超临界流体技术制备载药聚合物微粒工艺基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
药物-聚合物微粒可供多途径给药,是极有发展前景的新型给药系统,可以通过控制载药微粒的粒径,达到靶向给药的目的。微粒制备的传统方法和新型方法(超临界流体技术)都可简称为一步法。本文将超临界反溶剂(SAS)过程和超临界渗透(SSI)过程相结合,建立了两步法制备载药微粒的方法,它克服了传统方法制备载药微粒有机溶剂残留和粒径较大,粒径分布较宽等缺点,弥补了超临界快速膨胀(RESS)过程和SAS及其衍生技术在原料选择上的局限性和产量较低的不足,既可用于脂溶性药物复合微粒的制备,也可用于水溶性药物复合微粒的制备。所制备的产品形态取决于聚合物基体的制备过程(SAS过程)与后续的载药过程(SSI过程)无关,两步法将微粒粒径控制与载药控制分开,从而更好的控制载药微粒的形貌和载药量。本论文针对两步法的工艺基础进行了研究:应用SAS过程制备聚乳酸(PLLA)微粒,为两步法提供载药基体;通过研究水溶性药物(5-Fu)载药微粒的SSI过程制备工艺,给出了SSI过程中各因素对产物的影响规律;通过SSI过程相平衡实验和理论分析为SSI过程提供基础工艺数据。本论文的主要研究工作及结论如下:
     应用SAS过程,成功的制备了PLLA基体微粒。应用正交实验和单因素实验分别研究了温度、压力、溶液浓度、溶液流速和夹带剂含量对微粒形态、粒径及粒径分布的影响规律,确定了最佳工艺条件。通过调节过程参数,达到控制微粒粒径的目的,为SSI过程提供了载药基体。
     建立了SSI过程制备载药微粒的实验装置,以5-Fu作为药物模型,以制得的PLLA微粒作为药物载体,进行载药微粒的制备。研究了卸压速率、压力、温度、夹带剂含量对载药微粒的形貌、载药量以及药物释放性能的影响。结果表明:应用SSI过程,成功的制备了溶解性较差的药物5-Fu和PLLA的复合微粒,通过调节过程参数,达到控制微粒载药量的目的。
     通过夹带剂的添加,有效地改善了微粒制备和载药过程的效果。与无夹带剂的SAS过程相比,加入夹带剂后,微粒的粒径明显减小,粒径分布明显变窄;与无夹带剂的SSI过程相比,加入夹带剂后,提高了药物在SCF中的溶解度和在聚合物中的分配系数,有效地提高了微粒的载药量。
     通过对SSI过程相平衡特性研究,分析了“药物-超临界流体”和“药物-超临界流体-聚合物”的相平衡问题。分别对药物在SCF中的溶解度和药物在PLLA中的分配系数进行了测定。采用改进的静态法取样方式对药物在SCF中的溶解度进行测定,分析和总结了压力、温度、夹带剂等因素对溶解度的影响趋势和规律;利用Chrastil模型和Mendez-Santiago and Teja模型对溶解度进行关联。结果表明,改进静态法较适用于对溶解度较低的固体物质在SCF中的溶解度的测定。借助于所建立的关联计算式和测试方法,可对SSI过程的相平衡特性进行定量描述。
     应用SAS过程和SSI过程相结合两步法工艺,可成功制备载药微粒。通过分别控制两个独立过程的过程参数,可达到既能控制微粒形貌又能控制载药量的目的。
The drug-loaded polymer microparticle can be used for multiple adminstration and has a great potential in the pharmaceutical field. The targeted drug-delivery function can be realized by controlling the particle size of microparticles. The conventional preparation methods and new preparation methods (the supercritical fluid techniques) of the drug-loaded microparticles can be called one-step method.A two-step method combining supercritical antisolvent (SAS) process and supercritical solvent impregnation (SSI) process has been proposed. This method can overcome the disadvantages of the conventional methods such as residual organic solvents, large particle size and wide particle size distribution, and it also makes up the deficiencies in the limitation to the raw materials selection and the lower yield of the final product of RESS process, SAS process and its derivative processes.It is suitable for the preparation of lipid-soluble as well as water-soluble drug-loaded microparticles.The morphology of drug-loaded microparticles is determined by SAS process and has nothing to do with SSI process.Owing to the particle size control having no relation to the drug loading control by two-step method, the morphology and drug loading can be controlled better separately.This dissertation focuses on the study of the technological foundation of the two-step method. The PLLA polymer-based microparticle of the two-step method has been prepared by SAS process. Then, the water-soluble drug loaded microparticle has been prepared by SSI process and the effects of the factors have been studied. The experiment and theory of phase equilibrium of SSI process have been studied to obtain the basic process data. The main research work and achievements are as follows:
     PLLA microparticles have been successfully prepared by SAS process.The effects of the molar percentage of cosolvent, temperature, pressure, flow rate, and concentration of the solution on the morphology, particle size and particle size distribution have been studied by the single-factor experiment, and the optimum process conditions are obtained by the orthogonal experiment. The particle size of microparticles can be controlled by the adjustment of process parameters.
     The experiment apparatus of SSI process are established.With the5-Fu as model drug and the PLLA microparticles as matrix,5-Fu-PLLA drug-loaded microparticle has been prepared.The effects of process parameters (depressurizing rate, pressure, temperature, and concentration of the cosolvent) on the morphology, drug loading and release property of microparticles have been studied. The results show that the poorly water-soluble drug of5-Fu loaded PLLA microparticles can be successfully prepared by SSI process.The drug loading can be controlled by the adjustment of process parameters.
     The microparticle preparation process and drug-loaded process can be improved effectively with the cosolvent added.The microparticles prepared by SAS process with cosolvent have smaller particle size and narrower particle size distribution than those prepared without cosolvent. In SSI process, the reason of drug loading increase may be that the addition of cosolvent can increase the solubility of drug in SCF and the partition coefficient of drug in PLLA.
     The characteristics of phase equilibrium of drug/SCF and drug/SCF/polymer by SSI process have been analyzed.The solubility of drug in SCF (measured by static method with modified sampling method) and the partition coefficient of drug in PLLA are measured respectively. The effects of temperature, pressure and concentration of the cosolvent on the characteristics have been analyzed. The experimental data has been correlated by Chrastil model and Mendez-Santiago and Teja model.The results show that the modified static method can successfully measure the solubility of solid with low solubility in SCF.The phase equilibrium characteristics can be quantitatively described by the experimental techniques developed in this study and the correlation models.
     The drug-loaded microparticles can be successfully prepared by the two-step method combining SAS process and SSI process.The two-step method can adjust and control the morphology and drug loading of microparticles by the adjustment of process parameters in two different processes respectively.
引文
[1]塔苏T,德勒尔斯M,帕塔克Y著.王坚成,张强译.纳米粒药物输送系统[M].北京:北京大学医学出版社,2010.
    [2]Ugwoke M I, Aqu R U, Verbeke N, et al. Nasal mucoadhesive drug delivery:Background, applications, trends and future perspectives [J]. Advanced Drug Delivery Reviews,2005,57(11): 1640-1665.
    [3]Kim S, Kim J, Jeon O et al. Engineered polymers for advanced drug delivery [J]. European Journal of Pharmaceutics and Biopharmaceutics,2009,71:420-430.
    [4]Kikuchi A, Okano T. Pulsatile drug release control using hydrogels [J]. Advanced Drug Delivery Reviews,2002,54:53-77.
    [5]Dunca R, The dawning era of polymer therapeutics [J]. Nature Reviews Drug Discovery,2003,2: 347-360.
    [6]陈文平,江贵林,汪超等.天然高分子材料作为药物缓控释载体应用的研究进展[J].海峡药学,2009,21(11):5-9.
    [7]宋文军,霍静,孙涛.可生物降解材料在药物控释系统中的应用[J].医药导报,2004,23(2):116-117.
    [8]Wang Y L, Wang Y P, Yang J et al. The application of a supercritical antisolvent process for sustained drug delivery [J]. Power Technology,2006,164:94-102.
    [9]Fages J, Lochard H, Letourneau J J et al. Particle generation for pharmaceutical application using supercritical fluid technology [J]. Power Technology,2004,141:219-226.
    [10]Freitas S, Merkle H P, Gander B. Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology [J]. Journal of Controlled Release,2005,102:313-332.
    [11]Vehring R. Pharmaceutical Particle Engineering via Spray Drying [J]. Pharmaceutical Research, 2008,25:999-1022.
    [12]Blaker J J, Knowles J C, Day R M. Novel fabrication techniques to produce microspheres by thermally induced phase separation for tissue engineering and drug delivery [J]. Acta Biomaterialia,2008,4:264-272.
    [13]Martin A, Cocero M J. Micronization processes with supercritical fluids:Fundamentals and mechanisms [J]. Advanced drug delivery reviews,2008,60:339-350.
    [14]Beckman E J. Supercritical and near-critical CO2 in green chemical synthesis and processing [J]. Journal of Supercritical Fluids,2004,28:121-191.
    [15]Nunes A V M, Duarte C M M. Dense CO2 as a Solute, Co-Solute or Co-Solvent in Particle Formation Processes:A Review [J]. Materials,2011,4,2017-2041.
    [16]Bolten D, Turk M. Micronisation of carbamazepine through rapid expansion of supercritical solution (RESS) [J]. The Journal of Supercritical Fluids,2012,62:32-40.
    [17]Hezave A Z, Esmaeilzadeh F. Investigation of the rapid expansion of supercritical solution parameters effects on size and morphology of cephalexin particles [J]. Journal of Aerosol Science,2010,41:1090-1112.
    [18]Fateme Z, Mahdi A M, Ali V Y et al. Drug Nano-Particles Formation by Supercritical Rapid Expansion Method; Operational Condition Effects Investigation [J]. Iranian journal of chemistry & chemical engineering 2011,30:7-15.
    [19]蒋思媛,赵亚平,于文利等.超临界快速膨胀法制备植物甾醇超细微粒[J].精细化工,2004,21:129-132.
    [20]贺帅,雷正杰,黄东毅等.应用超临界快速膨胀法制备中药丹参SCF-CO2萃取物超微颗粒[J].中国中药杂志,2008,33:2064-2066.
    [21]Kim J H, Paxton T E, Tomasko D L. Microencapsulation of Naproxen Using Rapid Expansion of Supercritical Solutions [J]. Biotechnology Progess,1996,12:650-661.
    [22]Tom J W, Debenedetti P G. Precipitation of Poly(L-lactic acid) and Composite Poly(L-lactic acid)-Pyrene Particles by Rapid Expansion of Supercritical Solutions [J]. Journal of Supercritical Fluids,1994,7:9-29.
    [23]Tom J W, Lim G B, Debenedetti P G. Applications of Supercritical Fluids in the Controlled Release of Drugs [J]. ACS Symposoum Series,1993,514:238-257.
    [24]Meziani MJ, Rollins HW, Allard LF, et al. Protein-protected nanoparticles from rapid expansion of supercritical solution into aqueous solution [J]. J Phys Chem B,2002,106(43):11178-11182.
    [25]Limtrakul A S J. Co-precipitation of asiatic acid and poly(L-lactide) using rapid expansion of subcritical solutions into liquid solvents [J]. Journal of Nanopartical Research,2011,13:4001-4013.
    [26]Ozlem Y C, Emel O C. In vitro release kinetics of polycaprolactone encapsulated plant extract fabricated by supercritical antisolvent process and solvent evaporation method [J]. The Journal of Supercritical Fluids,2012,62:219-225.
    [27]Elvassore N, Bertucco A, Caliceti P. Production of insulin-loaded poly(ethylene glycol)/ poly(L-lactide) (PEG/PLA) nanoparticles by gas antisolvent techniques [J]. Journal of Pharmaceutical Sciences,2001,90:1628-1636.
    [28]Elvassore N, Bertucco A, Caliceti P. Production of protein loaded polymeric micro-capsules by supercritical CO2 in mixed solvent [J]. Industrial & Engineering Chemistry Research,2001,40: 795-800.
    [29]Salmaso S, Caliceti P, Elvassore N et al. Nisin loaded poly-L-lactide nanoparticles produced by CO2 anti-solvent precipitation for prolonged antimicrobial activity [J]. International Journal of Pharmaceutics,2004,287:163-173.
    [30]Caliceti P, Salmaso S, Elvassore N et al. Effective protein release from PEG/PLA nano-particles produced by gas anti-solvent techniques [J]. Journal of Controlled Release,2004,94:195-205.
    [31]Jung I, Haam S, Lim G et al. Preparation of Peptide-loaded Polymer Microparticles Using Supercritical Carbon Dioxide [J]. Biotechnology and Bioprocess Engineering,2012,17:185-194.
    [32]Sze T L, Dehghani F, Foster N R. Micronization and microencapsulation of pharmaceuticals using a carbon dioxide antisolvent [J]. Powder Technology,2002,126:134-149.
    [33]Meure L A, Warwick B, Dehghani F et al. Increasing Copper Indomethacin Solubility by Coprecipitation with Poly(vinylpyrrolidone) Using the Aerosol Solvent Extraction System [J]. Industrial & Engineering Chemistry Research,2004,43(4):1103-1112.
    [34]Ghaderi R, Artursson P, Carlfors J. A new method for preparing biodegradable microparticles and entrapment of hydrocortisone in DL-PLG microparticles using supercritical fluids [J].European Journal of Pharmaceutical Sciences,2000,10:1-9.
    [35]Toropainenl T, Velaga S, Heikkila T et al. Preparation of budesonide/y-cyclodextrin complexes in supercritical fluids with a novel SEDS method [J]. Journal of Pharmaceutical Sciences, 2006:2235-2245.
    [36]Lesoin L, Crampon C, Boutin O et al. Preparation of liposomes using the supercritical anti-solvent (SAS) process and comparison with a conventional method [J]. The Journal of Supercritical Fluids,2011,57:162-174.
    [37]Uzuna I N, Sipahigilb O, Dincer S. Coprecipitation of Cefuroxime Axetil-PVP composite microparticles by batch supercritical antisolvent process [J]. The Journal of Supercritical Fluids, 2011,55:1059-1069.
    [38]Lee S, Kim M S, Kim J S et al. Controlled delivery of a hydrophilic drug from a biodegradable microsphere system by supercritical anti-solvent precipitation technique [J]. Journal of Microencapsulation,2006,23:741-749.
    [39]Patomchaiviwat V, Paeratakul O, Kulvanich P. Formation of Inhalable Rifampicin-Poly(L-lactide) Microparticles by Supercritical Anti-solvent Process [J]. AAPS Pharmaceutical Scientists Technology,2008,9:1119-1129.
    [40]Lee L Y, Wang C H, Smitha K A. Supercritical antisolvent production of biodegradable micro-and nanoparticles for controlled delivery of paclitaxel [J]. Journal of Controlled Release, 2008,125:96-106.
    [41]张严之,李奎锋,黄婷.超临界流体技术制备5-氟尿嘧啶-吲哚美辛-聚乳酸缓释微球[J].复合材料学报,2011,28(1):21-25.
    [42]Chen A Z, Zhao C, Wang S B et al. Preparation of Protein-Loaded Poly(L-Lactide) Microspheres by Solution-Enhanced Dispersion by Supercritical CO2 [J]. Journal of Biomimetics, Biomaterials & Tissue Engineering,2011,11:93-100.
    [43]陈岚,张岩,李保国等.超临界流体技术制备阿莫西林缓释微囊的初探[J].中国药学杂志,2004,39:842-844.
    [44]姜茹,祖元刚,赵修华等.超临界反溶剂法制备叶酸介导吡柔比星葡聚糖纳米粒的工艺研究[J].中国药房,2011,22:1961-1964.
    [45]文震,刘波,李琼等.超临界CO2快速膨胀制备鱼腥草挥发油脂质体[J].过程工程学报,2009,9:350-354.
    [46]欧阳平,杨畅,康云清.超临界CO2抗溶剂法制备紫杉醇缓释微球[J].化工新型材料,2009,37:25-27.
    [47]Weidner E, Knez Z, Novak Z. PGSS (Particles from Gas Saturated Solutions)-A new process for powder generation [C]. In Proceedings of the 3rd International Symposium on Supercritical Fluids, Strasbourg, France,1994,3:229-235.
    [48]Weidner E, Knez Z, Novak Z A. Process and Equipment for Production and Fractionation of Fine Particles from Gas Saturated Solutions [P]. World Patent WO 95/21688.1994.
    [49]Weidner E. High pressure micronization for food applications [J]. Journal of Supercritical Fluids, 2009,47:556-565.
    [50]Lack E, Weidner E, Knez Z et al. Particle generation with supercritical CO2 [C]. In Proceedings of the 1st Vienna International Conference:Micro-and Nano-Technology, Vienna, Austria,2005, 9-11.
    [51]Pasquali I, Bettini R. Are pharmaceutics really going supercritical? [J]. International Journal Pharmaceutics,2008,364:176-187.
    [52]Weidner E, Steiner R, Knez Z. Powder generation from polyethyleneglycols with compressible fluids [J]. Process technology proceedings,1996,12:223-228.
    [53]Rodriguesa M, Peiricoa N, Matos H et al. Microcomposites theophylline/hydrogenated palm oil from a PGSS process for controlled drug delivery systems [J]. The Journal of Supercritical Fluids,2004,29:175-184.
    [54]Garcia-Gonzalez C A, Argemib A, Sousa A R et al. Encapsulation efficiency of solid lipid hybrid particles prepared using the PGSS(?) technique and loaded with different polarity active agents [J]. The Journal of Supercritical Fluids,2010,54:342-347.
    [55]朱林静,Asare A K,蓝洪桥等PGSS技术制备薄荷醇/棕榈酸复合微粒[J].化工进展,2011,30:313-315.
    [56]Xu CY, Watkins B A, Sievers R E et al. Submicron-sited spherical yttrium oxide based phosphors prepared by supercritical CO2-assisted aerosolization and pyrolysis [J]. Applied Physics Letters, 1997,71:1643-1645.
    [57]Sievers R E, Karst U, Milewski P D et al. Formation of aqueous small droplet aerosols assisted by supercritical carbon dioxide [J]. Aerosol Science and Technology,1999,30:3-15.
    [58]Sievers R E, Milewski P D, Sellers S P et al. Supercritical and near-critical carbon dioxide assisted low-temperature bubble drying [J]. Industrial & Engineering Chemistry Research. 2000,39:4831-4836.
    [59]Cape S P, Best J A, Burger J L et al. Inhalable microparticles of TB antibiotics made by CAN-BD [J]. The 2009 keystone symposium on Tuberculosis,2009,25-30.
    [60]Sieversa R E, Quinna B P, Cape S P et al. Near-critical fluid micronization of stabilized vaccines, antibiotics and anti-virals [J]. The Journal of Supercritical Fluids,2007,42:385-391.
    [61]Reverchon E. Supercritical-Assisted Atomization to produce micro-and/or nanoparticles of controlled size and distribution [J]. Industrial & Engineering Chemistry Research,2002,41:2405-2411.
    [62]Reverchon E, Porta G D, Spada A. Ampicillin micronization by supercritical assisted Atomization [J]. Journal of pharmacy and pharmacology,2003,55:1465-1471.
    [63]Reverchon E, Antonacci A. Chitosan Microparticles Production by Supercritical Fluid Processing [J]. Industrial & Engineering Chemistry Research,2006,45:5722-5728.
    [64]Reverchon E, Antonacci A. Drug-Polymer Microparticles Produced by Supercritical Assisted Atomization [J]. Biotechnology and Bioengineering,2007,97:1626-1637.
    [65]Reverchon E, Lamberti G, Antonacci A. Supercritical fluid assisted production of HPMC composite microparticles [J]. Journal of Supercritical Fluids,2008,46:185-196.
    [66]Kazarian S G, Martirosyan G G. Spectroscopy of polymer/drug formulations processed with supercritical fluids:in situ ATR-IR and Raman study of impregnation of ibuprofen into PVP [J]. International journal of pharmaceutics,2002,232:81-90.
    [67]Shieh Y T, Su J H, Manivannan G. Interaction of supercritical carbon dioxide with polymers [J]. Journal of Applied Polymer Science,1996,59(4):695-717.
    [68]Newitt D M, Weale K E. Solution and diffusion of gases in polystyrene at high pressures [J]. Journal of the Chemical Society (Part II),1948:1541-1549.
    [69]Sato Y, Yurugi M, Fujiwara K et al. Solubilities of carbon dioxide and nitrogen in polystyrene under high temperature and pressure [J]. Fluid Phase Equilibria,1996,125:129-138.
    [70]Sato Y, Fujiwara K, Takikawa T et al. Solubilities and diffusion coefficients of carbon dioxide and nitrogen in polypropylene, high-density polyethylene, and polystyrene under high pressures and temperatures [J]. Fluid Phase Equilibria,1999,1622:261-276.
    [71]Sato Y, Takikawa T, Takishima S et al. Solubilities and diffusion coefficients of carbon dioxide in poly(vinyl acetate) and polystyrene [J]. The Journal of Supercritical Fluids,2001,19:187-198.
    [72]Kleinrahm R, Wagner W. Measurement and correlation of the equilibrium liquid and vapour densities and the vapour pressure along the coexistence curve of methane [J]. The Journal of Chemical Thermodynamics,1986,18:739-760.
    [73]Cotugno S, Maio E D, Ciardiello C et al. Sorption Thermodynamics and Mutual Diffusivity of Carbon Dioxide in Molten Polycaprolactone [J].Industrial & Engineering Chemistry Research, 2003,42:4398-4405.
    [74]Rojo S R, Martin A, Calvo E S et al. Solubility of Polycaprolactone in Supercritical Carbon Dioxide with Ethanol as Cosolvent [J]. Journal of Chemical & Engineering Data,2009,54:962-965.
    [75]Domingo C, Vega A, Fanovich M A et al. Behavior of Poly(methyl methacrylate)-Based Systems in Supercritical CO2 and CO2 Plus Cosolvent:Solubility Measurements and Process Assessment [J]. Journal of Applied Polymer Science,2003,90:3652-3659.
    [76]Li G, Lia H, Turng L S et al. Measurement of gas solubility and diffusivity in polylactide [J]. Fluid Phase Equilibria,2006,246:158-166.
    [77]Aionicesei E, SkergetM, Knez Z. Measurement of CO2 solubility and diffusivity in poly(L-lactide) and poly(D,L-lactide-co-glycolide) by magnetic suspension balance [J]. Journal of Supercritical Fluids,2008,47:296-301.
    [78]Aionicesei E, SkergetM, Knez Z. Mathematical modelling of the solubility of supercritical CO2 in poly(L-lactide) and poly(D,L-lactide-co-glycolide) [J].Journal of Supercritical Fluids,2009,50: 320-326.
    [79]Cheng K W, Tang M, Chen Y P. Solubilities of benzoin, propyl 4-hydroxybenzoate and mandelic acid in supercritical carbon dioxide [J].Fluid Phase Equilibria,2002,201:79-96.
    [80]Su C S,Chen Y P. Measurement and correlation for the solid solubility of non-steroidal anti-inflammatory drugs (NSAIDs) in supercritical carbon dioxide [J]. The Journal of Supercritical Fluids,2008,43:438-446.
    [81]Yamini Y, Moradi M. Measurement and correlation of antifungal drugs solubility in pure supercritical CO2 using semiempirical models [J]. The Journal of Chemical Thermodynamics, 2011,43:1091-1096.
    [82]Hojjati M, Vatanara A, Yamini Y et al. Supercritical CO2 and highly selective aromatase inhibitors:Experimental solubility and empirical data correlation [J]. Journal of Supercritical Fluids,2009,50:203-209.
    [83]Heryanto R, Abdullah E C, Hasan M. Solubility of Isoniazid in Supercritical Carbon Dioxide [J]. Journal of Chemical & Engineering Data,2010,55:2306-2309.
    [84]Perrotin-Brunela H, Pereza P C, Roosmalen M J E. Solubility of △9-tetrahydrocannabinol in supercritical carbon dioxide:Experiments and modeling [J]. The Journal of Supercritical Fluids,2010,52:6-10.
    [85]Perrotin-Brunela H, Kroon M C, Roosmalen M J E. Solubility of non-psychoactive cannabinoids in supercritical carbon dioxide and comparison with psychoactive cannabinoids [J]. The Journal of Supercritical Fluids,2010,55:603-608.
    [86]郑晓彬,王靖岱.静态法测定固体溶质在超临界溶剂中的溶解度[J].现代化工,2004,24:184-189.
    [87]米娜,蒋斌波,陈纪忠.阿昔洛韦在超临界CO2中的溶解度与关联[J].高校化学工程学报,2005,19:1-4.
    [88]张文成,谢慧明.穿心莲内醋在超临界CO2中的溶解度研究[J].食品科学,2007,28:32-34.
    [89]胡国勤,蔡建国,陈鸿雁等.灰黄霉素在含共溶剂丙酮的超临界CO2中溶解度的测定和关联[J].中国医药工业杂志,2004,35:81-84.
    [90]Guney O, Akgerman A. Solubilities of 5-Fluorouracil and β-Estradiol in Supercritical Carbon Dioxide [J]. Journal of Chemical and Engineering Data 2000,45:1049-1052
    [91]Suleiman D, Estevez L A, Pulido J C et al. Solubility of Anti-Inflammatory, Anti-Cancer, and Anti-HIV Drugs in Supercritical Carbon Dioxide [J]. Journal of Chemical and Engineering Data, 2005,50:1234-1241.
    [92]Yoda S, Satob K, Oyamab H T. Impregnation of paclitaxel into poly(DL-lactic acid) using high pressure mixture of ethanol and carbon dioxide [J]. RSC Advances,2011,1:156-162.
    [93]Gong K, Darr J A, Rehman I U. Supercritical fluid assisted impregnation of indomethacin into chitosan thermosets for controlled release applications [J]. International Journal of Pharmaceutics, 2006,315:93-98.
    [94]Diankov S, Barth D, Vega-Gonzalez A et al. Impregnation isotherms of hydroxybenzoic acid on PMMA in supercritical carbon dioxide [J]. Journal of Supercritical Fluids,2007,41:164-172.
    [95]Uzer S, Akman U, Hortacsu O. Polymer swelling and impregnation using supercritical CO2:A model-component study towards producing controlled-release drugs [J]. Journal of Supercritical Fluids,2006,38:119-128.
    [96]Duartea A R C, Simpliciob A L, A Vega-Gonzalez et al. Supercritical fluid impregnation of a biocompatible polymer for ophthalmic drug delivery [J]. The Journal of Supercritical Fluids, 2007,42:373-377.
    [97]Bragaa M E M, Patoa M T V, Silva H S R C et al. Supercritical solvent impregnation of ophthalmic drugs on chitosan derivatives [J]. The Journal of Supercritical Fluids,2008,44:245-257.
    [98]Costaa V P, Bragaa M E M, Duarte C M M et al. Anti-glaucoma drug-loaded contact lenses prepared using supercritical solvent impregnation [J]. The Journal of Supercritical Fluids,2010, 53:165-173.
    [99]张宁,张俊杰.生物高分子材料聚乳酸研究新进展[J].河北理工大学学报(自然科学版),2010,3:116-120.
    [100]Li Z Y, Jiang J Z, Liu X W et al. Preparation of erythromycin microparticles by supercritical fluid expansion depressurization [J]. Journal of Supercritical Fluids,2007,41:285-292.
    [101]Shin M S, Lee J H,Kim H.Phase behavior of the poly (vinyl pyrrolidone)+dichloromethane+ supercritical carbon dioxide system [J].Fluid Phase Equilibria,2008,272(1-2):42-46.
    [102]Chang C J, Day C Y, Ko C M et al. Densities and P-x-y diagrams for carbon dioxide dissolution in methanol, ethanol and acetone mixtures [J].Fluid Phase Equilibria,1997,131(1-2):243-258.
    [103]Markku R, Matti J, Olli A et al. The effect of initial drop size on particle size in the supercritical antisolvent precipitation (SAS) technique [J]. Journal of Supercritical Fluids,2002,24:251-263.
    [104]Obrzut D L, Bell P W, Roberts C B et al. Effect of process conditions on the spray characteristics of a PLA+methylene chloride solution in the supercritical antisolvent precipitation process [J]. Journal of Supercritical Fluids,2007,42:299-309.
    [105]Song K H, Lee C H, Lim J S et al. Preparation of L-PLA Submicron Particles by a Continuous Supercritical Antisolvent Precipitation Process [J]. Korean Journal of Chemical Engineering, 2002,19:139-145.
    [106]Krober H, Teipel U. Materials processing with supercritical antisolvent precipitation:process parameters and morphology of tartaric acid [J]. Journal of Supercritical Fluids,2002,22(3):229-235.
    [107]Madalina V N, Gil M H, Sousa H C. Supercritical solvent impregnation of poly (e-caprolactone)/poly (oxyethylene-b-oxypropylene-b-oxyethylene) and poly (e-caprolactone) /poly (ethylene-vinyl acetate) blends for controlled release applications [J]. Journal of Supercritical Fluids,2008,47:93-102.
    [108]Miyata T, Masuko T. Crystallization behaviour of poly (L-lactide) [J]. Polymer,1998,39:5515-5521.
    [109]Xu Q, Chang Y. Complex interactions among additive/supercritical CO2/polymer ternary systems and factors governing the impregnation efficiency [J]. Journal of applied polymer science,2004,93:742-748.
    [110]Mano J F, Gomez Ribelles J L, Alves N M et al. Glass transition dynamics and structural relaxation of PLLA studied by DSC:Influence of crystallinity [J]. Polymer,2005,46:8258-8265.
    [111]Malet M, Martino R. Clinical studies of three oral prodrugs of 5-fluorouracil (Capecitabine, UFT, S-1):A review [J]. The Oncologist,2002,7:288-323.
    [112]连佳芳,张三奇.5-氟尿嘧啶剂型研究进展[J].西北药学杂志,2005,20(5):238-240.
    [113]Knez Z, Skerget M, Ilic L et al. Vapor-liquid equilibrium of binary CO2-organic solvent systems [J]. Journal of Supercritical Fluids,2008,43:383-389.
    [114]Horas J A, Nieto F J. A generalization of dual mode transport theory for glassy polymers [J]. Journal of Polymer Science Part B:Polymer Physics,1994,32(11):1889-1898.
    [115]Kojima M, Tosaka M, Funami E et al. Phase behavior of crosslinked polyisoprene rubber and supercriticalcarbon dioxide [J]. Journal of Supercritical Fluids,2005,35:175-181.
    [116]Aionicesei E, Skerget M, Knez Z. Measurement of CO2 solubility and diffusivity in poly(L-lactide) and poly(d,l-lactide-co-glycolide) by magnetic suspension balance [J]. Journal of Supercritical Fluids,2008,47:296-301.
    [117]洪满水,郭金全,黄基钊.比重瓶法测定聚合物的密度及结晶度[J].塑料工业,1982,2:47-48.
    [118]Rodgers P A.Pressure-volume-temperature relationships for polymeric liquids:A review of equations of state and their characteristic parameters for 56 polymers [J]. Journal of Applied Polymer Science,1993,48:1061-1080.
    [119]Sato Y, Hashiguchi H, Takishima S et al. Prediction of PVT properties of polymer melts with a new group-contribution equation of state [J]. Fluid Phase Equilibria,1998,144:427-440.
    [120]Aionicesei E, Skerget M, Knez Z. Mathematical modelling of the solubility of supercritical CO2 in poly(l-lactide) and poly(d,l-lactide-co-glycolide) [J]. Journal of Supercritical Fluids,2009,50: 320-326.
    [121]Crank J, The Mathematics of Diffusion [M]. Oxford.Clarendon Press,1975.
    [122]Carslaw H S, Jaeger J C. Conduction of Heat in Solids[M].2nd Edition, Oxford:Oxford University Press, UK,1959.
    [123]Glueckauf E. Theory of chromatography. Part 10.-Formulae for diffusion into spheres and their application to chromatography [J]. Transactions of the Faraday Society,1955,51,1540-1551.
    [124]Ajchariyapagorna A, Kumhoma T, Pongamphaia S et al. Predicting the extraction yield of nimbin from neem seeds in supercritical CO2 using group contribution methods, equations of state and a shrinking core extraction model [J]. Journal of Supercritical Fluids,2009,51:36-42
    [125]Fiori L, Bassoa D, Costa P. Supercritical extraction kinetics of seed oil:A new model bridging the'broken and intact cells'and the'shrinking-core'models [J]. Journal of Supercritical Fluids, 2009,48:131-138.
    [126]Luca Fiori. Supercritical extraction of sunflower seed oil:Experimental data and model validation [J]. Journal of Supercritical Fluids,2009,50:218-224.
    [127]Tabata I, Lyu J, Cho S et al. Relationship between the solubility of disperse dyes and the equilibrium dye adsorption in supercritical fluid dyeing. Coloration Technology [J]. 2001,117:346-351.
    [128]Kazarian S G, Martirosyan G G. Spectroscopy of polymer/drug formulations processed with supercritical fluids:in situ ATR-IR and Raman study of impregnation of ibuprofen into PVP [J]. International Journal of Phannaceutics,2002,232:81-90.
    [129]Werling J O, Debenedetti P G. Numerical modeling of mass transfer in the supercritical antisolvent process:miscible conditions [J]. Journal of Supercritical Fluids,2000,18:11-24.
    [130]Werling J O, Debenedetti P G. Numerical modeling of mass transfer in the supercritical antisolvent process [J]. Journal of Supercritical Fluids,1999,16:167-181.
    [131]Martin A, Cocero M J. Numerical modeling of jet hydrodynamics, mass transfer, and crystallization kinetics in the supercritical antisolvent (SAS) process [J]. Journal of Supercritical Fluids,2004,32:203-219.
    [132]Reverchon E, Cardea S, Rapuano C. A new supercritical fluid-based process to produce scaffolds for tissue replacement [J]. Journal of Supercritical Fluids,2008,45:365-373.
    [133]Reverchon E, Adami R, Cardea S. Giovanna Della Porta Supercritical fluids processing of polymers for pharmaceutical and medical Applications [J]. Journal of Supercritical Fluids, 2009,47:484-492.
    [134]Dymond J H. Hard-sphere theories of transport properties [J]. Chemical Socienty Reviews, 1985,14:317-356.
    [135]Easteall A J, Woolf L A. Tracer diffusion in hard-sphere liquids from molecular dynamics simulations [J]. Chemical Physics Letters,1990,167:329-333.
    [136]He C H. Prediction of Binary Diffusion Coefficients of Solutes in Supercritical Solvents [J]. AIChE Journal,1997,43:2944-2947.
    [137]Wakao N, Smith J M. Diffusion in catalyst pellets [J]. Chemical Engineering Science,1962, 17:825-834.
    [138]Kazarian S G, Martirosyan G G. Spectroscopy of polymer/drug formulations processed with supercritical fluids:in situ ATR-IR and Raman study of impregnation of ibuprofen into PVP [J]. International Jourmal of Pharmaceutics 2002,232:81-90.
    [139]Sinan U, Ugur A, Oner H. Polymer swelling and impregnation using supercritical CO2:A model-component study towards producing controlled-release drugs [J]. Journal of supercritical fluids,2006,38:119-128.
    [140]Lucas S, Gonz'alez E, Calvo M P et al. Supercritical CO2 impregnation of Radiata pine with organic fungicides, Effect of operating conditions and two-parameters modeling [J]. Journal of Supercritical Fluids,2007,40:462-469.
    [141]Judit D, Istvan A, Istvain R. Evaluation of mathematical models describing drug release from lipophilic matrices [J]. International Journal of Pharmaceutics,1996,145:61-64.
    [142]Peppas N A, Brannon-Peppas L. Water diffusion and sorption in amorphous macromolecular systems and foods [J]. Journal of Food Engineering,1994,22:189-210.
    [143]张继稳,顾景凯.缓控释制剂药物动力学[M].北京:清华大学出版社,2009.
    [144]Weast R C, Astle M J, Beyer W H. (1984). Handbook of Chemical Property Estimation Methods. EnVironmental BehaVior of Organic Compounds [M]. McGraw-Hill Book Co.:New York,1982.
    [145]董新法,方利国,陈砺.物性估算原理及计算方法[M].化学工业出版社.2006.
    [146]Pitzer K S. The volumetric and thermodynamic properties of fluids, I:Theoretical basis and virial coefficients [J]. Journal of the American Chemical Society,1955,77:107-113.
    [147]Mohsen-Nia M, Moddaress H, Mansoori G A. A cubic equation of state based on a simplified hard-core model [J]. Chemical Engineering and Communication,1995,131:15-31.
    [148]李志义,孟庭宇,张晓冬等.利用分散蓝60对涤纶进行超临界流体染色的实验研究[J].高校化学工程学报,2006,20(2):203-207.
    [149]Mohammad H, Yadollah Y, Mostafa K et al. Solubility of some statin drugs in supercritical carbon dioxide and representing the solute solubility data with several density-based correlations [J]. Journal of Supercritical Fluids,2007,41:187-194.
    [150]Li J L, Jin J S, Zhang Z T et al. Solubility of p-Toluenesulfonamide in Pure and Modified Supercritical Carbon Dioxide [J]. Journal of Chemical & Engineering Data,2009,54:1142-1146.
    [151]Sauceau M, Letourneau J J, Richon D et al. Enhanced density-based models for solid compound solubilities in supercritical carbon dioxide with cosolvents [J]. Fluid Phase Equilibria. 2003,208:99-113.
    [152]Su C S, Chen Y P. Correlation for the solubilities of pharmaceutical compounds in supercritical carbon dioxide [J]. Fluid Phase Equilibria,2007,254:167-173.
    [153]Guney O, Akgerman A. Solubilities of 5-Fluorouracil and β-Estradiol in Supercritical Carbon Dioxide [J]. Journal of Chemical and Engineering Data 2000,45:1049-1052
    [154]Suleiman D, Estevez L A, Pulido J C et al. Solubility of Anti-Inflammatory, Anti-Cancer, and Anti-HIV Drugs in Supercritical Carbon Dioxide [J]. Journal of Chemical and Engineering Data, 2005,50:1234-1241.
    [155]Chrastll J. Solubility of Solids and Liquids in Supercritical Gases [J]. The Journal of Physical Chemistry,1982,86:3016-3021.
    [156]Mendze-Santiago J, Teja A S. The solubility of solids in supercritical fluids [J]. Fluid Phase Equilibria,1999,158-160:501-510.
    [157]李志义,张晓冬,胡大鹏等.可调变流体与绿色化工过程[J].化学通报.2003,66(5):323-326.
    [158]Ferri A, Banchero M, Manna L, et al. Dye uptake and partition ratio of disperse dyes between a PET yarn and supercritical carbon dioxide [J]. Journal of Supercritical Fluids,2006,37(1):107-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700