多工况集装箱船配载与堆场翻箱优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
集装箱运输因其快速、安全、质优、价廉的特点,在国际范围内得到了迅猛发展,已成为国际贸易的最佳运输方式。集装箱船配载是集装箱运输过程的一个核心环节,其目的是解决船舶在不同港口装卸集装箱时,在遵循配载基本原则、保证船舶稳性和强度并兼顾后续港口快速装卸的基础上,确定集装箱在船上的具体位置,减少中途港倒箱作业,提高船舶运输效率。集装箱船配载对确保船舶安全、货物安全以及保证船期有着重要影响。配载方案的优劣直接影响着客户、船方和集装箱码头的效益,也间接影响着与货物相关产业的供应链。因此,集装箱船配载问题一直是集装箱码头营运领域的重点和难点课题,对其研究也引起了国内外专家、学者的兴趣,并提出了许多解决方法。但由于集装箱配载问题是带有复杂约束的多目标组合优化问题,属于NP-Hard问题。随着集装箱船舶的大型化发展、新型港口机械设备及装卸工艺的应用,集装箱船配载问题得到了延伸,对这种情况下的快速、高效进行集装箱装卸作业提出了更高要求。然而,如何解决在多种作业工况条件下的集装箱船配载问题,尚未引起足够的重视,对于综合考虑与配载密切相关的堆场翻箱问题的研究还处于起步阶段。
     针对上述问题,本文首先对传统集装箱船配载问题的约束进行了分析和处理,提出了求解思路和并建立相应的数学模型。在此基础上,分析了双40ft(foot,英尺)岸桥作业模式,给出了多工况作业的含义,全面考虑集装箱船、集装箱和码头三方面的约束,建立了多工况的集装箱船配载问题的数学模型,并设计了启发式算法进行求解。其次,本文研究了在给定堆场集装箱堆存状态和集装箱装船配载方案的情况下,如何确定合理的集装箱装船顺序;针对集装箱堆场翻箱问题,建立了以倒箱量最小并考虑场桥代价为目标的数学模型。最后,开发的多工况集装箱船配载仿真原型系统对上述研究成果进行了验证。论文的主要工作概括如下:
     (1)首先从集装箱码头工艺、集装箱船配载问题研究方法、建模与仿真技术在集装箱码头问题的研究应用等角度,详细综述了近年来集装箱船舶配载问题的研究现状和存在问题,引出了本文的研究内容和研究意义;
     (2)分析了集装箱码头的装卸工艺组成和典型装卸工艺,在此基础上研究了一种由双40ft岸桥、低架桥分配系统和双40ft场桥构成的新型自动化集装箱码头装卸工艺,给出了多工况作业的含义和表达方法,分析了配载问题的约束并提出了处理方法,为研究多工况集装箱船配载问题奠定基础;
     (3)在传统配载问题的基础上,引入集装箱码头岸桥作业工况和岸桥并行作业的因素,建立了多工况集装箱船配载优化的数学模型。将多工况集装箱船配载问题划分为预配载和倍位(Bay)排箱两个子问题,设计了启发式算法用于求解倒箱量最少、岸桥作业成本最小、满足集装箱船的稳性、强度和浮态的配载方案。通过实例进行了比较和分析,验证了该方法的有效性;
     (4)针对集装箱堆场快速、准确发箱的要求,在给定堆场集装箱堆存状态和集装箱装船配载的情况下,建立了集装箱装船顺序优化模型。以最大程度地减少倒箱操作实现快速、高效装船为目标,设计了启发式算法和基于规则的改进策略,通过对比分析表明改进策略能有效解决堆场装船顺序问题,提高码头堆场利用率和码头通过能力,降低码头装卸设备的运营成本;
     (5)为尽可能减少集装箱堆场的翻箱操作,深入分析了翻箱产生的原因。针对倒箱数量不足以全面反应场桥的装卸效率,提出了兼顾场桥的代价的思路,建立倒箱数最少且场桥成本最小的多目标堆场翻箱问题数学模型,并设计了基于定向搜索的启发式算法进行求解,实例对比验证了算法的准确性和有效性;
     (6)最后,基于自主开发的虚拟现实平台VRFlier,结合本文研究内容和关键技术开发了多工况集装箱船配载仿真原型系统CSPSS。实现了集装箱码头装卸工艺的仿真、多工况集装箱船配载方案的优化和仿真,为工艺方案和配载方案的评估提供了可视化环境,从而对本文的研究成果进行了验证。
Benefit from its fast, safe, high quality and low cost, Container transport has developed rapidly all around the world and become the best transporting way for international trade. Containership stowage planning problem (CSP) is an important part among the container transport processes. The purpose is to determine containers' specific location in the ship when ships are loading and unloading containers in different ports to reduce the half-way re-handle container operations and improve shipping efficiency, when following the basic principles of stowage, ensuring stability and strength of the ship and taking into account that ships in the following port can also load or unload containers quickly. For safety of the vessel, cargo security and to ensure the schedules, CSP has an important impact on it. Stowage plan will not only directly affect the customers, ship and the efficiency of the container terminal, but also affect the supply chain of the industries related with goods indirectly. Therefore, CSP has always been a key and difficult issue in the field of port operations. A lot of researchers and scholars are interested in this problem, and put forward many solutions. However, due to the container stowage problem is a multi-objective optimization problem with complex constrains, and it is NP-Hard problem. So far, the research of the complete model of CSP with all kinds of constrains is still under way. The development of large-scale container ships, advanced equipment, and new loading and unloading technology, greatly expand the area of CSP, and bring new challenges at the same time. How to solve the CSP under a variety of operating conditions has not yet attracted enough attention. In addition, the research on optimization methods of container relocation in container yard related with CSP is still at the early stage.
     In response to these problems, the paper analysis double-40ft QC (quay crane) shore mode of operation, proposed the meaning and contents of multiple working conditions. Based on this, multi-conditions CSP is proposed and analyzed. Taking constraints from container ships, containers and container terminal side, the mathematical model of the CSP is built, and a heuristic algorithm is designed to solve the problem. This paper attempts to study how to determine a reasonable sequence of a container loading under the given storage state in the container storage yard and the containership stowage planning of the situation. Containers on the yard handling problem are proposed, with minimizing container volume and the cost of the crane as the objective. For the fast, efficient, accurate loading of the container vessel, theoretical methods and a prototype system are provided. The main research works of this thesis are summarized as follows:
     1. First of all, the present state and existing problems on containership stowage researches are introduced in detail, from processes of the container terminal, to research methods of the CSP. Then the starting point of this study and its significance are put forward.
     2. Container terminal handling technology and the typical handling technology are compared. A new automatic type of loading and unloading technology for the container terminal constituted by double-40ft QC from the shore, a bridge allocation system and the yard crane are studied. The meaning and contents of multiple working conditions are proposed to lay the foundation for the study of the multi-working CSP.
     3. Focusing on the complexity of the CSP, the relevant constraints and processing methods are evaluated comprehensively, the first time the container terminal QC operating conditions and container ships operating in parallel are considered in the CSP, a CSP with multiple loading conditions is proposed and the corresponding mathematical model is built. Multiple loading conditions CSP are divided into two sub-problems, namely pre-stowage and bay arrangement. The heuristic algorithm is designed to get the stowage scheme which can minimize the cost of QC operation to meet the container ships of the stability and strength and attitude of the loading program. A comparative analysis through examples verifies the effectiveness of the method.
     4. Based on the requirement of the container yard that sending container rapidly and accurately, the given state of the container storage yard and container stowage situation on board, container loading sequence of the optimization problem was studied. In order to minimize re-handle container operation for fast and efficient shipment target, the heuristic algorithm and rule-based improvement strategies are designed. Comparison and analysis shows that the yard loading sequence with improved strategies can effectively solve the problem and improve the utilization of the terminal yard and the capacity of terminal, reduce production cost of terminal.
     5. To minimize the container relocation operations in the container yard, the causes of the container turning operations are analyzed deeply. Limited of container turning operations cannot reflect handling efficiency fully, a multi-objective mathematical model was established to minimize the number of container turning operations and the cost of the crane. Heuristic algorithm with filtered directional search is designed. Instance comparison verifies the accuracy and effectiveness of the algorithm.
     6. Finally, based on the virtual reality platform VRFlier, which is developed independently, and the above researches results, a container ship under multi-working conditions loading simulation prototype system called CSPSS (containership stowage planning simulation system) is developed. It can achieve the simulation of container terminal handling process, optimization and simulation of the multi-condition of the containership stowage plans, optimization and simulation of container turning operations in container yards. It provides a visual environment for evaluation of the process and stowage. CSPSS verifies the correctness and validity of research further. It provides feasible attempts and schemes for the multi-container ship stowage commercial application software systems.
引文
[1]Steenken, D., Voss, S., Stahlbock, R. Container terminal operation and operations research- a classification and literature review[J]. Or Spectrum, 2004,26(1):3-49.
    [2]Stahlbock, R., Voss, S. Operations research at container terminals:a literature update[J]. Or Spectrum,2008,30(1):1-52.
    [3]包起帆,金茂海.双40英尺集装箱桥吊应用实践与探索[J].集装箱化,2008,19(2):1-4.
    [4]Kemp, S. E., Roach, P. A., Ware, J. A. et al. Artificial Intelligence for automatic container stowage planning optimisation[J]. Ship Technology Research,2003,50: 151-156.
    [5]Tahar, R. M., Hussain, K. Simulation and analysis for the Kelang container terminal operations[J]. Logistics Information Management,2000,13(1):14-20.
    [6]沙梅.集装箱码头工艺方案设计建模与仿真[J].系统仿真学报,2003,15(9):1240-1244.
    [7]沙梅.集装箱码头物流系统建模与仿真综述[J].上海海事大学学报,2005,25:6-10.
    [8]沙梅.集装箱码头物流运营系统通用性建模与仿真[M].上海交通大学出版社,2009.
    [9]真虹.集装箱码头装卸工艺设计仿真通用平台的构建[J].系统仿真学报,2006,18(7):1829-1834.
    [10]韩晓龙,丁以中.集装箱港口装卸作业仿真系统[J].系统仿真学报,2006,18(8):2366-2369.
    [11]苗明,郭晓霞,金淳.港口集装箱装卸工艺系统仿真优化研究[J].大连理工大学学报,2008,48(4):523-527.
    [12]CHEN, L., XI, L., CAI, J. et al. An integrated approach for modeling and solving the scheduling problem of container handling systems[J]. Journal of Zhejiang University Science A(Science in Engineering),2006,(02):234-239.
    [13]陈璐,奚立峰,蔡建国等.集装箱码头装卸作业的调度控制模型及算法设计[J].控制理论与应用,2006,(06):873-878.
    [14]Lu, C., Bostel, N., Dejax, P. et al. A tabu search algorithm for the integrated scheduling problem of container handling systems in a maritime terminal [J]. European Journal of Operational Research,2007:40-58.
    [15]Leilin, Y., Zhiqiang, L., Lifeng, X. A Two-Phase Optimization Research for Container Yard Planning[J].2010 2nd IEEE International Conference on Information Management and Engineering (ICIME 2010),2010:547-551.
    [16]车鉴,孙小明,陆志强.双40英尺箱起重机的操作模式研究[J].机械,2008,35(6):18-20.
    [17]Petering, M. E. H. Development and simulation analysis of real-time, dual-load yard truck control systems for seaport container transshipment terminals[J]. Or Spectrum,2010,32(3):633-661.
    [18]Ku, L. P., Lee, L. H., Chew, E. P. et al. An optimisation framework for yard planning in a container terminal:case with automated rail-mounted gantry cranes[J]. Or Spectrum,2010,32(3):519-541.
    [19]Kewei, Z., Zhiqiang, L., Xiaoming, S. An Effective Heuristic for the Integrated Scheduling Problem of Automated Container Handling System Using Twin 40' Cranes:proceedings of the Computer Modeling and Simulation,2010 ICCMS'10 Second International Conference on,22-24 Jan.2010,2010[C].
    [20]韩笑乐,陆志强,奚立峰.具有服务优先级别的动态离散泊位调度优化[J].上海交通大学学报,2009,(06):902-905.
    [21]Ambrosino, D., Sciomachen, A., Tanfani, E. Stowing a containership:the master bay plan problem[J]. Transportation Research Part a-Policy and Practice,2004,38(2): 81-99.
    [22]Ambrosino, D., Sciomachen, A. Container stowing plans in a maritime terminal[J]. Maritime Engineering and Ports Ii,2000,9:125-135.
    [23]Ambrosino, D., Sciomachen, A. A constraint satisfaction approach for Master Bay Plans[J]. Maritime Engineering and Ports,1998,5:175-184.
    [24]Ambrosino, D. S., A. Impact of Yard Organisation on the Master Bay Planning Problem[J]. Maritime Economics& Logistics,2003,5:285-300.
    [25]Li, F., Tian, C., Cao, R. et al. An integer linear programming for container stowage problem [M]. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Krakow.2008:853-862.
    [26]Anna Sciomachen, E. T. The master bay plan problem:a solution method based on its connection to the three-dimensional bin packing problem[J]. IMA Journal of Management Mathematics,2003,14(3):251-269.
    [27]Sciomachen, A., Tanfani, E. A 3D-BPP approach for optimising stowage plans and terminal productivity[J]. European Journal of Operational Research,2007,183(3): 1433-1446.
    [28]Ajspur, M. L., Jensen, R. M., Guilbert, N., Minimizing Lid Overstows in Master Stowage Plans for Container Vessels is NP-Complete[R]. Denmark,2008.
    [29]Shields, J. J. Containership Stowage:A computer-aided preplanning system[J]. Marine Technology,1984,21(4):370-383.
    [30]Sculli, D., C.F., H. Three dimensional stacking of containers[J]. Omega,1988,16: 585-594.
    [31]Wilson, I. D., Roach, P. A., Ware, J. A. Container stowage pre-planning:using search to generate solutions, a case study [J]. Knowledge-Based Systems, 2001,14(3-4):137-145.
    [32]Steenken, D., Winter, T., Zimmermann, U. T. Stowage and Transport Optimization in Ship Planning[J]. Or Spectrum,2001:161-173.
    [33]Imai, A., Nishimura, E., Papadimitriou, S. et al. The Containership Loading Problem[J]. International Journal of Maritime Economics,2002,4(2):126-148.
    [34]Imai, A., Miki, T. A heuristic algorithm with expected utility for an optimal sequence of loading containers into a containerized ship[J]. Journal of Japan Institute of Navigation,1989,80:117-124.
    [35]Haghani, A. a. K., E.I., A model for designing container loading plans for containerships:University of Maryland,2001.
    [36]Dubrovsky, O., Levitin, G., Penn, M. A genetic algorithm with a compact solution encoding for the container ship stowage problem[J]. Journal of Heuristics, 2002,8(6):585-599.
    [37]Kang, J. G., Kim, Y. D. Stowage planning in maritime container transportation[J]. Journal of the Operational Research Society,2002,53(4):415-426.
    [38]Ambrosino, D., Sciomachen, A., Tanfani, E. A decomposition heuristics for the container ship stowage problem[J]. Journal of Heuristics,2006,12(3):211-233.
    [39]Giemsch, P., Jellinghaus,A. Organization models for the containership stowage problem:proceedings of the The annual international conference of the German Operations Research Society Heidelberg, [C].2003.
    [40]Imai, A., Sasaki, K., Nishimura, E. et al. Multi-objective simultaneous stowage and load planning for a container ship with container rehandle in yard stacks[J]. European Journal of Operational Research,2006,171(2):373-389.
    [41]张维英,林焰,纪卓尚.集装箱船全航线Bay位排箱优化模型[J].上海交通大学学报,2007,41(2):199-204.
    [42]张维英.集装箱船全航线配载智能优化研究[D].大连:大连理工大学,2006.
    [43]张维英,林焰,纪卓尚等.出口集装箱堆场取箱作业优化模型研究[J].武汉理工大学学报(交通科学与工程版),2006,30(2):314-317.
    [44]车鉴.集装箱船舶配载计划优化研究[D]:上海交通大学,2008.
    [45]段成华,郭旭.基于整数规划的单贝多港(SBMP)配载模型研究[J].计算机辅助工程,2004,13(03):9-13.
    [46]卢萍.基于稳定约束的集装箱配载计划启发式方法研究[D].天津:天津大学,2008.
    [47]Aslidis, T. Combinatorial Algorithms For Stacking Problems[D]:MIT,1989.
    [48]Aslidis, T. Minimizing of overstowage in container ship operations[J]. Operational Research,1990,90:457-471.
    [49]R. C. Botter, M. A. B. Stowage Container Planning:A Model for Getting an Optimal Solution[J]. IFIP Transactions B (Applications in Technology),1992,B-5: 217-229.
    [50]Avriel, M., Penn, M. Exact and approximate solutions of the container ship stowage problem[J]. Computers and Industrial Engineering,1993,25(1-4):271-274.
    [51]Todd, D., Sen, P. A multiple Criteria Genetic Algorithm for Containership Loading:proceedings of the Proceedings of the seventh international conference on genetic algorithm, San Mateo, California, [C].1997.
    [52]Avriel, M., Penn, M., Shpirer, N. et al. Stowage planning for container ships to reduce the number of shifts[J]. Annals of Operations Research,1998,76(0):55-71.
    [53]Avriel, M., Penn, M., Shpirer, N. Container ship stowage problem:complexity and connection to the coloring of circle graphs[J]. Discrete Applied Mathematics, 2000,103(1-3):271-279.
    [54]Wilson, I. D., Roach, P. A. Principles of combinatorial optimization applied to container-ship stowage planning[J]. Journal of Heuristics,1999,5(4):403-418.
    [55]Wilson, I. D., Roach, P. A. Container stowage planning:a methodology for generating computerised solutions[J]. Journal of the Operational Research Society, 2000,51(11):1248-1255.
    [56]Cao, B., Uebe, G. Solving transportation problems with nonlinear side constraints with tabu search[J]. Computers& Operations Research,1995,22: 593-603.
    [57]Kim, K. H. Evaluation of the number of rehandles in container yards[J]. Computers & Industrial Engineering,1997,32(4):701-711.
    [58]Kim, K. K., Bae, J. W. Re-marshaling export containers in port container terminals[J]. Computers & Industrial Engineering,1998,35(3-4):655-658.
    [59]Kim, K. H., Kim, H. B. The optimal determination of the space requirement and the number of transfer cranes for import containers [J]. Computers & Industrial Engineering,1998,35(3-4):427-430.
    [60]Kim, K. H., Park, Y. M., Ryu, K.-R. Deriving decision rules to locate export containers in container yards[J]. European Journal of Operational Research, 2000,124(1):89-101.
    [61]Preston, P., Kozan, E. An approach to determine storage locations of containers at seaport terminals[J]. Computers & Operations Research,2001,28(10):983-995.
    [62]Kim, K. H., Park, K. T. A note on a dynamic space-allocation method for outbound containers[J]. European Journal of Operational Research,2003,148(1): 92-101.
    [63]Nishimura, E., Imai, A., Janssens, G. K. et al. Container storage and transshipment marine terminals[J]. Transportation Research Part E:Logistics and Transportation Review,2009,45(5):771-786.
    [64]Lee, Y, Lee, Y.-J. A heuristic for retrieving containers from a yard[J]. Computers & Operations Research,2010,37:1139-1147.
    [65]Li, W., Wu, Y, Petering, M. E. H. et al. Discrete time model and algorithms for container yard crane scheduling[J]. European Journal of Operational Research, 2009,In Press, Corrected Proof.
    [66]He, J., Chang, D., Mi, W. et al. A hybrid parallel genetic algorithm for yard crane scheduling[J]. Transportation Research Part E,2010,45:136-155.
    [67]Zhang, C. Q., Liu, J. Y, Wan, Y W. et al. Storage space allocation in container terminals[J]. Transportation Research Part B-Methodological,2003,37(10):883-903.
    [68]张海霖,江志斌,许泓.集装箱港口集疏运调度系统作业模式的仿真分析[J].上海交通大学学报,2006,40(6):1024-1030.
    [69]张涛,苗明,金淳.基于仿真优化的集装箱堆场资源配置研究[J].系统仿真学报,2007,19(24):5631-5638.
    [70]郭媚.集装箱码头堆场优化管理研究[D].大连:大连海事大学,2006.
    [71]肖田元.仿真是基于模型的实验吗?——从定义的演变看仿真的内涵发展[J].系统仿真学报,2009,21(22):7368-7371.
    [72]Oren, T. I., Zeigler, B. P., Elzas, M. S. Model-Based Activities:A Paradigm Shift: proceedings of the Simulation and Model- Based Methodologies:An Integrative View, North-Holland, Amsterdam, [C].1984.
    [73]Banks, J., Carson, J., Nelson, B. L. et al. Discrete-Event System Simulation (4th Edition)[M]. Prentice Hall/Pearson 2004.
    [74]陆后军,苌道方,宓为建.集装箱码头三维仿真组件平台[J].计算机辅助工程,2010,19(1):84-87.
    [75]严隽琪,范秀敏,马登哲.虚拟制造的理论、技术基础与实践[M].上海:上海交通大学出版社,2003.
    [76]Bielli, M., Boulmakoul, A., Rida, M. Object oriented model for container terminal distributed simulation[J]. European Journal of Operational Research, 2006,175(3):1731-1751.
    [77]Dotoli, M., Fanti, M. P., Mangini, A. M. The impact of ICT on intermodal transportation systems:A modelling approach by Petri nets[J]. Control Engineering Practice,2010,18(8):893-903.
    [78]Evers, J. J. M., Koppers, S. A. J. Automated guided vehicle traffic control at a container terminal [J]. Transportation Research Part A:Policy and Practice, 1996,31(1):21-34.
    [79]Lee, C., Huang, H. C., Liu, B. et al. Development of timed Colour Petri net simulation models for air cargo terminal operations[J]. Computers & Industrial Engineering,2006,51(1):102-110.
    [80]Liu, C. I., Ioannou, P. A. Petri net modeling and analysis of automated container terminal using automated guided vehicle systems[J]. Marine Transportation and Port Operations,2002,(1782):73-83.
    [81]邱跃龙,陶德馨.基于时间Petri网的集装箱码头AGV调度系统建模研究[J].武汉理工大学学报(交通科学与工程版),2006,30(06):958-960.
    [82]于蒙,王少梅.基于多Agent的集装箱码头生产调度系统建模研究[J].武汉理工大学学报(交通科学与工程版),2007,(03).
    [83]Henesey, L., Davidsson, P., Persson, J. Evaluating container terminal transhipment operational policies:an agent-based simulation approach[J]. WSEAS Transactions on Computers,2006,5(9):2090-2097.
    [84]Xu, J., Chen, Q.-j. Multi-Agent System for Scheduling of Automated Container Terminal[J]. Journal of System Simulation,2009,21(15):4888-4891.
    [85]Lokuge, P., Alahakoon, D. Improving the adaptability in automated vessel scheduling in container ports using intelligent software agents[J]. European Journal of Operational Research,2007,177(3):1985-2015.
    [86]张戎,闫攀宇.基于多Agent的集装箱海铁联运信息系统模型[J].同济大学学报(自然科学版),2007,(01).
    [87]HOWARD, D. L., BRAGEN, M. J., BURKE, J. F. et al. PORTSIM 5:Modeling from a seaport level[J]. Mathematical and Computer Modelling,2004,39(6-8): 715-731.
    [88]Byrnea, J., Heaveya, C., Byrne, P. J. A review of Web-based simulation and supporting tools[J]. Simulation Modelling Practice and Theory,2010,18(3):253-276.
    [89]Woo, Y. J., Kim, K. H. Estimating the space requirement for outbound container inventories in port container terminals[J]. International Journal of Production Economics,2011,In Press.
    [90]蔡芸,王少梅,孙国正.基于eM-Plant的集装箱码头交通仿真[J].武汉理工大学学报(交通科学与工程版),2005,5:817-820.
    [91]徐伟,蔡振雄,王少梅等.基于eM-Plant的集装箱码头布局规划参数化仿真研究[J].中国水运(理论版),2007,5(9):144-145.
    [92]Shabayek, A. A., Yeung, W. W. A simulation model for the Kwai Chung container terminals in Hong Kong[J]. European Journal of Operational Research, 2002,140(1):1-11.
    [93]Yun, W. Y, Choi, Y. S. A simulation model for container-terminal operation analysis using an object-oriented approach[J]. International Journal of Production Economics,1999,59:221-230.
    [94]Zeng, Q., Yang, Z. Integrating simulation and optimization to schedule loading operations in container terminals[J]. Computers & Operations Research,2009,36(6): 1935-1944.
    [95]汪锋,陶德馨.Witness仿真软件在集装箱码头模拟系统中的应用[J].交通与计算机,2003,21(2):64-66.
    [96]Caris, A., Macharis, C., Janssens, G. K. Network analysis of container barge transport in the port of Antwerp by means of simulation[J]. Journal of Transport Geography,2011,19(1):125-133.
    [97]张新艳.港口集装箱物流系统规划与仿真建模方法的研究与实现[D].武汉:武汉理工大学,2002.
    [98]蔡芸,霍永忠.集装箱港口物流系统仿真和优化研究综述[J].系统仿真学报,2009,21(8):2119-2124.
    [99]CAO, J. X., Lee, D. H., Shi, Q. X. Research on the Efficiency of Advanced Quay Crane Based on Stochastic Petri Net:proceedings of the The 9th Intelligent Transport Systems Asia-Pacific Forum & Exhibition (ITS AP 2008), Singapore, [C]. 2008.
    [100]张煜,魏世桥,王少梅.基于分层TCPN的集装箱码头作业建模仿真研究[J].武汉理工大学学报(交通科学与工程版),2006,30(4):735-738.
    [101]张海霖,江志斌.基于R-OPN的集装箱码头物流系统建模与分析[J].上海交通大学学报,2007,41(2):231-237.
    [102]Lokuge, P., Alahakoon, D. An extended agent model embedded with "intelligent-deliberation" for improved performances in a container terminal application[J]. Web Intelligence and Agent Systems,2006,4(4):385-405.
    [103]Legato, P., Mazza, R. M. Berth planning and resources optimization at a container terminal via discrete event simulation[J]. European Journal of Operational Research,2001,133(3):537-547.
    [104]Nordgren, W. B. Flexsim simulation environment[J]. Proceedings of the 2002 Winter Simulation Conference, IEEE,2002,1:250-252.
    [105]张婕姝.集装箱码头生产调度优化研究[D].上海:上海海事大学,2006.
    [106]Lee, T.-W., Park, N.-K., Lee, D.-W. A simulation study for the logistics planning of a container terminal in view of SCM[J]. Maritime Policy & Management, 2003,30(3):243-254.
    [107]Liu, C. I., Jula, H., Ioannou, P. A. A simulation approach for performance evaluation of proposed automated container terminals:proceedings of the Conference on Intelligent Transporation Systems, Proceedings, ITSC 2001,2001[C].
    [108]Lai, K. K., Leung, J. Aanalysis of gate house operations in a container terminal[J]. International Journal of Modelling & Simulation,2000,20(1):89-94.
    [109]赵猛,金一丞,尹勇.基于CAVE的集装箱装卸仿真系统[J].系统仿真学报,2009,(10).
    [110]朱明华,范秀敏,程奂种等.自动化集装箱码头装卸工艺仿真[J].中国机械工程,2009,20(17):2072-2075.
    [111]朱斌武,张兆民.基于装载效率的集装箱码头堆存及配载策略[J].集装箱化,2009,10:25-28.
    [112]梁海澄.集装箱配载初探[J].中国水运(理论版),2006,4(8):131-132.
    [113]Dillingham, J. T., Perakis, A. N. Application of Artificial Intelligence in the Marine Industry:proceedings of the Fleet Management Technology Conference, [C]. 1986.
    [114]徐亚,陈秋双,龙磊等.集装箱倒箱问题的启发式算法研究[J].系统仿真学报,2008,20(14):3666-3669.
    [115]朱明华,程奂种,何其昌等.集装箱装船顺序问题的启发式算法研究[J].中国机械工程,2010,21(9):1066-1070.
    [116]Wilson, I. D. The application of artificial intelligence techniques to the deep-sea container-ship cargo stowage problem[D]. Pontypridd:University of Glamorgan,1997.
    [117]Forster, F., Bortfeldt, A. A tree search procedure for the container relocation problem[J]. Computers & Operations Research,2012,39(2):299-309.
    [118]韩笑乐,梁亮,陆志强等.集装箱码头岸吊作业调度建模及调度策略研究[J].工业工程与管理,2009,(05):20-26.
    [119]郝聚民,纪卓尚,林焰.混合顺序作业堆场BAY优化模型[J].大连理工大学学报,2000,40(1):102-105.
    [120]杨淑芹,张运杰,王志强.集装箱堆场问题的一个数学模型及其算法[J].大连海事大学学报,2002,28(S):115-117.
    [121]Kim, K. H., Hong, G.-P. A heuristic rule for relocating blocks[J]. Computers & Operations Research,2006,33(4):940-954.
    [122]Lee, Y, Hsu, N.-Y. An optimization model for the container pre-marshalling problem[J]. Computers & Operations Research,2007,34(11):3295-3313.
    [123]Lee, Y, Chao, S.-L. A neighborhood search heuristic for pre-marshalling export containers [J]. European Journal of Operational Research,2009,196(2): 468-475.
    [124]Yang, J., Kim, K. A grouped storage method for minimizing relocations in block stacking systems[J]. Journal of Intelligent Manufacturing,2006,17(4): 453-463.
    [125]Caserta, M., Voβ, S., Sniedovich, M. Applying the corridor method to a blocks relocation problem[J]. Or Spectrum,2009:1-15.
    [126]张维英,林焰,纪卓尚等.基于指派问题的Bay位排箱优化模型与算法[J].大连理工大学学报,2011,(01):61-67.
    [127]上海盛东国际集装箱码头有限公司.http://www.shsict.com/index1.html, 2010.
    [128]张新艳.基于进化策略的港口集装箱装船作业优化[J].同济大学学报(自然科学版),2005,33(03):361-365.
    [129]王莉莉,于红.集装箱装船顺序优化模型及遗传算法[J].计算机工程与应用,2008,44(15):234-238.
    [130]Kim, K. H., Kim, K. Y. Routing straddle carriers for the loading operation of containers using a beam search algorithm[J]. Computers & Industrial Engineering, 1999,36(1):109-136.
    [131]Kim, K. H., Kim, K. Y. An optimal routing algorithm for a transfer crane in port container terminals[J]. Transportation Science,1999,33(1):17-33.
    [132]Wan, Y. W., Liu, J. Y, Tsai, P. C. The Assignment of Storage Locations to Containers for a Container Stack[J]. Naval Research Logistics,2009,56(8):699-713.
    [133]Caserta, M., Voβ, S. A Corridor Method-Based Algorithm for the Pre-marshalling Problem:proceedings of the EvoWorkshops 2009, LNCS 5484, 2009[C].
    [134]Jianbo, Y, Shijin, W., Lifeng, X. Evolving artificial neural networks using an improved PSO and DPSO[J]. Neurocomputing,2008,71(4-6):1054-1060.
    [135]Sabuncuoglu, I., Bayiz, M. Job shop scheduling with beam search[J]. European Journal of Operational Research,1999,118:390-412.
    [136]He, Q., Zhang, L., Fan, X. et al. A Multi-functional Visualization System for Motion Captured Human Body Based on Virtual Reality Technology:proceedings of the International Conference on Digital Human Modeling, San Diego, CA, [C]. Springer-Verlag,2009.
    [137]皮兴忠,范秀敏,严隽琪.VR Flier:一个面向虚拟现实通用应用开发的软件平台[J].系统仿真学报,2005,5:1157-1162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700