.土壤农业化学常规分析方法,北京:中国农业科技出版社,1999:322-324
    陆景陵.植物营养学(上册)(第二版).北京:中国农业大学出版社,2003:23-34
    牟同敏.十字花科植物硫代葡萄糖苷含量与种类的差异.国外农学-油料作物,1986.4:1-7
    彭爱娟,唐桂芬,兰尊海,董五辈,吴谋成.反相离子对色谱法测定油菜籽(饼)中的硫苷.色谱,2000,18:87-89
    钱丽丽,刘江丽,李扬,张园园,裴世春.西兰花中硫代葡萄糖苷的提取及抑菌试验初报.中国农学通报,2008,24:335-338
    阮颖 周朴华 刘春林.硫代葡萄糖苷合成核心途径与植物生长素微调.生命科学研究,2006,10:25-29
    尚毅,谭小力.氯化钯法测定油菜籽粒中硫甙含量结果的研究.山西农业科学,2000:18-19
    尚毅.影响甘蓝型双低油菜籽粒中硫代葡萄糖苷含量稳定性的研究.杨凌:西北农林科技大学硕士学位论文,2003,1-2
    宋敏.氨基酸对芥蓝硫代葡萄糖苷组分及含量的影响.南京:南京农业大学,2007:18-27
    唐启义,冯明光.DPS数据处理系统.北京:科学出版社,2007:59,102-107
    田霄鸿,李生秀,宋书琴.碳酸氢根和铵态氮共同对菜豆生长及养分吸收的影响.园艺学报,2002,29:37-342
    涂宗财,郭逍遥,刘成梅,任伟,李金林,张博,刘磊.芥菜中硫代葡萄糖苷提取工艺条件的优化.食品与生物技术学报,2007,26:9-12
    瓦维洛夫.主要栽培植物的世界起源中心.董玉琛译.北京:农业出版社,1935:18
    汪俏梅,Abel S.异硫代氰酸盐的抗癌机理及其相关研究.细胞生物学杂志,2002,24:171-175
    汪俏梅,曹家树.芥子油苷研究进展及其在蔬菜育种上的应用前景.园艺学报,2001,28:669-675
    王舒然,夏薇.莱菔硫烷与肿瘤.疾病控制杂志,2004,8:452-455
    吴建国,石春海,樊龙江.油菜籽芥酸和硫甙含量近红外反射光谱测定技术的优化设置.中国粮油学报,2002,17:59-62
    吴礼树.土壤肥料学.北京:中国农业出版社,2004:204-213
    吴谋成.油菜籽(饼)中硫代葡萄糖甙总量的快速定量测定.华中农学院学报,1983.3:73-81
    徐伟丽,陈宗道,赵国华.芥子甘酶研究进展.粮食与油脂,2003,7:16-18
    杨晓英,杨劲松.氮素供应水平对小白菜生长和硝酸盐积累的影响.植物营养与肥料学报,2007,13:160-163
    余英,安廷士,罗朝忠.菜籽粕中硫代葡萄糖甙测定方法的改进.中国油料,1996,16:52-54,57
    袁丽凤,郭伟强,王志刚.液相色谱-质谱联用分离、鉴定硫代葡萄糖苷.浙江大学学报(理学版),2004,31:180-183
    曾青,朱春梧,边晓,冷春龙,陈虹,庞静,陈改苹,朱建国.不同CO_2浓度增高对不同供氮水平下水稻生长和化感物质释放的影响.生态与农村环境学报,2007,23:1-4,21
    翟志亭,郭世荣,刘伟.氨基酸对甘蓝硫代葡萄糖苷的影响.植物营养与肥料学报,2009,15:447-452
    张富仓,康绍忠.氮素形态对白菜硝酸盐累积和养分吸收的影响.园艺学报,2003.30:93-94
    张海峰,袁晶,汪俏梅.植物激素与芥子油苷在生物合成上的相互作用.细胞生物学杂志,2005,27:423-426
    张菊珍,徐世前,史美仁.硫脲法测定菜籽饼粕中的硫代葡萄糖甙.南京化工学院学报,1992,14:63-69
    张慎好,王学东,轩兴栓,尚玉峰,何洪巨.芥蓝不同品种营养成分含量评价.河北科技师范学院学报,2004,18:58-61
    张英鹏,林咸永,章永松,李刚,杨运娟.不同氮素形态对菠菜生长及体内抗氧化酶活性的影响.浙江大学学报:农业与生命科学版,2006,32:139-144
    赵大云,杨方琪.雪里蕻腌菜风味的研究.食品与发酵工业,1998,24:34-41
    赵芳,耿征.用反相高效液相色谱法测定南方红豆杉组织培养产物中的紫杉醇.分析化学,1997,25:941-943
    赵平,彭少麟.植物氮素营养的生理生态学研究.生态科学,1998,17:37-42
    中国科学院华南植物研究所编.广州植物志.北京:科学出版社,1956:109
    中国科学院南京土壤研究所 土壤理化分析 上海:上海科学技术出版社,1980:376-377
    周泽义,胡长敏,王敏健,等.中国蔬菜硝酸盐和亚硝酸盐污染因素及控制研究.环境科学进展,1999,7:1-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700