第三系残留型盆地油气成藏动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对第三系残留型盆地的油气成藏动力学理论与方法研究中存在的有关主要问题,以广西百色盆地例,从盆地区域地质资料入手,在百色盆地石油地质条件综合研究的基础上,采用现代有机地球化学研究方法与盆地模拟方法以及油气生成与运聚的实验模拟新技术手段相结合,对百色第三系残留型盆地的油气成藏动力学基本特征进行了深入系统研究。
     应用有机地球方法系统地分析了百色第三系残留型盆地不同地区烃源岩和原油的地球化学特征,划分原油的成因类型,并且通过生物标志化合物的油-油对比、油-岩对比,明确指出百色盆地已发现的原油主要来源于那读组湖相暗色泥岩,而煤层与碳质泥岩的贡献较小,确认盆地内东部与西部地区油源有所差异,即东部坳陷原油主要来源于那二段和那一段源岩,西部坳陷原油则来源于那三段源岩。
     采用分步连续加热方式,在温压釜内对盆地主力烃源岩的未成熟样品生烃特征进行热压模拟实验研究。通过各模拟温度点的气相产物和液态烃产物系统分析,首次建立了盆地主力烃源岩有机质的生烃演化模式。结合盆地的地质条件,指出那读组高效烃源岩有机质在低成熟、成熟阶段具有油源岩的生烃特征,并且在低成熟阶段有机质具有较强的成烃能力。
     在盆地现今地温场、流体压力场和水化学场分布特征研究基础上,系统地分析了异常低压形成机制,提出了异常低压的形成是限流因素和降压因素共同作用结果的认识。以盆地东部坳陷仑16块那读组油藏为例,对油水体系的异常低压形成演化进行深入研究,认为无气顶异常低压油藏的形成不仅与晚期地层抬升-剥蚀作用有关,并且砂体受到限制而失去与地表水的静水柱压力作用也有重要影响。
     通过油气运聚模拟实验的研究,发现砂体输导体系的储层物性、砂体与断层的组合方式以及烃源岩向输导体系充注油气的强度,对油气运聚成藏方式具有重要影响。在层间非均质砂层输导体系中,从源岩中排驱出来的烃类进入砂岩储集体以后,首先充注层间非均质砂层中孔隙度和渗透率较高的砂层,随着油气充注强度的不断增加,油气才能进入储层物性较差的砂层中运移和聚集。在砂体与断层的不同组合方式中,由断层和非均质砂体组成的油气输导网络导致油气运移的复杂性和多样性。
     应用盆地模拟技术对百岗组和那读组古流体势进行模拟计算。百色盆地百岗组和那读组的古流体势的高势区分布坳陷中心南侧,在区域大断层两盘等势线不相连,表现为两个相对独立的流体系统。
     在百色盆地油气成藏动力学特征的研究基础上,综合分析了油气成藏的主要控制因素,指出百色盆地油气成藏的相态主要受到烃源岩有机质类型和古地温场控制,古、今流体流动样式控制油气运聚方向,并且在盆地东部坳陷归纳总结出四种成藏模式。这不仅对百色盆地的油气勘探具有重要指导意义,我国其它第三系残留型盆地的油气成藏研究也有重要借鉴意义。
To solving some main problems of the theory and method of dynamic Systems of Petroleum Accumulation in relict basin of Tertiary, the author takes Baise basin in Guangxi as an example. The basic characteristics of dynamic systems of petroleum accumulation are systemically studied in this paper by the using of the method of modern organic geochemistry and basin simulation with new technology of simulation experiment for migration and accumulation, which based on the comprehensive study of petroleum geologic condition in Baise basin with the material of regional geology.The characteristics of geochemistry on source rock and crude oil of different area in relict basin of Tertiary in Baise basin are systematic analyzed and the genetic type of oil have been classified by means of organic geochemistry. Moreover, based on the oil—oil and oil—rock correlation of biomarker, it is pointed out that the surveyed crude oil is originated from lake-facies dark mudstones in Nadu formation, while coal and carbonaceous mudstones have rather less contribution. It is determined that oil-source from west area is different from east area in basin, the crude oil of east depression is mainly from the second and first members of Nadu formation and the one of west depression is from the third members of Nadu formation.The hydrocarbon-generating characteristics of immature samples about main source rock in basin are systemically studied through thermal simulation experiment under continual heating. According to the systematic analysis of product of gas and liquid hydrocarbon, the hydrocarbon-generating model of organic about main source rock in basin is established for the first time. Based on the geologic condition, it points out that the organic of source rock in Nadu formation have the hydrocarbon-generating characteristics at low maturity or maturity stage, and especially have a strong hydrocarbon-generating capability at low maturity stage.The author analyzed the mechanisms of controlling formation on abnomal subpressure in a systematic way and put forward to the formation of abnomal subpressure which is the result of limited-entry and pressure drops based on the characteristics of modern geothermal、 fluid pressure field and hydrochemical field. Take the reservoir of Nadu formation in East depression as a example, the author indicated that the formation of reservoir which is non-gas cap abnomal subpressure not only gets something to do with function of reflection about uplift and erosion of late strata, but also to do with limited sand body which loses the function of hydrostatic pressure with the ground water.According to the systematic analysis of the simulation experimente about migration and accumulation,it is discovered that the reservoir properties of sands conduit systems、 the association pattern of sand body and fault and entering the oil poor which is from source rock to liquid conduit systems play a significant role to the reservoir-generating pattern of migration and accumulation. In the heterogeneous sand conduit systems, when the hydrocarbon which is from source rock entered the reservoir, it enters the heterogeneous sand body which permeability and porosity is rather high at first, and then enter the one which reservoir properties is poor with the increase density of entering the oil poor. Among the different association pattern of sand body and faults, oil conduit web formed by sands and heterogeneous sand leads to the complexity and variety of migration and accumulation.
引文
[1]Miall A. D., Principles of scdimentary basin analysis. University of Torondo. Canada. 1984,369-372
    [2]Miall A. D., Principles of scdimentary basin analysis (second Edition) . Springer-Verlag. 1990,369-372
    [3]Einsele G., Some problems of basin analysis. University Tubingen. W. Germany, 1985
    [4]Einsele G., Sedimentary Basins, Evolution, Facies, and Sediment. Budget. Springer-Verlag. 1987,1-7.
    [5]Dow W. G., Application of oil correlation and source rock data to exploration in Williston basin(abs) [J]. AAPG Bulletin, 1972,56:615
    [6]Perrodon A., and Masse P., Subsidence, sedimentation and petroleum systems[J]. Journal of Petroleum Geology, 1984, 7(1): 5-26
    [7]Demaison G., The generative basin concept, in Demaison G., and Murris R. J., eds., Petroleum geochemistry and basin evaluation: AAPG Memoir 35, 1984, 1-14.
    [8]Demaison G., and Huizinga B. J., Genetic classification of petroleum systems[J]. AAPG Bulletin, 1991,75(10)1626-1643.
    [9]Magoon L. B., The petroleum system—a classification scheme for research, resource assessment, and exploration (abs) [J]. AAPG Bulletin, 1987, 71(5), 587
    [10]Magoon L. B., and Dow W. G., The petroleum system: from source rock to trap[A]. AAPG Memoir 60, 1994
    [11]Lewan M. D., Primary oil migration and expulsion as determined by hydrous pyrolysis:Proceedings of the 13th World Petroleum Congress , 1991, No2 , p215-223
    [12]Lewan M. D., Laboratory simulation of petroleum formation: hydrous pyrolysis, in M. H.Engel and S.A.Macko, eds., Organic Geochemistry: New York, Plenum Press, 1993, p419-442
    [13]Dembicki, D. Jr. and M. J. Anderson, Secondary migration of oil: experiments supporting efficient movement of separate,buoyant oil phase along limited conduits:AAPG Bull., 1989,73(9):1018-1021
    [14]Thomas, M. M. and J. A. Clouse, Scaled physical model of secondary migration, AAPG Bull., 1995, 79(1): 19-59
    [15]Hindle, A D. Petroleum migration pathways and charge concentration: A three-dimensional model [J]. AAPG Bulletin, 1997, 81(10): 1451-1481.
    [16]England W. A., Mackenize A. S., Mann D. M., and Quiley T. M., The movement and entrapment of petroleum fluids in the subsurface[J]. Journal of the Geological Society, London 144:327-347,1987
    [17]Hunt J. M., Lewan M. D., and Hennet R. J. C., Modeling oil generation with time-temperature index graphs based on the Arrhenius equation [J]. AAPG Bull, 1991, 75(3): 795-807
    [18]Waples Douglas W., Time and temperature in petroleum formation: Application of Lopatin's method to petroleum exploration[J]. AAPG Bulletin 1980,64(6):916-926
    [19]Yukler M. A., Corford C., and Welte D. H., One-dimensional model to simulate geologic, hydrodynamic and thermo -dynamic development of a sedimentary basin[J]. Geol. Rundschau,1978, 67(4):960-979.
    [20]Nakanama K., Hydrocarbon — explosion model its application to Niigata Area, Japan [Jj.AAPG, Bulletin 1987, 71(6): 810-821
    [21]Hirsh L.M., and Thompson A. H., Minimum saturations and buoyancy in secondary migration[J]. AAPG Bulletin 1995, 79(5):696-710
    [22]Kross B. M., and Schlomer S., Aspect of natural gas generation and migration in sedimentary systems[J].Mineralogical Magazine , 1998, 62A, 818-819
    [23]Hantschel T., Finite element analysis and ray tracing modeling of petroleum migration[J]. Marine and Petroleum Geology, 2000,17(7):816-821
    [24]Meeaking P., Invasion percolation and secondary migration: experiments and simulations[J]. Marine and Petroleum Geology, 2000,17 (7):777-797
    [25]Leythaeuser D., Schwark L., and Keuser Ch., Geological conditions and geochemical effects secondary petroleum migration and accumulation[J]. .Marine and Petroleum Geology, 2000, 12(7):857-859
    [26]Catalan, L., F. Xiaowen, I. Chatzis and F. A. L. Dullien, An experimental study of secondary oil migration:AAPG Bull., 1992, 76(5):638-650
    [27]Carruthers, D. and P. Ringose, Secondary oil migration:oil-rock contact volumes, flow behavior and rates, in Parmell, J. (ed.), Dating and duration of fluid flow-rock interaction, Geological Sociaty Special Publication 1989, No. 144:205-220
    [28] Yu Z., and Lerche I., Three phase fluid migration with solubility in a two-dimensional basin simulation model [J]. Marine and Petroleum Geology, 1995,12(1) :3-16.
    [29] Dickinson W. R., Tectonics: making composite continents[J]. Nature (London). 1993,364:284-285.
    [30]Tissot B. P., WelteD. H., Petroleum formation and occurrence[M]. Springer Verlag, Heidelberg, New York 1978(1st edition), 1984(2ed edition).
    [31]Leythauser D., Quantification of effect of carbonate redistribution by pressure solution in organic-rich carbonate[J].Marine and Petroleum Geology, 1994,12(7):735-739
    [32]Leythauser Pressure solution in carbonate source rocks and its control on petroleum generation and migration[J].Marine and Petroleum Geology, 1995,13(7):717-733
    [33]Burg R. R., and Anthony F. Gangi, Primary migration by oil-generation microfracturing in low permeability source rocks: Application to the Austin chalk, Texas[J]. AAPG Bulletin, 1999, 83 (5): 727-755
    [34]Bowers G. L., Pore pressure estimation from velocity data: account ing for overpessure mechanisms besides undercompaction[J]. SPE Drilling & Completion. 1995,10(2).-89-95
    [35]Hunt, J.M., J. K. Whelan, L. B. Eglinton, and L. M. Cathles III, Relation of shales porosities, gas generation, and compaction to deep overpressures in the U. S. Gulf Coast, in Law, B. E., G. F. Ulmishek, and V. I. Slavin eds., Abnormal pressures in hydrocarbon environments:AAPG Memoir , 1998, 70, p. 87-104
    [36]Giles M. R. Diagenesis: A Quantitative Perspective-Implications for Basin Modelling and Rock Property Predction[M]. Dordrecbt: Kluwer Academic Publishers. 1997.511
    [37]Hooper E. C. D., Fluid migration along growth faults in compacting sediments[J]. Journal of Petroleum Geology, 1991,14:161-180
    [38]Roberts S. J., Nunn J. A., Cathles L.,et al. Expulsion of abnormally pressured fluids along faults[J]. Journal of Geophysical Research, 1996,101:28231-28252
    [39]O' Brien G.W., Lisk M., Duddy I. R., et al. Plate convergence, foreland development and fault reactivation: primary controls on brine migration, thermal histories and trap breach in the Timor Sea, Australia[J].Marine and Petroleum Geology, 1999,16:533-560
    [40]Schowalter T. T., Mechanics of secondary hydrocarbon migration and entrapment [J]. AAPG Bulletin, 1979, 63(4): 723-760
    [41]England W. A., Petroleum migration. Geofluids ' 93 Extended Abstracts, Parnell J., et al. (abs),1993.
    [42]Catalan L., Xiaowen F. .Cbatzis I., et al. An experimental study of secondary oil migration[J]. AAPG Bulletin, 1992,76:638-650
    [43]Carrthers D., Ringose P., Secondary oil migration: oil-rock contact volumes, flow behavior and rates[A].Parnell J. ed. Dating and Duration of Fluid Flow and Fluid-Rock Interaction[C]. Geological Society Special Publication, 1995,79:205-220
    [44]Hoffmann C. F., Biogenic hydrocarbons in inclusions from the Aberfoyle tin tungsten deposit in Tasmanial [J]. Australia. Chem. Geol., 1988,70(3):287-299
    [45]Bodnar R .J., Petroleum migration in the Miocene Monterey Formation Califomia[J]. USA: constraints from fluid—inclusion studies. Mineralogicd Magazine, 1990, 54(3): 295-304.
    [46]Palacas G., Carbonate rock as source of petroleum: Geological and chemical characteristics and oil-source correlation, 11th WPC, Proceeding, V. 2,1983,
    [47]Peters K. E., and Cassa M. R. .Application hydrocarbon souresrock geochemistry [A], in L. B. Magooon and W. G. Dow eds., AAPG Memoir 60, 1994, p107-141
    [48]Hunt J.M., Petroleum geochemistry and geology (1st edition)[M]. New York:Freman, 1979, 261-273
    [49]Ekweozor C.M., and Stausz O. P., Tricyclic terpanes in the Athabasca oil sands: Their geochemistry [A]. In: Advances in Organic Geochemistry . J.Wiley and Sons, New York, 1982, p401-413
    [50]Damste S., Fabien K., Evidence for gammacerane as an indicator of water column stratification[J]. Geochimica et Cosmochimica Acta. 1995, 59(9): 1895-1900.
    [51]VanHint J. E., Geohistory analysis-Application of micropaleontology in exploration geology[J]. AAPG Bulletin, 1978(1):201-222
    [52]Flavey D. A., and Deighton I., Recent advances in burial and thermal geohistory anlysis [J]. APEA, 1982, 22(1): 65-81
    [53]Mackenzie A. S., Mann D.M., The movement and entrapment of petroleum in the subsurface [J].Geoloc, London, 1987,144:327-347
    [54]Loptin N. V., Temperature and geological time as factors in coalification[J]. Akademiya Nauk SSSR Izvestiya, Seriya Geologic Heskaya 1971,No3.
    [55]Waples Douglas W., Time and temperature in petroleum formation: Application of Lopatin' s method to petroleum exploration[J]. AAPG Bulletin 1980,64(6) :916-926
    [56]Ungerer F. B., Burus J., and Doligez B., Basin evolution by intergrated two-dimension modeling of heat transfer, fluid, hydrocarbon generation, and migration[J]. AAPG Bulletin 1990, 74(3): 309-335.
    [57]Pepper A. S., and Corvit P. J., Simple kinetic models of petroleum formation[J]. Marine and Petroleum Geology, 1995, 12(3):291-319.
    [58]Chapman R. E., Effects of oil and gas accumulation on water movement[J]. AAPG Bulletin , 1982, 66(3): 438-445
    [59]Hooper E. C., Fluid migration along growth fault in compacting sediments[J]. Journal of Petroleum Geology, 1991, 14(2): 161-180
    [60]Hindle A. D., Petroleum migration pathways and charge concentration: a Three dimensional model [J]. AAPG Bulletin, 1997,81(10): 1451-1481
    [61]Losh S., Oil migration in a major growth fault: Structural analysis of the pathfinder core, south engene island block 330, offshore Louisiana[J]. AAPG Bulletin, 1998, 82(11):1694-1710
    [62]Milliikan C.V. .Sidwell C. V., Bottom-hole pressure in oil wells [J]. AIMETrans., 1931, 9(2): 194-205.
    [63]Dickey P.A. ,Cox W. C., Oil and gas inreservoir swith subnor-malpressures [J]. AAPG Bull., 1977, 61(12): 2134-2142.
    [64]Neuzil C. E. and Pollock, D. W., Erosional unloading and fluid pressures in hydraulically "Tight" Rocks, Journal of geology, 1983, 91(1): 179-193
    [65] Neuzil C. E., Low fluid pressure within the Pierre Shale: a transient response to erosion, Water resources research, 1993, 29(7): 2007-2020
    [66] Swarbrick R. E., Pressure regime sinse dimenta-rybasins and the irprediction[J]. Marineand Petroleum Geology, 1999, 16(3): 483-486.
    [67] Toth J., Millar, R. F., Reply to comments on possible effects of erosional changes of the topographic relief on pourpressure sat depth[J]. Water Resour. Res., 1985, 21(6): 899-903.
    [68] Parks K. P.,Toth, J., Field evidence forerosion-inducedunder-pressuring in Upper Cretaceous and Tertiarys trata, westcentral Alberta, Canada[J]. Bulletin of Canadian Petroleum Geology, 1995, 43(3): 281-292.
    [69] Fatt I., Compressibility of sand stone sat low to moderatepres-sure[J]. AAPG Bull., 1958, 42(12): 1924-1957.
    [70] McLatchie A. S., Hemstock, R. A., Young, J. W., The effective compressibility of reservoir rock and its effect on permeabiloity[J]. AIMETrans., 1958, 21(3): 386-388.
    [71] Corbet T. F., Bethke, C. M., Disequilibrium fluid pressures and groundwater flowin the Western Canada sedimentary basin[J]. JournalofGeophysical Research, 1992, 97(B5): 7203-7217.
    [72] Belitz K., Bredehoeft J. D., Hydrodynamics of Denver Basin: Explanation of subnormal fluid pressures[J]. AAPG Bull., 1988, 72(3): 416-424.
    [73] Senger R. K., Fogg G. E., Regional underpressuring indeep brineaquifers, Palo Durobasin, Texas(1): Effects of hydrostratigraphy and topography[J]. Water Resour. Res., 1987, 23(10): 1481-1493.
    [74] Russell W. L., Pressure-depth relation in Appalachianregion[J]. AAPGBull., 1972, 56(3): 528-536.
    [75] Silver C., Entrapment of petroleum in isolated porousbodies[J]. AAPGBull., 1973, 57(5): 726-740.
    [76] Hubbert M. K., Entrapment of petroleum under hydrodynamic conditions[J]. AAPG Bull, 1953, 37: 1954-2026.
    [77] Dahlberg E. C., Applied hydrodynemics in Petroleum exploration[M]. Springer-Verlag, Newyork Heideberg Berlin, 1982.
    [78] 许靖华.残余盆地及其辩识准则和实例[J].石油学报,1993,14(1):1-12.
    [79] 李德生,罗鸣.中国东、南部中、新生代残留型小含油气盆地的油气聚集特点[A].中国石油地质论文集[C].石油勘探开发科学研究院,北京;地质出版社,1996.99-103
    [80] 张家哗.残留盆地的判别标志及石油地质意义[J].地球科学—中国地质大学学报,1993,18(6):735-740.
    [81] 王英民,钱亦中.残余盆地的特征及油气资源评价方法的发展方向[J].海相油气地质,1996,1(1):48-51
    [82] 王英民,锚亦中,邓林等.残余盆地地成藏动力学过程研究方法[J].成都理工学院学报,1998,25(3):385-391.
    [83] 王英民,邓林,贺小苏等.海残余盆地成藏动力学过程模拟理论与方法—以广西十万大山盆地为例[M].北京:地质出版社,1998.
    [84] 费宝生.试论残留型盆地研究思路和油气勘探方法[J].海相油气地质,1998,3(1):1-10.
    [85] 刘池阳,孙海山.改造型盆地类型划分[J].新疆石油地质,1999,20(2):79-82
    [86] 刘池阳,杨兴科.改造盆地研究和油气评价的思路[J].石油与天然气地质,2000,21(1)11-14.
    [87] 赵宗举,王报梅,徐云俊等.改造型盆地评价及其油气系统研究方法—以中国南方中、古生界海相地层为例[J].海相油气地质,2000,5[3-4],67-79.
    [88] 刘光鼎.试论残留盆地[J].勘探家,1997,2(3):1-4,45.
    [89] 褚庆忠.残余盆地构造发育的研究意义、现状及思路[J].西安石油学院学报(自然科学版)2002,17(2):1-6
    [90] 李德生.迈向新世纪的中国石油地质学[J].石油学报,2000.21(2):1-8.
    [91] 胡朝元等.成油系统概念在中国的提出及应用[J].石油学报,1996.17(1):1-10
    [92] 赵文智、何登发、李伟等.含油气系统的内涵与描述方法[A]中国含油气系统的应用与进展[C].第一版,北京: 石油工业出版,1997.P9-24
    [93] 李贤庆、胡继平、许院宏.含油气系统基本理论与实践[J].《断块油气田》,2000,7(1):11-22
    [94] 田世澄等.论成藏动力学系统[J].勘探家,1996.1(2):20-24.
    [95] 田世澄、陈建渝、张树林等,论成藏动力学系统[J].复式油气田,1996,1(1):31-34。
    [96] 田世澄、张树林等.论成藏动力学系统的划分和类型[A].《中国含油气系统的应用与进展》第1版,北京:石油工业出版社,1997,33-41
    [97] 康永尚等.油气成藏流体动力系统分析原理及应用[J].《沉积学报》,1998,16(3):80-84
    [98] 康永尚等.油气成藏流体动力学[M].北京:地质出版社,1999.
    [99] 费琪.成油体系与成藏动力学论文集[C].北京:地震出版社,1999.
    [100] 张树林、田世澄、陈建渝,断裂构造与成藏动力系统[J].《石油与天然气地质》,1997,18(4):261-266
    [101] 张树林、叶加仁、杨香华等.著.断陷盆地的断裂构造与成藏动力系统[M].第一版,北京:地震出版社,1997.1-83
    [102] 张树林、田世澄、陈建渝等.陆相断陷盆地的成藏动力系统[A].《成油体系与成藏动力学论文集》北京:地震出版,1999
    [103] 吴冲龙、王夔培、何光玉.论油气系统与油气系统动力学[J].《地球科学—中国地质大学学报》,2000,12(3):605-609
    [104] 郝芳,邹华耀,姜建群,油气成藏动力学及其研究进展[J].《地学前缘》,2000,7(3):11-21.
    [105] 邹华耀,向龙斌,梁宏斌.冀中坳陷廊固凹陷潜山成藏动力学特征[J]《地球科学》,2001,32(1):30-35.
    [106] 张厚福.石油地质学新进展[M].北京:石油工业出版社,1998.
    [107] 张厚福,方朝亮.盆地油气成藏动力学初探—21世纪油气地质勘探新理论探索[J].《石油学报》,2002.23(4):7-12
    [108] 常象春,张金亮.油气成藏动力学:涵义、方法与展望[J].《海洋地质动态》,2003,19(2):18-25
    [109] 褚庆忠、张树林.含油气盆地成藏动力学研究综述[J].《世界地质》2002,21(1):24-29
    [110] 王函云,杨天宇.原油热解成气模拟实验[J].天然气工业,1982,2(2):18-22
    [111] 杨天字,王函云等.岩石中的有机质高温高压模拟实验[J].石油与天然气地质,1987,8(4):380-390
    [112] 高岗,刚文哲.成熟腐植煤加水热解液态烃演化及运移效应[J].石油勘探与开发,1995,22(4)-28-32
    [113] 高岗,王兆峰.加热时间对生烃模拟过程的影响[J].现代地质,1999,13(4)450-454
    [114] 王兆云,程克明,张柏生.加水热模拟实验气态产物特征及演化规律研究[J].石油勘探与开发,1995,22(3)-36-41
    [115] 王兆云,程克明,张柏生.灰岩的生、排烃模拟实验研究[J].沉积学报,1996,14(1):127-134
    [116] 曾溅辉、金之钧等著.油气二次运移和聚集物理模拟[M].石油工业出版社,北京,2000
    [117] 解习农,李思田.断裂带流体作用及动力学模型[J].地学前缘,1996,3(3):133-139
    [118] 付晓泰,卢双舫,王振平.天然气组分的溶解特征及其意义[J].地球化学,1997,26(3):60-66
    [119] 郝石生,黄志龙,高耀斌.轻烃扩散系数的研究及天然气运聚动平衡原理[J].石油学报,1991,12(3):17-22
    [120] 庞雄奇,陈章明,方祖康.海拉尔盆地源岩排油气量计算及其定量评价[J].石油学报,1992,13(4):10-19
    [121] 陈义才,沈忠民,黄泽光.鄂尔多斯盆地奥陶系马家沟组碳酸盐烃源岩排烃模拟计算[J].石油与天然气地质,2002,23 (3) 203-206
    [122] 石广仁,郭秋麟等.盆地模拟方法及综合勘探系统,《含油气盆地地质学研究进展》,西安出版社,1993
    [123] 石广仁,郭秋麟,米石云等.盆地模拟系统BASIMS[J].石油学报,1996,17(1):12-19
    [124] 石广仁,李阿梅,张庆春等.盆地模拟新进展(二)—油气运聚平面分层模拟方法[M].北京.石油工业出版社,1997
    [125] 郭秋麟,米石云,石广仁等.盆地模拟原理方法[M].北京.石油工业出版社,1998
    [126] 李思田.沉积盆地的动力学分析——盆地研究领域的主要趋向.地学前线,1995,2(3-4):1-8
    [127] 沈忠民,周光甲,洪志华.低成熟石油烃源岩的动力学研究[M].沉积学报,1996,14(3):22-29
    [128] 卢双舫,付晓泰,李启明.塔里木盆地熟化有机质成烃动力学模型原始参数的恢复及意义[J].地质论评,2000,46(5):556-560
    [129] 李明诚.油气运移研究的现状及之其进展(对油气运移研究的一些认识)[J].世界石油工业,2000,7(1):23-27
    [130] 刘德汉,史继阳.高演化碳酸盐岩非常规评价方法探讨.石油勘探与开发,1994,2l(3):313-115
    [131] 张博全,关振良,潘琳.鄂尔多斯盆地碳酸盐岩的压实作用[J].地球科学、1995,20(3):299-305
    [132] 王新洲,周迪贤.“压实一排液”定量排油机理研究[J].陆相石油地质,1992.15(3):33-39
    [133] 李莜瑾,《济阳勒陷浊积岩含油气系统与成藏动力学一兼论复式油气区多含油气系统剖析》,北京:地震出版社.1999.101-110.
    [134] 王铁冠,张枝焕.油藏地球化学的理论与实践[J].科学通报,1997(14):73-78
    [135] 潘长春,杨坚强.油气藏微观非均一性及其应用[J].沉积学报,1998,16(4):98-104.
    [136] 宋长玉,陈致林,王忠.储层有机包裹体分析枝术及其在石油勘探中的应用[A].梁狄刚,黄第藩,马新华,李景明主编,有机地球化学研究新进展[C].北京:石油工业出版社,2002,412-414.
    [137] 潘海斌.百色盆地勘探历程及主要成果[J].广西石油地质与勘探,1996,(增刊):27-31
    [138] 陈元壮.广西百色盆地第三系沉积类型及其油气分布特征[J].演黔桂油气,1997,10(3):28-33
    [139] 阙慧娟.百色盆地下第三系暗色泥岩有机质类型研究[J].广西石油地质与勘探,1987,(2):17-29
    [140] 魏宜义,林金河.百色盆地田东凹陷下第三系生油岩的有机质类型及其热演化特征[J].石油勘探与开发,1986,13(5):20-26
    [141] 邬立言,顾信章,盛志伟,范成龙等.生油岩热解快速定量评价[M].科学出版社,1986,北京
    [142] 郝石生,高岗,王飞宇,刚文哲著.高过成熟海相烃源岩[M].1996.10,石油工业出版社,北京
    [143] 王捷,关德范等著.油气生成运移聚集模型研究[M].《油气藏研究系列丛书》卷2,1999.8,石油工业出版社,北京
    [144] 张水昌,张保民.中一上奥陶统——塔里木盆地的主要油源层[J].海相油气地质,2000,5(2):16-20
    [145] 张水昌,粱狄刚,张大江.关于古生界烃源岩有机质丰度的评价标准[J].石油勘探与开发,2002,29(2):1-5
    [146] 黄绍甫.广西百色盆地原油的地球化学特征及对比[J].广西石油地质与勘探,1987,(2):1-16
    [147] 黄绍甫.百色盆地稠油的地球化学特征及成因探讨[J].滇黔桂油气,1999,12(3):10-14
    [148] 曾凡刚,王铁冠.广西三种褐煤的生物标志物组合特征[J].石油与天然气地质,1994,15(2):141-150
    [149] 曾凡刚,妥进才.百色盆地低熟油的地球化学特生及成因机制[J].沉积学报,1998,16(1):92-97
    [150] 黄第藩,李晋超,周翥虹.陆相有机演化和成烃机理.北京:石油工业出版社,1984:165-184
    [151] 黄第藩,张大江,王培荣等著.中国未成熟石油成因机制和成藏条件[M].北京:石油工业出社.2003,118-130.
    [152] 程克明.烃源岩产烃潜力的热压模拟实验及其在油气勘探重的应用[J].石油勘探与开发,1991,18(5):156-165
    [153] 真柄钦次著,陈荷立等译.压实与流体运移[M].北京:石油工业出版社,1987
    [154] 李明诚[著].石油与天然气运移(第二版)[M].北京:石油工业出版社,1994,90-100
    [155] 汪缉安、熊亮萍,杨淑贞编著.地热与石油[M].科学出版社,1985,北京
    [156] 韦永贤.百色盆地那读组地层压实特征及油气运聚规律[J].石油勘探与开发,2002,19(4):22-28
    [157] 李明诚.对油气运聚研究中一些概念的再思考[J].石油勘探与开发,2002,29(2):13-17
    [158] 邹华耀,郝芳,蔡勋育.沉积盆地异常低压与低压油气藏成藏机理综述[J].地质科技情报,2003,22(2):45-51
    [159] 高智.百色断陷式盆地层序地层充填格架及油气控制因素[J].滇黔桂油气,1995,8(3):18-29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700