融合移动信号流的高速公路交通拥挤预警与调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着交通需求的快速增长,高速公路交通拥挤日益严重。为保障高速公路的安全、高效运行,本研究利用手机定位技术构建了高速公路交通参数采集平台,在已有的研究成果基础上,较为深入地研究了高速公路交通拥挤识别、预警和调控方法,为高速公路管理工作提供相关的理论依据和决策支持。
     在利用手机定位技术构建的高速公路交通参数采集平台上,分析了随时空变化的移动信号流和高速公路交通流之间的关系特性,提出了一种新的手机定位地图匹配方法,以图论聚类方法提取了观测路段的独立车辆数,给出了独立车辆车型识别方法以及平均行程速度、密度和交通量参数的估计算法,结合仿真实验分析了影响交通参数采集精度的因素。
     根据高速公路交通参数周期性变化特性,建立了交通参数季节自回归求和移动平均预测模型、等维新息灰色预测模型和广义回归神经网络预测模型。综合三种预测模型的优点,建立了最小方差组合预测模型,实验表明最小方差组合预测模型精度优于三种单一预测模型。
     针对高速公路交通状态划分中的模糊性和随机性,提出了一种高速公路交通状态云识别模型。在确定云识别模型输入参数基础上,利用云合成理论和云相似度的定义,计算了待识别状态的拥挤度,给出了拥挤确认和拥挤类型判别条件。仿真实验结果表明:云识别模型不仅能够准确地对高速公路交通拥挤状态进行判别,而且能够反映出交通拥挤的程度和拥挤的变化过程。此外,将云识别模型和交通参数多步预测模型结合,实现了对常发性拥挤发生时间、路段、可能性以及拥挤程度的预测。
     总结分析了影响高速公路交通事件持续时间的因素,分别基于粗糙集理论和最小二乘支持向量机建立了事件持续时间和事件影响因素之间的关系模型,实现了事件持续时间的滚动预测;在事件持续时间滚动预测和交通参数多步预测基础上,考虑了车辆到离率随机变化情况,分别采用随机排队理论和冲击波理论建立了排队长度和拥挤持续时间滚动预测模型,给出了两种预测模型的具体实现步骤和流程图,并通过实例比较了两种模型的预测效果;在事件持续时间和排队长度滚动预测基础上,研究了适用于解决偶发性拥挤的调控分流方法,以最大排队长度作为警戒指标,分别采用随机排队理论和冲击波理论推导了调控分流量和调控作用施加时刻之间的数学关系。
     分析了高速公路入口匝道定时调节、感应调节和匝道协调调节的特点和原理,提出了适用于解决局部常发性拥挤的单点入口匝道模糊控制方法,设计了控制规则易于调整的修正因子模糊控制器。针对入口匝道定时协调调节的不足,建立了由宏观交通流模型、匝道排队长度模型和拥挤路段排队长度模型组成的匝道动态协调控制模型,采用粒子群优化算法对协调控制模型进行了求解。通过仿真实验对上述控制方法的有效性进行了验证。
With the rapid growth of traffic demand, freeway traffic congestion becomes increasingly serious. In order to ensure safety and efficiency of freeway, this research constructs the platform for freeway traffic parameters collection with mobile phone location. Based on the prior founding and knowledge, research on freeway traffic congestion identification, early-warning and control are carried out and developed, which provides theoretical base and decision support for freeway management.
     Based on the platform for freeway traffic parameters collection, relationship between mobile signal flow which varies with space-time and freeway traffic flow is analyzed. A new map matching method for mobile phone location is proposed. The methods to collect vehicle counts with graph clustering, to identify vehicle type and to estimate mean travel speed, traffic density and volume are presented. The factors which affect traffic parameters collection accuracy are further discussed through simulation.
     According to characteristics of cyclical changes for traffic parameters, seasonal autoregressive integrated moving average prediction model, grey prediction model and general regression neural network prediction model are established. Integrating advantages of three prediction models, minimum variance combination model is set up. Case study shows that minimum variance combination model predicts more accurately than the single model.
     In view of the fuzziness and randomness of classification for freeway traffic state, a cloud identification model for freeway traffic state is proposed. Based on determination of input parameters, congestion degree for the identified state is calculated according to synthesized cloud theory and cloud similarity definition. Besides, the conditions for congestion verification and congestion type discrimination are also given. The simulation result shows that the proposed approach not only identifies the traffic state accurately, but also reflects degree of congestion and process of congestion change. Furthermore, occurrence time, section, possibility and congestion degree for recurring congestion is predicted by combining cloud identification model with traffic parameters multi-step prediction model.
     By analyzing factors which affect freeway incident duration, the relationship model between incident duration and its influential factors are set up respectively based on rough theory and least square support vector machine to predict incident duration dynamically. Based on incident duration dynamic prediction and traffic parameters multi-step prediction, considering random variation of arrival and departure vehicles, stochastic queue and Shockwave theory are respectively used to formulate dynamic prediction models for queue length and congestion duration. The step and flow chart of the two prediction models are presented in detail, and their prediction results are compared through case study. On the basis of incident duration and queue length dynamic prediction, the diversion method suitable to solve nonrecurring congestion is developed. It takes maximal queue length as warning index and respectively uses stochastic queue and shockwave theory to deduce the mathematical relationship between diversion volumes and diversion exerted time.
     The characteristics and principle of local fixed-time metering, local responsive metering and coordinated fixed-time metering is analyzed. An on-ramp fuzzy control approach suitable to solve local recurring congestion is proposed. A fuzzy controller with correction factor which can adjust control rules is designed. In view of weakness of coordinated fixed-time metering, a dynamic coordinated control model composed of macroscopic traffic flow model, queue length model of on-ramp and queue length model of congestion section is established and solved by particle swarm optimization. The effectiveness of the proposed control approaches are further verified with intensive simulation.
引文
1.任宝.从南方雨雪冰冻灾害谈北方高速公路除雪抢通措施[J].内蒙古公路与运输,2008,10(2):6-8.
    2. University of Maryland Transportation Studies Center. Final evaluation report for the CAPITAL-ITS operational test and demonstration program[R]. Maryland:University of Maryland Transportation Studies Center,1997:39-42.
    3. Yim Y B Y, Cayford R. Investigation of vehicles as probes using global positioning system and cellular phone tracking:field operational test[R]. Berkeley:Institute of Transportation Studies, University of California,2001:10-44.
    4. Ygnace, J L, Remy J G, Bosseboeuf J L, etal. Travel time estimates on Rhone corridor Network using cellular phones as probes:Phase 1, Technology assessment and preliminary results[R]. Arcueil:French Department of Transportation,2000:100-148.
    5. White J, Quick J, Philippod P. The use of mobile phone location data for traffic information[A]. In:Twelfth International Conference on Road Transport Information and Control[C]. London:Institution of Engineering and Technology,2004:321-325.
    6. Virtanen J. Mobile phones as probes in travel time monitoring[R]. Helsinki:Finnish Road Administration,2002:1-67.
    7. Subbarao V W. Travel time estimation using cell phones for highways and roadways[R]. Florida:Florida Department of Transportation,2007:1-67.
    8. Bar-Gera H. Evaluation of a cellular phone-based system for measurements of traffic speeds and travel times:A case study from Israel[J]. Transportation Research Part C, 2007,15 (6):380-391.
    9. Cayford R, Johnson T. Operational parameters affecting the use of anonymous cell phone tracking for generating traffic information[A]. In:the 82nd annual meeting of the Transportation Research Board[C]. Washington:Transportation Research Board,2003: 1-20.
    10. Bolla R, Davoli F. Road traffic estimation from location tracking data in the mobile cellular network[A]. In:Proceedings of Wireless Communications and Networking Conference[C]. Piscataway:Institute of Electrical and Electronics Engineers,2000: 1107-1112.
    11. Vittorio A, Robert L, Sergio D E, etal. Motorway traffic parameter estimation from mobile phone counts[J]. European Journal of Operational Research,2006,175(12): 1435-1446.
    12. Smith L B, Zhang H, Michael D, etal. Wireless location technology-based traffic monitoring:critical assessment and evaluation of an early-generation system[J]. Journal of Transportation Engineering,2004,130(5):576-584.
    13. Sohn K, Hwang K. Space-based passing time estimation on a freeway using cell phones as traffic probes[J]. IEEE Transactions on Intelligent Transportation Systems,2008,9(3): 559-568.
    14.王西点.基于手机位置的实时交通信息采集技术[J].中国交通信息产业,2009,(1):128-130.
    15.邱志军,裘炜毅,冉斌.一种基于手机信号数据检测交通状态的方法[P].中国专利:101510357,2009-8-19:
    16.杨飞.基于手机切换定位的道路行程时间车速采集技术关键问题研究[D].上海:同济大学,2007.
    17.孙棣华,马丽,陈伟霞.基于手机定位及聚类分析的实时交通参数估计[J].交通运输系统工程与信息,2005,5(3):18-23.
    18.胡明伟.无线定位技术应用于实时交通信息采集研究[J].深圳大学学报理工版,2007,24(3):246-251.
    19.胡坚明,宋靖雁,李伟.基于无线定位技术的交通信息获取方法研究[J].公路交通科技,2007,24(10):113-117.
    20.朱鲤,孙亚,胡小文.基于手机定位的动态行程时间探测[J].计算机工程与应用,2007,43(10):244-248.
    21.魏领红.基于手机浮动车的高速公路交通参数提取技术研究[D].吉林长春:吉林大学,2009.
    22.王力军.手机定位技术在交通流预测中的应用与研究[D].重庆:重庆交通大学,2010.
    23. Nieholsonand H, Swann C D. The Prediction of traffic flow volumes based on spectral analysis[J]. Transportation Research,1974,8(6):533-538.
    24. Xiao J M, Wang X H. Study on traffic flow Prediction using RBF neural network[A]. In: International conference on Machine Leaming and Cybermeties[C]. New York:Institute of Electrical and Electronics Engineers,2004:2672-2675.
    25. Allnlaed M S, Cook A R. Analysis of freeway traffic time-series data by using Box-Jenkins technique[J]. Transportation Researeh Record,1979, (722):1-9.
    26. Sangsoo L, Daniel B. Fambro. Application of the subset ARIMA model for short-term freeway traffic volume forecasting[J]. Transportation Research Record,1999, (1678): 179-188.
    27. Williams B M, Hoel L A. Modeling and forecasting vehicular traffic vlow as a seasonal ARIMA process:theoretical basis and empirical results[J]. Journal of Transportation Engneering,2003,129(6):664-672.
    28. Okutani I, Stephanedes Y J. Dynamic prediction of traffic volume through Kalman filtering theory[J]. Transportation Research Part B,1984,18(1):1-11.
    29. Stathopoulos A, Karlaftis M G. A multivariate state space approach for urban traffic flow modeling and prediction[J]. Transportation Research Part C,2003,11(2):121-35.
    30. Smith B L, Demetsky M J. Short-term traffic flow prediction:neural network approach[J]. Transportation Researeh Record,1994, (1453):98-104.
    31. Doughetry M S, Cobbett M R. Short-term inter-urban traffic forecasts using neural networks[J]. Intemational Journal of Forecasting,1997,13(1):21-31.
    32. Park B, Messere J, Thomas U. Short-term freeway traffic volume forecasting using radial basis function neural network[J]. Transportation Researeh Record,1998, (1651):39-41.
    33. Ishak S, Kotha P, Alecsandru C. Optimization of dynamic neural network performance for short-term traffic prediction[J]. Transportation Research Record,2003, (1836):45-56.
    34.朱顺应,王红,李关寿,韩直.高速公路交通流参数实时预测AML法[J].重庆交通学院学报,2004,23(2):73-74.
    35. Xiao J M, Wang X H. Study on traffic flow Prediction using RBF neural network[A]. In: Intemational conference on Machine Learning and Cybermeties[C]. Piscataway:Institute of Electrical and Electronics Engineers,2004:2672-2675.
    36. Wu C H, Ho J M, Lee D T. Travel-time prediction with support vector regression[J]. IEEE Transactions on Intelligent Transportation Systems,2004,5(4):276-281.
    37. Manoel C N, Young-Seon J, Myong-Kee J, Lee D H. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions[J]. Expert Systems with Applications,2009,36(2):6164-6173.
    38. Vanajakshi L, Rilett L R. A comparison of the performance of artificial neural networks and support vector machines for the prediction of traffic speed[A]. In:2004 IEEE Intelligent Vehicles Symposium[C]. Piscataway:Institute of Electrical and Electronics Engineers,2004:194-199.
    39. Park B. Hybrid neuro-fuzzy application in short-term freeway traffic volume forecasting[J]. Transportation Research Record,2002, (1802):190-196.
    40. Zheng W, Lee D H, Shi Q. Short-term freeway traffic flow prediction:Bayesian combined neural network approach[J]. Journal of Transportation Engineering,2006, 132(2):114-121.
    41. Van Der Voort M., Dougherty M, Watson S. Combining Kohonen maps with ARIMA time series models to forecast traffic flow[J]. Transportation Research Part C,1996,4(5): 307-318.
    42.王娟,赵怀鑫,孙磊.相空间重构与RBF结合的短时交通流预测研究[J].山西建筑,2007,33(4):292-293.
    43.张玉梅,曲仕茹,温凯歌.基于混沌和RBF神经网络的短时交通流量预测[J].系统工程,2007,25(11):26-30.
    44.李建章,朱顺应.高速公路交通流的分形维数与相空间重构预测[J].重庆交通大学学报,2007,26(6):119-122.
    45.陈淑燕,王炜.交通量的灰色神经网络预测方法[J].东南大学学报,2004,34(4):541-544.
    46. Xiao H, Sun H, Ran B, Oh Y. Fuzzy-neural network traffic prediction framework with wavelet decomposition[J]. Transportation Research Record,2003, (1836):16-20.
    47.李存军,杨儒贵,张家树.基于小波分析的交通流量预测方法[J].计算机应用,2003, 23(12):7-8.
    48. Gao H Y, Liu F S. A Combination Prediction Model for Traffic Flow Based on Wavelet Analysis[A]. In:Proceedings of the 2nd International Conference on Transportation Engineering[C]. Virginia:American Society of Civil Engineers,2009:2389-2394.
    49.宋曰聪,胡伟,张涛.基于遗传算法的交通流量组合预测研究[J].微计算机信息,2007,23(10):55-56.
    50. Gao H Y, Liu F S. A Combination Prediction Model for Traffic Flow Based on Rough Set Theory[A]. In:Proceedings of International Conference on Information Technology and Computer Science[C]. Los Alamitos:IEEE Computer Society,2009:425-428.
    51. Payne H J, Helfenbein E D, Knobel H C. Development and testing of incident detection algorithm[R]. United State:Federal highway administration,1976:1-10.
    52. Daniel B, Fambro, Gene P R. Automatic detection of freeway incidents during low volume conditions[M]. United State:Texas Transportation Institute,1979:20-30.
    53. Cook A R, Cleveland D E. Detection of freeway capacity-reducing incidents by traffic stream measurements[J]. Transportation Research Record,1974, (495):1-11.
    54. Willsky A S, Edward Y C, Stanley B G. Dynamic model-based techniques for the detection of incidents of freeways[J]. IEEE Transactions on Automatic Control,1980, 25(3):347-360.
    55. Cremer M, Schutt H. A comprehensive concept for simultaneous state observation, parameter estimation and incident detection[A]. In:Proceedings of the 11th international symposium on transportation and traffic theory[C]. Elsevier:Amsterdam,1990:95-111.
    56. Ahmed S R, Cook A R. Application of time-series analysis techniques to freeway incident detection[J]. Transportation research record,1982, (841):19-21.
    57. Levin M, Krause G M. Incident detection:A Bayesian approach[J]. Transportation Research Record,1978, (682):52-58.
    58. Persaud B N, Hall F L. Catastrophe theory and patterns in 30-second freeway traffic data-implication for incident detection[J]. Transportation Research Part A,1989,23(2): 103-113.
    59. Jiuh-Biing S. A fuzzy clustering-based approach to automatic freeway incident detection and characterization[J]. Fuzzy Sets and Systems,2003,128(3):377-388.
    60. Chang E C, Wang S H. Improved freeway incident detection using fuzzy set theory[J]. Transportation Research Record,1994, (1453):75-82.
    61. Cheu R L, Ritchie S G. Automated detection of lane-blocking freeway incidents using artificial neural networks[J]. Transportation Research Part C,1995,3(6):371-388.
    62. Abdulhai B, Stephen G R. Enhancing the universality and transferability of freeway incident detection using a Bayesian-based neural network[J]. Transportation Research Part C,1999,7(5):261-280.
    63. Stephen G R, Ruey L C. Neural network models for automated detection of non-recurring congestion[R]. California:University of California,1993:1-35.
    64. Srinivasan D, Cheu R L, Young P P, etal. Development of an intelligent technique for traffic network incident detection[J]. Engineering Application of Artificial Intelligence, 2000,13(3):311-322.
    65. Fang Y, RueyLong C. Incident detection using support vector machines[J]. Transportation Research Part C,2003,11(3):309-328.
    66. Roy P, Abdulhai B. Genetic adaptive incident detection for freeways[J]. Transportation Researeh Record,2003, (1856):96-105.
    67.邓卫.高速公路常发性与偶发性交通拥挤的判别[J].东南大学学报(自然科学版),1994,24(2):60-65.
    68.杨兆升,杨庆芳,冯金巧.基于模糊综合推理的道路交通事件识别算法[J].公路交通科技,2003,20(4):92-94.
    69.姜紫峰,刘小坤.基于神经网络的交通事件检测算法[J].西安交通大学学报,2000,20(3):67-73.
    70.吕琪,王慧.基于动态神经网络模型的交通事件检测算法[J].公路交通科技,2003,20(6):105-108.
    71.周林英,朱斌,赵忠杰.基于支持向量机的高速公路事件检测算法[J].系统仿真技术,2010,6(3):224-227.
    72.樊小红,荆便顺.基于遗传算法的交通事件检测[J].长安大学学报自然科学版,2005,25(4):70-72.
    73.高听,贺国光,马寿峰.小波理论及其在交通事件检测中的应用[J].公路交通科技,1999,16(3):63-65.
    74.裴瑞平,梁新荣,刘智勇.基于小波变换和LS-SVM的事件检测算法[J].计算机工程与应用,2007,43(1):229-231.
    75.姜桂艳,温慧敏,杨兆升.高速公路交通事件自动检测系统与算法设计[J].交通运输工程学报,2001,1(1):77-81.
    76. Jiang G Y, Cai Z L, Gang L H, etal. Study on automated incident detection algorithms for freeways based on SVM [A]. In:6th World Congress on Intelligent Control and Automation[C]. Piscataway:Institute of Electrical and Electronics Engineers,2006: 8769-8773.
    77. Sethi V, Bhandari N, Koppelman F S, Sehofer J L. Arterial incident detection using fixed detector and probe vehicle data[J]. Transportation Reseach Part C,1995,3(2):99-112.
    78. Balke K, Dudek C L, Mountain C E. Using probe-measured travel time to detect major freeway incidents in Houston, Texas[J]. Transportation Reseach Record,1996, (1554): 213-220.
    79. Mouskos K C, Niver E, Lee S, etal. Transportation operations coordinating committee system for managing incidents and traffic:evaluation of the incident detection 101 system[J]. Transportation Reseach Record,1999, (1679):50-57.
    80. Hellings B, Knapp G. Automatic vehiele identification technology-based freeway incident detection[J]. Transportation Reseach Record,2000, (1727):142-53.
    81. Petty K F, Skabardonis A, Varaiya P P. Incident detection with probe vehicles preformance, infrastructure requirements and feasibility[J]. Transportation Systems,1997, (1):125-130.
    82. Pattara-atikom W, Peachavanish R. Estimating road traffic congestion from cell dwell time using neural network[A]. In:7th International Conference on Intelligent Transport Systems Telecommunications[C]. Piscataway:Institute of Electrical and Electronics Engineers Computer Society,2007:956-961.
    83.陈伟霞.基于手机定位的高速公路自动事件检测方法研究[D].重庆:重庆大学,2005.
    84. Thomas F G, Wilfred W R, John D L. An analysis of the severity and incident duration of truck-involved freeway accidents[J]. Accident Analysis & Prevention,1987,19(4): 375-395.
    85. Genevieve G. Incident Characteristics, frequency and duration on a high volume urban freeway[J]. Transportation Research Part A,1989,23(5):387-396.
    86. Garib A, Radwan A E, Al-Deek H. Estimating magnitude and duration of incident delays[J]. Journal of Transportation Engineering,1997,123(6):459-466.
    87. Sullivan E C. New model for predicting incidents and incident delay[J]. Journal of Transportation Engineering,1997,123(4):267-275.
    88. Ozbay K, Kachroo P. Incident Management in Intelligent Transportation Systems[M]. Boston:Artech House,1999:15-80.
    89. Jones B, Janssen L, Mannering F. Analysis of the frequency and duration of freeway accidents in Seattle[J]. Accident Analysis & Prevention,1991,23(4):239-255.
    90. Nam D, Mannering F. An exploratory hazard-based analysis of highway incident duration[J]. Transportation Research Part A,2000,34 (2):85-102.
    91. Khattak A J, Joseph S L, Wang M H. A simple time sequential procedure for predicting freeway incident duration[J]. Journal of Intelligent Transportation System,1995,2(2): 113-138.
    92. Smith K W, Smith B L. Forecasting the clearance time of freeway accidents[R]. Virginia: University of Virginia,2001:66-99.
    93. Sethi V, Koppelman F S, Flannery C P, etal. Duration and travel time impacts of incidents-ADVANCE project technical report[R]. Evanston:Northwestern University, 1994:1-20.
    94. Kim W, Natarajan S, Chang G L. Empirical analysis and modeling of freeway incident duration[A]. In:IEEE Conference on Intelligent Transportation Systems[C]. Piscataway: Institute of Electrical and Electronics Engineers,2008:12-15.
    95. Choi H K. Predicting freeway traffic incident duration an expert system context using fuzzy logic[D]. Los Angeles:University of Southern California,1996.
    96. Wang W, Chen H, Bell M C. Vehicle breakdown duration modelling[J]. Journal of Transportation and Statistics,2005,8(1):75-84.
    97. Wei C H, Lee Y. Sequential forecast of incident duration using artificial neural network models[J]. Accident Analysis & Prevention,2007,39(5):944-954.
    98. Valenti G, Lelli M, Cucina D. A comparative study of models for the incident duration prediction[J]. European Transport Research Review,2010,2(2):103-111.
    99.姬扬蓓蓓.交通事件持续时间预测方法研究[D].上海:同济大学,2008.
    100.刘伟铭,管丽萍,尹湘源.基于决策树的高速公路事件持续时间预测[J].中国公路学报,2005,18(1):99-103.
    101.刘伟铭,管丽萍,尹湘源.基于多元回归分析的事件持续时间预测[J].公路交通科技,2005,22(11):126-129.
    102.Morales, J. M. Analytical procedure for estimating freeway traffic congestion [J]. Public Road,1986,50(2):55-61.
    103.Newell G F. A simplified theory of kinematic waves in highway traffic I:general theory [J]. Transportation Research Part B,1993,278(4):281-287.
    104.Stephanopoulos G, Michalopoulos P G. Modelling and analysis of traffic queue dynamics at signalized intersections [J]. Transportation Research Part B,1979,13(5):295-307.
    105.郭冠英,邹智军.道路阻塞时的车辆排队长度计算法[J].中国公路学报,1998,11(3):92-95.
    106.臧华,彭国雄.高速道路异常状况下车辆排队长度的预测模型[J].交通与计算机,2003,21(3):9-12.
    107.郑黎黎,彭国雄.高速公路交通事件延误的模糊预测[J].同济大学学报(自然科学版),2005,33(11):1458-1463.
    108.王建军,周伟.线性模型下高速公路交通事故和干涉车流波模拟理论研究[J].西安公路交通大学学报,1998,18(3):283-289.
    109.吴正,汪茂林.高速公路交通事故和干涉车流波的非线性数学模型[J].西安公路交通大学学报,2001,21(2):77-80.
    110.刘伟铭.高速公路系统控制方法[M].北京:人民交通出版社,1998:77-101.
    111.Papageorgiou M, Haj-salem H, Middelham F. ALINEA:A local feedback control law for on-ramp metering[J]. Transportation Research Record,1991, (1320):58-64.
    112.Wei C H. Analysis of artificial neural network models for freeway ramp metering control[J]. Artificial Intelligence in Engineering,2001,15(3):241-252.
    113.Zhang H M, Stephen G R. Freeway ramp metering using artificial neural networks[J]. Transportation Research Part C,1997,5(5):273-286.
    114.Sasaki T. Fuzzy on-ramp control model on urban expressway and its extension[J]. International Symposium on Transportation and Traffic Theory,1987,30(4):377-395.
    115.Chen L L. Freeway ramp control using fuzzy set theory for inexact reasoning[J]. Transportation Research,1990,248(1):15-25.
    116.Kotsialos A, Papageorgious M, Mangeas M, etal. Coordinated and integrated control of motorway networks via non-linear optimal control[J]. Transportation Researeh,2002, 10(1):65-84.
    117.Zhang H M, Stephen G R, Jayakrishnan R. Coordinated traffic-responsive ramp control via nonlinear state feedback[J]. Transportation Researeh Part C,2001,9(5):337-352.
    118.Bellemans T, De Schutter B, De Moor B. Model predictive control for ramp metering of motorway traffic:A case study[J]. Control Engineering Practice,2006,14(5):757-767.
    119.庞明宝,贺国光,马宁.基于遗传算法高速公路混沌系统模糊延迟反馈匝道控制[J].土木工程学报,2009,42(3):125-131.
    120.Papamichail I, Kotsialos A, Margonis I, etal. Coordinated ramp metering for freeway networks-A model-predictive hierarchical control approach[J]. Transportation Research Part C,2010,18(3):311-331.
    121.Kotsialos A, Margonis I, Mangeas M. Coordinated and integrated control of motorway networks via non-linear optimal control[J]. Transportation Research Part C,2002,10(1): 65-84.
    122.Sheu J B. Stochastic modeling of the dynamics of incident-induced lane traffic states for incident-responsive local ramp control[J]. Physica A:Statistical Mechanics and its Applications,2007,386(1):365-380.
    123.蔡志理.高速公路交通事件检测及交通调控技术研究[D].吉林长春:吉林大学,2007.
    124.Lu Z L, Fan B Q, Gan H C. Integrated control of urban expressway networks under incident impacts[A]. In:Proceedings of the 9th international conference on control, automation, robotics and vision[C]. Piscataway:Institute of Electrical and Electronics Engineers Computer Society,2006:1-6.
    125.Rose G. Mobile phones as traffic probes:practices, prospects and issues[J]. Transport Reviews,2006,26(3):275-291.
    126.Zhao Y L. Mobile phone location determination and its impact on intelligent transportation system[J]. IEEE Transaction on Intelligent Transportations,2000,1(1): 55-64.
    127.杨飞.基于手机定位的实时交通数据采集技术[J].城市交通,2005,3(4):63-68.
    128.姜桂艳.道路交通状态判别技术与应用[M].北京:人民交通出版社,2004:20-21.
    129.马丽.基于手机定位及聚类的高速公路实时交通参数估计研究[D].重庆:重庆大学,2005.
    130.Zahn C T. Graph-theoretical methods for detecting and describing gestalt clusters[J]. IEEE Transaction on Computers,1971,20(1):68-86.
    131.Calinski R B, Harabasz J. A dendrite method for cluster analysis[J]. Communications in Statistics,1974, (3):1-27.
    132.张志良,孙棣华,张星霞.TDOA定位中到达时间及时间差误差的统计模型[J].重庆大学学报(自然科学版),2006,29(1):85-88.
    133.Box G, Jenkings G, Reinsel C. Time series analysis:forecasting and controlling[M]. Englewood Clifts:Prentice-Hall,1994:20-50.
    134.Akaike H A. New look at the statistical model identification[J]. IEEE Transaction on Automatic Control,1974, (19):716-723.
    135.王秀,孙皓.一个基于灰色神经网络组合的交通量预测模型应用研究[J].交通科技与信息,2007,9(2):68-70.
    136.Specht D F. A General Rergression Neural Network[J]. IEEE Transaction on Neural Networks,1991,2(6):568-576.
    137.李如琦,杨立成,莫仕勋,等.基于气象累积和ACA-GRNN的短期电力负荷预测[J].继电器,2008,36(4):58-62.
    138.关昌余,裴玉龙.基于GM-GRNN国家高速公路网规模预测研究[J].公路交通科技, 2008,25(4):141-146.
    139.赵祥模,靳引利,张洋.高速公路监控系统理论及应用[M].北京:电子工业出版社,2003:40-41,190-210.
    140.Transportation Research Board. Highway Capacity Manual[M]. Washington: Transportation Research Board,2000:2-5.
    141.姜桂艳,丁同强.交通工程学[M].北京:国防工业出版社,2007:38-39.
    142.中华人民共和国交通部.JTGB01-2003,公路工程技术标准[S].北京:人民交通出版社,2004:44-45.
    143.李德毅.不确定性人工智能[M].北京:国防工业出版社,2005:144-148.
    144.罗胜,张保明,郭海涛.基于云模型的影像地图质量综合评估[J].测绘科学,2008,33(3):44-46.
    145.黄海生,王汝传.基于隶属云理论的主观信任评估模型研究[J].通信学报,2008,29(4):13-18.
    146.Lin P W, Zou N, Chang G L. Integration of a discrete choice model and a rule-based system for estimation of incident duration:a Case Study in Maryland[A]. In:The 83rd meeting of the Transportation Research Board[C]. Washington:Transportation Research Board,2003,1-25.
    147.Chung Y S. Development of an accident duration prediction model on the Korean Freeway Systems[J]. Accident Analysis and Prevention,2010,42 (1):282-289.
    148.丛浩哲,方守恩,王俊骅.交通事件持续时间影响因素分析及其回归模型[J].交通信息与安全,2010,28(3):80-83.
    149.Pawlak Z. Rough Sets[J]. International Journal of Computer and Information Sciences, 1982,11(5):341-356.
    150.苗夺谦,李道国.粗糙集理论、算法与应用[M].北京:清华大学出版社,2008:130-145.
    151.张文修.粗糙集理论与方法[M].北京:科学出版社,2001:1-19.
    152.孙秋野,黎明.粗糙集理论及其电力行业应用[M].北京:机械工业出版社,2009:164-165.
    153.卢新元.IT项目风险决策规则挖掘研究[M].武汉:湖北人民出版社,2006:130-144.
    154. Vladimir N V. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks,1999,10(5):988-999.
    155.张颖璐.基于遗传算法优化支持向量机的网络流量预测[J].计算机科学,2008,35(5):177-180.
    156.Suykens J A K, Gestel T V, Brahanter J D, etal. Least Squares Support Vector Machines[M]. River Edge:World Scientific Press,2002:71-148.
    157.韩凤春,刘东.交通工程学[M].北京:中国人民公安大学出版社,2002:82-83.
    158.刘智勇.智能交通控制理论及其应用[M].北京:科学出版社,2003:231-232.
    159.刘曙光,魏俊民,竺志超.模糊控制技术[M].北京:中国纺织出版社,2001:7-8.
    160.章卫国,杨向忠.模糊控制理论与应用[M].西安:西北工业大学出版社,1999:70-71.
    161.高宏岩.在线自调整修正因子模糊控制方法和应用[J].微计算机信息,2007,26(5):83-84.
    162.王建军.交通事件和干预作用影响下的高速公路车流波分析[J].重庆交通学院学报,2006,25(6):104-109.
    163.刘正军.MATLAB科学计算与可视化仿真[M].北京:电子工业出版社,2009:654-656.
    164.纪震.粒子群算法及应用[M].北京:科学出版社,2009:13-14.
    165.马莉.MATLAB数学实验与建模[M].北京:清华大学出版社,2010:306-311.
    166.吕智林,范炳全.交通事件下快速路网匝道控制与路线诱导的的集成控制[J].控制理论与应用,2009,26(10):1151-1156.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700