工程起重机伸缩臂系统结构稳定性及复合运动动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程起重机是在一定范围内实现重物水平搬运和垂直提升的多动作起重机械,是各种工程建设中不可或缺的吊装设备。轮式起重机具有机动灵活,稳定性好,效率高,特别适用于狭窄场地作业等优点,被广泛应用于建筑、交通、水电和军工等工程建设中。伸缩臂作为轮式起重机最重要的工作部件,其同时承受较大的轴向载荷和横向载荷,有时还会受到冲击载荷的作用,为保证其安全可靠的工作,不仅需要进行强度和刚度分析,还需进行准确的动静态稳定性和动力学分析。本文以工程起重机伸缩臂系统为主要研究对象,对起重机伸缩臂系统的动静态稳定问题进行研究,并探讨了支撑油缸、伸缩臂间摩擦力和牵绳或拉索等对伸缩臂起升平面外稳定性的影响。同时,在柔性多体系统动力学基础上,建立一种兼顾精度和求解效率的高效运动弹性动力学分析方法,并针对典型工程起重机柔性伸缩臂系统进行弹性动力学分析。
     在起重机设计规范GB/T3811-2008中,起重机伸缩臂起升平面外的失稳计算模型为变截面阶梯柱模型,为计算简单起见该模型忽略了内置的支撑油缸和伸缩臂间摩擦力对稳定性的影响。为准确地计入支撑油缸和臂间摩擦力对伸缩臂稳定性的影响,本文在变截面阶梯柱模型的基础上,提出了考虑支撑油缸和同时考虑支撑油缸和臂间摩擦力的两种失稳计算模型。针对不同的失稳计算模型,从精确临界挠曲微分方程出发,分别推导了多节起重机伸缩臂三种失稳计算模型欧拉临界力的递推表达式,并对三种计算模型的欧拉临界力进行了分析比较;此外,还研究了牵绳或拉索等引起的非保向力对伸缩臂起升平面外稳定性的影响。分析结果表明,起重机设计规范中采用变截面阶梯柱模型计算伸缩臂的失稳临界力是偏于安全的,而牵绳或拉索等引起的非保向力能有效地提高伸缩臂起升平面外的抗失稳能力。
     针对起重机伸缩臂在小变形情况下的动力稳定性问题,通过非线性有限单元法结合Lagrange方程,建立复杂杆系结构在轴向周期载荷作用下的参数振动方程,推导其动力不稳定边界的临界频率方程。应用该频率方程给出了起重机伸缩臂第一和第二动力不稳定区域,并讨论了阻尼对动力不稳定区域的影响,研究结果表明,应用非线性有限单元法求解结构参数振动问题是有效的和精确的;同时随着阻尼的增大,动力不稳定区域减小,且对第二动力不稳定区域影响更加明显。同时,针对传统两结点梁单元在结构稳定分析中精度不够的问题,依据插值理论构造了计及二阶效应的高精度非线性三结点Euler-Bernoulli梁单元,并将该新型梁单元应用于结构动力稳定分析中。该非线性三结点梁单元的计算精度远高于传统两结点梁单元,新型单元与传统梁单元划分3-4个单元时具有相同的计算精度,从而有效地提高求解效率。
     柔性多体系统动力学方程是一组强耦合、强非线性微分-代数方程组,难以求解和工程实际应用。本文从柔性多体系统动力学理论出发,结合KED方法的特点,采用适当的假设建立了柔性梁杆系统的单元运动方程,给出运动方程中各矩阵的显式表达式,并介绍了集中参数在梁杆任意位置时引起的附加矩阵。同时通过整体坐标系和随动坐标系之间的坐标转化关系矩阵,导出空间梁杆系统在整体坐标下的动力学方程。最后,讨论了动力学方程的求解策略和程序组织,编制了相应柔性梁杆系统动力学分析的数值求解程序。对典型的曲柄滑块机构进行了运动弹性动力学分析,证明了本文高效方法具有较高的分析精度,其计算量与KED方法几乎相当,提高了柔性多体系统动力学方程的求解效率。
     以QAY500全路面起重机的伸缩臂系统为实例,应用提出的高效柔性系统动力学分析方法,对柔性伸缩臂系统的回转、起升和变幅等复合运动进行动力学分析,考察复合非线性运动过程中柔性伸缩臂系统的动力学响应,给出各关键点或关键构件的变形和内力变化过程,为起重机伸缩臂系统的结构设计分与安全分析提供重要依据。
Construction crane is a kind of hoisting machinery that can lift and move heavy things by multi-action in a specific domain, which play a significant role in all kinds of engineering. Wheel crane has many desirable features such as flexible, stable and efficient, thereby being widely used in structure, transportation, hydroelectric project and military industry. The telescopic boom is the most important working component of the wheel crane because it may bear quite large loads, both axially and transversely, and sometime the impact loads as well. Therefore, the exact analysis of the static and dynamic stability and the motion of the boom are necessary in order to prove that the crane can work in safety. These are also the objects of this thesis. Besides, the effect of the supporting cylinder, friction force between the different sections of the telescopic boom and the pull-rope or drawbar on the out-of-plane stability of the boom. Also, based on the flexible multibody system dynamics, a method that takes both accuracy and efficiency into consideration has been introduced and implemented on the typical flexible boom of the engineering crane in this investigation.
     In the crane design role GB/T3811-2008, a multi-stepped column model is used to compute the out-of-plane stability of the telescopic boom, in which the effect of the supporting cylinder and the friction force between the different sections of the boom are omitted. However, these effects should be considered. To this end, two kinds of models are introduced to simulate the instability of the boom. One model only takes the supporting cylinder into consideration, while the other one takes supporting cylinder and the friction force both. Begin with the accurate differential equations of the critical buckling, different recursive formulations of the Euler critical force are derived based on three models, which are the conventional model and the two new models introduced in this thesis, respectively. After this, the different Euler critical forces are compared. Finally, the effort of the non-directional force caused by the drawbars on the out-of-plane stability is discussed. The analysis shows that the multi-stepped column model used in the crane design role is more likely to be safe and the non-directional force caused by the pull-ropes or drawbars can improve the out-of-plane stability of the telescopic boom in quite a large extent.
     In order to analysis the dynamic stability of the telescopic boom which undergo a small deformation, the finite element method and Lagrange equations are used to build up the parametrical vibration equations of the complex beam-rod structure under a axial periodic load, resulting in the critical frequency equations of the dynamic instability boundary. Using these equations, the first and second dynamic instability regions are obtained. Besides, the effect of the damping on the instability regions is discussed. The results show that the nonlinear finite element method is an efficient and accurate method to solve the parametric vibration problems. The dynamic instability areas become smaller when the damping grows up. What more, the effect on the second area is more significant. After this, because of the low accuracy of the traditional two-node beam element in the stability analysis, a new kind of nonlinear Euler-Bernoulli beam element with three node is created through the interpolation theory, which takes the second order effect into consideration. The successful application of this new element in the structural dynamic stability demonstrates that it has much higher accuracy than the traditional two-node beam element does. Specifically, three or four traditional elements are needed to guarantee the same accuracy as the new one, which means the calculation efficient has been improved.
     The kinetic equations of the flexible multibody system are a set of highly coupling and nonlinear differential-algebraic equations which are very difficult to solve. Therefore the application in the engineering is quite inconvenient. Based on the theory of the flexible multibody system dynamics, preserving the features of the KED method and with the use of some suitable assumptions, the kinetic equation of the beam-bar element are built up and the explicit formulation of the coefficient matrixes are given in this thesis. Besides, the additional matrix caused by the lumped parameters has also been taken into consideration. According to the transformation between the nodal position, velocity and acceleration in the floating and the global reference coordinates, the motion equations of the spatial beam-bar system in the global reference coordinates are obtained. Finally, the solving strategy and the organization of the procedure are discussed and the corresponding finite element procedure of the flexible beam-rod system is programmed. The numerical results coming from the flexible dynamic analysis of the typical slider-crank mechanism demonstrate that the high-efficiency method presented in this thesis has quite high accuracy and an appropriate calculation amount which is close to the KED method’s, which means that the solving efficiency of the flexible multibody system dynamics has been improved by this method.
     The telescopic boom of QAY500all terrain crane is chosen to test the method presented in this thesis. Some multiple working conditions are analyzed such as revolution, lifting and changing amplitude. The main purpose is to obtain the dynamic respond of the flexible telescopic boom in the complex nonlinear motions and the deformation and the changing process of the strain of every key point or structural body, which are important basis of the structural design and analysis of the crane.
引文
[1]韩昕.工程机械行业发展趋势概览[J].今日工程机械,2012,(21):62-65.
    [2]邹十践.“十二五”规划开局之年展望我国工程机械行业发展态势[J].交通世界,2011,(1):27-35.
    [3]李一川.工程机械行业“十二五”发展规划出炉[J].建筑机械,2011,(15):34-35.
    [4] GB/T3811-2008,起重机设计规范[S].北京:中国标准出版社:181-183.
    [5]陆念力,兰朋,白桦.起重机箱型伸缩臂稳定性分析的精确理论解[J].哈尔滨建筑大学学报,2000,33(2):89-93.
    [6]何金龙,法永生.结构动力稳定性的分析方法与进展[J].四川建筑,2007,27(2):155-157.
    [7] Chen W F. Structural Stability: From Theory to Practice [J]. EngineeringStructures,2000,22(2):116-122.
    [8] Peter N J. Buckling Analysis of Pre-Cracked Beam-Columns by Liapunov’sSecond Method [J]. European Journal of Mechanics A/Solids,2007,26(3):503-518.
    [9] Zhang L, Tong G S. Out-of-Plane Stability of Simply Supported Beams withKnee Braces [J]. Journal of Constructional Steel Research,2007,63(2):175-181.
    [10] Kim N L, Shin D K, Park Y S. Coupled Stability Analysis of Thin-WalledComposite Beams with Closed Cross-Section [J]. Thin-Walled Structures,2010,48(8):581-596.
    [11] Timoshenko S P, Gere J M. Theory of Elastic Stability [M].2nd ed. New York:McGraw-Hill,1961:49-63.
    [12] Li Q S. Buckling Analysis of Multi-Step Non-Uniform Columns [J]. Advancesin Structure Engineering,2000,3(2):139-144.
    [13] Li Q S. Buckling of Multi-Step Non-Uniform Beams with ElasticallyRestrained Boundary Conditions [J]. Journal of Constructional Steel Research,2001,57(7):753-777.
    [14] Li Q S. Buckling Analysis of Non-Uniform Bars with Rotational andTranslational Springs [J]. Engineering Structures,2003,25(10):1289-1299.
    [15] Zhang H S, Lu N L, Lan P. Buckling of Stepped Beams with Elastic Supports[J]. Journal of Harbin Institute of Technology,2009,16(3):436-440.
    [16]张宏生,陆念力.动臂式塔机变截面吊臂的整体稳定性分析[J].哈尔滨工业大学学报,2010,42(9):1394-1397.
    [17]刘庆潭,赵淳,杨朝晖,等.基于传递矩阵法分析考虑自重的变截面高墩稳定性[J].南华大学学报(自然科学版),2009,23(4):92-94.
    [18] Rahai A R, Kazemi S. Buckling Analysis of Non-Prismatic Columns Based onModified Vibration Modes [J]. Communications in Nonlinear Science andNumerical Simulation,2006,13(8):1721-1735.
    [19] Bazeos N, Karabalis D L. Efficient Computation of Buckling Loads for PlaneSteel Frames with Tapered Members [J]. Engineering Structures,2006,28(5):771-775.
    [20] Wang J, Lu N L, Luo B. Equivalent Inertia Moment Method to StabilityAnalyze of Lattice Type Beam[C]. Proceedings of The3rd InternationalConference on Steel and Composite Structures, ICSCS07-Steel and CompositeStructures,2007:311-315.
    [21] Bathe K J. Finite Mlement Procedures [M]. New Jersey: Prentice Hall,1996.
    [22] Kim S E, Park M H, Choi S H. Direct Design of Three-Dimensional FramesUsing Practical Advanced Analysis [J]. Engineering Structures,2010,23(11):1491–502.
    [23] So A K W, Chan S L. Buckling and Geometrically Nonlinear Analysis ofFrames Using One Element/Member [J]. Journal of Constructional SteelResearch,1991,20(4):271-289.
    [24]廖兄华,张克绪,王幼青.用修正的梁单元刚度矩阵考虑桩的尺寸效应[J].哈尔滨建筑大学学报,2001,34(1):28-33.
    [25] Zhou Z H, Chan S L. Self-Equilibrating Element for Second-Order Analysis ofSemirigid Jointed Frames [J]. Journal of Engineering Mechanics,1995,212(8):896-902.
    [26] Chan S L, Zhou Z H. Pointwise Equilibrating Polynomial Element forNonlinear Analysis of Frames [J]. Journal of Structural Engineering,1994,120(6):1703-1717.
    [27] Zhou Z H, Chan S L. Elastoplastic and Large Deflection Analysis of SteelFrames by One Element Per Member [J]. Journal of Structural Engineering,2004,130(4):538-544.
    [28]许红胜,周绪红,舒兴平.空间钢框架几何非线性分析的一种新单元[J].工程力学,2003,20(4):39-44.
    [29] Fong M, Liu Y P, Chan S L. Second-Order Analysis and Design of ImperfectComposite Beam-Columns [J]. Engineering Structures,2010,32(6):1681-1690.
    [30]夏拥军,缪谦.一种新型空间梁单元及其在梁杆结构稳定分析中的应用[J].工程力学,2009,26(4):86-91.
    [31]王佳.格构式大柔度起重机梁杆系统几何非线性与稳定性分析研究[D].哈尔滨:哈尔滨工业大学学位论文,2011:16-43.
    [32]纪斌.剪式铰单元单肢的3节点平面梁单元模型[J].江苏航空,2011,增刊:63-66.
    [33]王建,聂国隽,钱若军.第二届全国现代结构工程学术研讨会论文集[C].马鞍山,2002:591-595.
    [34]兰朋.二阶应力作用下梁杆精确有限元方程及其在非线性分析和稳定性计算中的应用[D].哈尔滨:哈尔滨建筑大学学位论文,1996:12-27.
    [35]陆念力,张宏生.计及二阶效应的一种变截面梁精确刚度阵[J].工程力学,2008,25(12):60-64.
    [36] Zhang H S, Lu N L. Large Displacement Analysis of Tapered Beam Structures[J]. Journal of Donghua University,2010,27(1):117-122.
    [37]杨隆宇,李正良.考虑横向支撑刚度影响的组合截面压杆稳定承载力[J].四川大学学报(工程科学版),2011,43(6):29-33.
    [38] Gere J M, Carter W O. Critical Buckling Loads for Tapered Columns [J].Journal of the Structure Division,1962,88(1):1-11.
    [39] Banerjee J R, Williams F W. Exact Bernoulli-Euler Static Stiffness Matrix for aRange of Tapered Beam-Column [J]. International Journal for NumericalMethods in Engineering,1986,23(9):1615-1628.
    [40]楼梦麟,李建元.变截面压杆稳定问题半解析解[J].同济大学学报(自然科学版),2004,32(7):857-860.
    [41] Li G Q, Li J J. A Tapered Timoshenko-Euler Beam Element for Analysis ofSteel Portal Frames [J]. Journal of Constructional Steel Research,2002,58(12):1531-1544.
    [42] Yau J D. Stability of Tapered I-Beams under Torsional Moments [J]. FiniteElements in Analysis and Design,2006,42(10):914-927.
    [43]邓长根,巩俊松.动力失稳的拟静力刚度准则与能量判别准则[J].振动与冲击,2010,29(6):164-169.
    [44]彭英,杨平.结构动力屈曲的研究进展[J].武汉理工大学学报(交通科学与工程版),2007,31(2):328-332.
    [45]李忠学,沈祖炎,邓长根.杆系钢结构非线性动力稳定性识别与判定准则[J].同济大学学报,2000,28(2):148-151.
    [46]邓长根,周毅锋.结构动力失稳的一个实用判别准则[C].上海:第八届全国振动理论及应用学术会议论文集,2003.
    [47] Deanna H G, Jonathan B D. Comparison of Different State Space Definitionsfor Local Dynamic Stability Analyses [J]. Journal of Biomechanics,2009,42(9):1345–1349.
    [48] Virella J C, Godoy L A, Suarez L E. Dynamic Buckling of Anchored SteelTanks Subjected to Horizontal Earthquake Excitation [J]. Journal ofConstructional Steel Research,2006,62(6):521-531.
    [49]王述超,张行,叶志雄,等.超限高层建筑地震作用下的动力稳定性分析[J].振动与冲击,2009,28(4):149-152.
    [50] Bolotin V V. The Dynamic Stability of Elastic System [M]. San Francisco:Holden-Day,1964.
    [51]孙强.竖向谐振载荷下摩擦桩的横向振动性能研究[J].振动与冲击,2006,25(4):85-87.
    [52] Ratko P, Predrag K, Predrag R, et al. Dynamic Stability of a Thin-Walled BeamSubjected to Axial Loads and End Moments [J]. Journal of Sound andVibration,2007,01(3-5):690–700.
    [53] Yeh M K, Kuo Y T. Dynamic Instability of Composite Beams UnderParametric Excitation [J]. Composite Science and Technology,2004,64(12):1885-1893.
    [54]李晓东,王秀丽.屈曲约束支撑的动力稳定性分析[J].华中科技大学学报(城市科学版),2008,25(4):223-226.
    [55] Rosa M A D, Auciello N M, Lippiello M. Dynamic Stability Analysis andDQM for Beams with Variable Cross-Section [J]. Mechanics researchcommunications,2008,35(3):187–192.
    [56] Naguleswaran S. Vibration and Stability of an Euler–Bernoulli Beam with Upto Three-Step Changes in Cross-Section and in Axial Force [J]. InternationalJournal of Mechanical Sciences,2003,45(9):1563-1579.
    [57] Yang X D, Tang Y Q, Chen L Q, et al. Dynamic Stability of AxiallyAccelerating Timoshenko Beam: Averaging Method [J]. European Journal ofMechanics A/Solids,2010,29(1):81-90.
    [58] Mergen H G, Sara B. Non-linear Parametric Vibration and Stability of AxiallyMoving Visco-Elastic Rayleigh Beams [J]. International Journal of Solids andStructures,2008,45(25):6451-6467.
    [59] Mergen H G, Sara B. Non-linear Parametric Vibration and Stability Analysisfor Two Dynamic Models of Axially Moving Timoshenko Beams [J]. AppliedMathematical Modelling,2010,34(10):2850-2859.
    [60]殷学纲.梁的动力稳定性分析的有限元方法[J].应用力学学报,1995,12(4):81-87.
    [61]曲淑英.大型空间框架结构的动力稳定性分析[J].世界地震工程,1998,14(3):44-48.
    [62] Kim J H, Choo Y S. Dynamic Stability of a Free-Free Timoshenko BeamSubjectedto a Pulsating Follower Force [J], Journal of Sound and Vibration,1998,216(4):623-636.
    [63] Mustafa S, Kaan E. Dynamic Stability of a Rotating Pre-Twisted AsymmetricCross-Section Timoshenko Beam Subjected to an Axial Periodic Force [J].International Journal of Mechanical Science,2009,48(6):579-590.
    [64] Mustafa S, Kaan E. The Dynamic Stability of a Rotating AsymmetricCross-Section Timoshenko Beam Subjected to Lateral Parametric Excitation[J]. Finite Elements in Analysis and Design,2006,42(5):454-469.
    [65] Saravia C M, Machado S P, Cortinez V H. Free Vibration and DynamicStability of Rotating Thin-Walled Composite Beams [J]. European Journal ofMechanics A/Solids,2011,30(3):432-441.
    [66] Erdman A G, Sandor G N. Kineto-Elastodynamic a Review of The State of TheArt and Trends [J]. Mechanism and Machine Theory,1972,7(1):19-33.
    [67] Lowen G G, Jandrasits W G. Survey of Investigations into The DynamicBehavior of Mechanisms Containing Links with Distributed Mass andElasticity [J]. Mechanism and Machine Theory,1972,7(1):3-17.
    [68] Erdman A G, Sandor G N, Oakberg R G. A General Method forKineto-Elastodynamic Analysis and Synthesis of Mechanisms [J]. Journal ofEngineering for Industry,1972,94(4):1193-1205.
    [69] Winfrey R C. Elastic Link Mechanism Dynamics [J]. Journal of Engineeringfor Industry,1971,93(1):268-272.
    [70] Midha A, Erdman A G, Frohrib D A. Closed-Form Numerical Algorithm forThe Periodic Response of High-Speed Elastic;Linkages [J]. Journal ofMechanical Design,1979,101(1):154-162.
    [71] Sadler J P, Sandor G N. A Lumped Parameter Approach to Vibration and StressAnalysis of Elastic Linkages [J]. Journal of Engineering for Industry,1973,95(2):549-557.
    [72] Bagci C, Kalaycioglu S. Elastodynamics of Planar Mechanisms Using PlanarActual Finite Line Elements, Lumped Mass Systems, Matrix-ExponentialMethod and the Method of 'Critical-Geometry-Kineto-Elasto-Statics'(CGKS)[J]. Journal of Mechanical Design,1979,101(4):417-427.
    [73] Sunada W, Dubowsky S. The Application of Finite Element Methods to TheDynamic of Flexible Spatial and Co-Planar Linkage Systems [J]. Journal ofMechanical Design,1981,103(7):643-651.
    [74] Nath P K, Ghosh A. Kineto-elastodynamic Analysis of Mechanisms by FiniteElement Method [J]. Mechanism and Machine Theory,1980,15(3):179-197.
    [75]张策.机械动力学[M].第二版.北京:高等教育出版社,2008.
    [76] Luo B, Lu N L, Che R W. Solution and Application about Conversion Tensorof Motion in Dynamic Modeling of6-HTRT Parallel Robot [J]. Journal ofDonghua University,2009,26(3):230-234.
    [77]刘建琴,张策,陈树勋,等.电动-弹性连杆机构系统的动力学分析[J].天津大学学报,1999,32(3):265-269.
    [78]李兆军,蔡敢为,黄其柏.电动机-弹性连杆机构系统参激振动的耦合研究[J].中国机械工程,2005,16(22):2049-2051,2055.
    [79]李兆军,蔡敢为,黄其柏.电动机-弹性连杆机构系统谐振机理研究[J].振动工程学报,2006,19(1):93-97.
    [80]刘建琴,张策,王玉新等.变长度曲柄-连杆机构的动力学分析[J].机械工程学报,2000,36(4):41-44.
    [81] Song Y M, Zhang C, Yu Y Q. Neural Networks Based Active Vibration Controlof Flexible Linkage Mechanisms [J]. ASME Journal of Mechanical Design,2001,123(2):266-271.
    [82] Zhang X P, Yu Y Q. Motion Control of Flexible Robot Manipulators Viaoptimizing Redundant Configurations [J]. ASME Journal of MechanicalDesign,2001,36(7):883-892.
    [83]李鹏飞,刘宏昭,原大宁.弹性连杆机构振动的模型预测主动控制研究[J].中国机械工程,2008,19(3):266-271.
    [84]鲁开讲,师俊平,张锋涛,等.平面3自由度并联机构弹性振动主动控制研究[J].体统仿真学报,2011,23(3):588-592.
    [85]姚林晓,师素绢,董贵恒.柔性多体系统动力学研究方法及其发展[J].华北水利水电学院学报,2010,31(5):97-100.
    [86] Schielen W. Multibody System Handbook [M]. Springer-Verlag,1990:1-45.
    [87]黄文虎,陈滨,王照林.一般力学(动力学、振动与控制)最新进展[M].北京:科学出版社,1994.
    [88]刘铸永,洪嘉振.柔性多体系统动力学研究现状与展望[J].计算力学学报,2008,25(4):411-416.
    [89]戎保,芮筱亭,王国平,等.多体系统动力学研究进展[J].振动与冲击,2011,30(7):178-187.
    [90]蒋建平,李东旭.带太阳帆板航天器刚柔耦合动力学研究[J].航空学报,2006,27(3):418-422.
    [91]刘锦阳,崔麟.热载荷作用下大变形柔性梁刚柔耦合动力学分析[J].振动工程学报,2009,22(1):48-53.
    [92] Shabana A A. Dynamics of Multibody System [M].3rd edition. New York:Cambridge university press,2005.
    [93] Yoo W S, Lee J H, Park S J, et al. Large Oscillations of a Thin CantileverBeam Physical Experiments and Simulation Using The Absolute NodalCoordinate Formulation [J]. Nonlinear Dynamics,2003,34(1-2):3-29.
    [94] Yoo W S, Lee J H, Park S J, et al. Deflection Analysis of a Thin PlateComputer Simulation and Experiments [J]. Multibody System Dynamics,2004,11(2):185-208.
    [95]田强,刘铖,刘丽坤,等.柔性抓取机械臂-太阳翼耦合动力学与控制研究[J].系统仿真学报,2013,25(7):1609-1616.
    [96]田强,张云清,陈立平,等.基于增广拉格朗日方法的多柔体动力学研究[J].系统仿真学报,2009,21(24):7707-7710.
    [97] Oghbaei M, Anderson K S. A New Time-Finite-Element Implicit IntegrationScheme for Multibody System Dynamics Simulation [J]. Computer Methodsin Applied Mechanics and Engineering,2006,195(50-51):7006-7019.
    [98] Rill G. A Modified Implicit Euler Algorithm for Solving Vehicle DynamicEquations [J]. Multibody System Dynamics,2009,15(1):1-24.
    [99] Yoo W S, Kim K N, Kim H W, et al. Developments of Multibody SystemDynamic Computer Simulations and Experiments[J]. Multibody SystemDynamics,2007,18(1):35-58.
    [100] Rong B, Rui X T, Wang G P. New Method for Dynamics Modeling andAnalysis on Flexible Plate Undergoing Large Overall Motion [J]. Proceedingsof the institution of Mechanical Engineers, Part K: Journal of Multi-bodyDynamics,2010,224(1):33-44.
    [101]吴根勇,和兴锁, Frank P.大变形柔性多体系统非线性动力学数值仿真与实验研究[J].实验力学,2011,26(1):103-105.
    [102]顾迪民.工程起重机[M].第二版,北京:中国建筑工业出版社,1988.
    [103] Lu N L, Zhang H S, Lan P. Precise Theoretical Solution of Euler’s CriticalLoad for Crane Telescopic Boom with Cylinder Supporting[C]. Proceedingsof the2007International Conference on Advances in Construction Machineryand Vehicle Engineering,2007:527-530.
    [104]刘士明,陆念力,寇捷.起重机箱形伸缩臂整体稳定性分析[J].中国工程机械学报,2010,8(1):29-34.
    [105] Wang A L,Jiang T, Dong Y N, et al. Study on Structural Instability of LargeCrawler Crane Boom Structure [C]. International Conference on WTCS2009,AISC116,2009:401-406.
    [106] Pedro D. S, Ana M. G C, Frans S. K B. Stability Design of Crane Columns inMill Buildings [J]. Engineering Structures,2012,42:51-82.
    [107]康亚东,孙景惠,顾迪民.液压油缸的动力稳定性分析[J].哈尔滨建筑大学学报,1996,29(3):79-85.
    [108]孙强,夏鹭平.阶梯形受压柱的动力稳定性[J].工业建筑,2000,30(7):74-76.
    [109] Lu N L. Eine Methode Zum Aufbau Ebener Elasto-kinetischer Modelle FuerLenkerkrane [D]. Dissertation Technische Hochschule Darmstadt,1988.
    [110]夏拥军,缪谦.计及二阶效应的门座起重机变幅工况动力学分析[J].计算力学学报,2010,27(4):711-715.
    [111]夏拥军.计及二阶效应的柔性杆系动态分析及在起重机械中的应用[D].哈尔滨:哈尔滨工业大学学位论文,2007:51-94
    [112]王鹏程,方勇纯,相吉磊,等.回转旋臂式船用起重机的动力学分析与建模[J].机械工程学报,2011,47(20):34-40.
    [113]任会礼,王学林,胡于进,等.考虑吊臂弹性的锚泊起重船动力特性研究[J].机械工程学报,2009,45(10):42-47.
    [114]王繁生.带式输送机柔性多体动力学分析方法研究[D].徐州:中国矿业大学学位论文,2010:98-112.
    [115] Lu N L, Luo B, Xia Y J. Dynamic Analysis of Kineto-Elastic Beam Systemwith Second-order Effect [J]. Journal of Donghua University,2009,26(3):313-318.
    [116]赵欣,陆念力,罗冰.计及二阶效应的大位移柔性梁杆系统动力学分析[J].中国工程机械学报,2010,8(1):7-13.
    [117]嘉红霞,李万莉, Singhose W.考虑臂架弹性的动臂起重机动力学建模及振动分析[J].振动与冲击,2010,29(12):136-140.
    [118]徐彦,刘杰,孙光复.大型起重机回转过程动态特性分析[J].机械与电子,2007,(4):3-6.
    [119]刘杰,戴丽,赵丽娟,等.混凝土泵车臂架柔性多体动力学建模与仿真[J].机械工程学报,2007,43(11):131-135.
    [120]孙光复,黄军祥.工程起重机带载变幅时的动态行为研究[J].沈阳建筑大学学报(自然科学版),2006,22(3):524-527.
    [121]孙光复,张立山.桁架臂式工程起重机回转运动的多体动力学仿真[J].沈阳建筑大学学报(自然科学版),2004,20(4):348-351.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700