大数据时代基于物联网和云计算的地质信息化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从地质信息化工作即将进入大数据时代的角度出发,以大数据(Big Data)、物联网(Internet of Things)、云计算(Cloud Computing)等前沿技术在地质调查领域信息化工作的应用作为研究对象,深入研究了各种技术对推动地质信息化产生的影响及应用方案,提出了包括地质物联网、地质云计算平台、一体化显示等内容,探讨了相关的技术路线、关键技术、框架体系、应用模式等。本文的主要贡献如下:
     (1)首次系统化地提出了大数据时代物联网、云计算等技术在地质调查领域的融合性技术框架;
     (2)初次提出了地质物联网的框架体系、物理部署,重点展开探讨了物联网技术在地质资料管理、地质装备管理方面的应用方案,将其具体应用到公路高边坡地质灾害监测系统建设项目中,还展望了物联网在地质调查领域的应用前景;
     (3)提出了地质云计算平台的构建方法,设计了地质云计算平台总视图、体系结构,基于虚拟化技术实现了软硬件资源管理,并给出了地学云存储搭建方法,基于SOA初步搭建地质云计算平台的原型系统;
     (4)提出了地质信息“一张图”等设计理念,将地质图、矿业权核查等分布式部署的各类地质服务应用RIA技术实现一站式调用。
     研究成果已经在“找矿突破战略行动”的整装勘查方案编制、全国矿业权实地核查、首都物联网示范工程等项目中推广应用,实现了预期研究工作目标,达到了产学研相结合的目的和应用效果。
The data take place ‘big explosion’ under the promotion of development of Internet ofThings, cloud computiong and mobile internet. Its scale rises exponentially and it entersthe big data era using ZB as the basic unit(1ZB=1024EB=1024×1024PB=1024×1024×1024TB). The hot focus of research is to dig ‘big data’ to mine some ‘rich deposits’those hide its inner. It brings a series of challenges and opptunities from data acquision totransportation, storage, manipulation, share and analysis of data. The geologicalinformationization level will improve much after integrated IoT and Cloud Computingtogether. This paper does a lot of study on domestic and foreign research conditions aboutbig data, Internet of Things and cloud computing and then expands the research on thesetechnolgoies in the geological survey field combining with the requirements of geologicalsurvey informationization.
     The framework of full process informationization is raised in this paper that fromwild data collection to store, organization, and management and field application based onthose technologies such as IoT and cloud computing and so on.
     The whole framework and physical deployment of Geological Internet of Things(GIoT) is designed with the enough understanding of application status in geologicalsurvey field and needs of GIoT. Thinking about the application needs of nationalgeological materials to propose to use RFID, sensor and robots to implement orderedintelligent management for geological material. This paper put forward a scientificsolution to manage geological equipments based on IoT. This solution is applied to thefirst IoT project in Beijing “The system construction of geological disaster monitoringabout highway high slope”. Using some IoT devices such as udometer, tensionmeter andcamera to collect data in the field, and then transfer data through the network. After havereceived the data, those can be showed in two or three dimension, filtered and earlywarning analysis. Finally the paper forecast the application trend in the geological surveyfield.
     Cloud computing is used as technology method, massive geological data storagemanagement and analysis application as motive power,’information find deposit’ in prospecting breakthrough strategic action of MLR as holds for hands,the software andhardware environment of the key laboratory of geological information technology of MLRas cusion to raise the construction methods of geological cloud computing (GCC)platform. Then it designed the whole view and architecture of GCC. The geological cloudstorage solution uses Xen that one of visualization methods to realize the resourcemanagement of software and hardware. The geological cloud computing platform(GCCP)is constructed based on Service-Oriented Architecture. The platform integrates and sharesa great number of distributed web services with geological information ‘One Map’ conceptand contributes the management methods for services ring and show tactics of data fusion.The services are issued by various servers that content of those comes from geologicalmap, geological disasters, mining rights check and so on. The geological information onestop application(GIOSA) is programmed by rich internet application technology andusers can access the resources in the cloud through the network only without think aboutthe data come from where or IoT.
     Using the needs of mining rights edit and review of key geological exploration andbusiness requirements of fornt-line staff and experts to design the rules of reasonableanalysis of mining rights set considering geological background.
     The development and review aided system for mining rights set(DRASMRS) isdeveloped by ‘One Map’ concept and it integrates geology,mineral,gravity, natural heavyminerals, magnetic, remote sensing data into system smoothly. DRASMRS focus on thegeological characteristics and ore-controlling factors of deposits in the mining rights setarea. The system completed the edit and review works of the second batch of31miningrights set solutions in the country. The results show the system can raise work efficiencyand accuracy and scientificity of mining rights set dramatically. The data check tool ofmining rights check is designed and developled based on rule base. The tool is used in thenationwide and the data quality of about150thousand mining rights is guaranteedeffectively.
引文
[1]李国杰,程学旗.大数据研究:未来科技及经济社会发展的重大战略领域——大数据的研究现状与科学思考[J].中国科学院院刊,2013,27(6):647~657.
    [2]刘茜.开采大数据.中国经济时报,2012-7-6,11:1~2.
    [3]冯伟.大数据时代面临的信息安全机遇和挑战[J].中国科技投资,2012,34:49-53.
    [4]邬贺铨.大数据时代的机遇与挑战[J].求是杂志,2013,4:47~49.
    [5]维基百科. Big_data[EB/OL].2012,http://en.wikipedia.org/wiki/Big_data.
    [6]陈纪英.大数据革命:信息时代寻宝指南[J].中国新闻周刊,2013,03:49~-54.
    [7]王珊,王会举,覃雄派,等.架构大数据:挑战、现状与展望[J].计算机学报,2011,34(10):1741~1752.
    [8]覃雄派,王会举,杜小勇,等.大数据分析——RDBMS与MapReduce的竞争与共生[J].软件学报,2012,23(1):32~45.
    [9]黄哲学,曹付元,李俊杰,等.面向大数据的海云数据系统关键技术研究[J].网络新媒体技术,2012,1(6):20~26.
    [10]贾俊芳,张日权.基于分布式的大数据集聚类分析[J].计算机工程与应用,2008,133~135.
    [11] Rick Weiss. Obama Administration Unveils "Big Data" Initiative: Announces$200Million inNew R&D Investments.[EB/OL]. Office of Science and Technology Policy Executive Office ofthe President,2012,http://www.whitehouse.gov/sites/default/files/-microsites/ostp/big_data_press_release_final_2.pdf
    [12]Howard Wactlar. Big Data R&D Initiative [EB/OL]. National Science Foundation,2012,http://www.nist.gov/itl/ssd/is/upload/NIST-BD-Platforms-05-Big-Data-Wactlar-slides.pdf
    [13]Whitehouse.Big Data is a Big Deal[EB/OL].2012,http://www.whitehouse.gov/blog/2012/03/29/big-data-big-deal.
    [14]贾晓丰.基于物联网的大数据量实时信息交换策略研究[J].电子政务,2011,4:16~20.
    [15]闫成印.物联网带动大数据发展[J].互联网研究,2012,30~31.
    [16]赵鹏大.大数据时代需重视数字地质研究[EB/OL].2013, http://www.cgs.gov.cn/-xwtzgg/jrgengxin/20198.htm
    [17]李钦径.地质调查拥抱“大数字”时代[EB/OL].2013,http://www.cgs.gov.cn/-xwtzgg/jrgengxin/20073.htm.
    [18]国土资源部.全国国土资源“一张图”及其核查数据库建设总体方案(征求意见稿)[R].国土资源部,2009,2~4。
    [19]张爱民.国土资源一张图数据管理及服务平台的设计与研究[J].现代测绘,2010,33(4):41~42.
    [20]陈康,郑纬民.云计算:系统实例与研究现状[J].软件学报,2009,20(5):1337~1348.
    [21]赵华茗,李春旺,李宇,等.云计算及其应用的开源实现研究[J].数字图书馆,2009,9:1~8.
    [22]崔晓军,薛永生.数据仓库集成环境研究与实现[J].计算机应用研究,2006,12:178~184.
    [23]王永志,杨毅恒,高光大,陈苗.地学空间数据仓库构建技术[J].地质通报,2008,27(5):713~719.
    [24]王青山,汶博.基于RIA的网络GIS的发展与应用[J].测绘科学技术学报,2006,23(2):115~118
    [25]王永志,潘懋,何文娜.基于ArcGIS和SOA的国家级油气数据库管理系统设计与实现[J].吉林大学学生:地球科学版,2009,39(5):953~958。
    [26]王永志,潘懋,焦鹏程,等。塔里木盆地蒸发岩岩性判别模型及其实现过程[J].地球学报,2009,30(5):679~683。
    [27]薛顺荣,肖克炎,丁建华.基于MRAS的证据权重法在香格里拉地区的综合信息成矿预测[J].吉林大学学报:地球科学版,2008,38(5):738~744.
    [28]王永志,杨毅恒,初娜,等.德兴铜矿大坞河流域土壤Cu元素形态的聚类分析[J].地球物理学进展,2008,23(1):233~236。
    [29]国土资源部.找矿突破战略行动纲要(2011—2020)[R].北京:国土资源部,2011:1~4.
    [30]Kevin Ashton. That "Internet of Things" Thing [EB/OL]. RFID Journal,2009, http://www.rfidjournal.com/atticle/view/4986.
    [31]IBM. The Smart City[EB/OL]. IBM Corporation,2008,http://www.ibm.com/-thesmartercity.
    [32]IBM. Smarter Planet[EB/OL]. IBM Corporation,2008,http://www.ibm.com/-smarterplanet/-us/en/overview/ideas/index.html?re=spf.
    [33]Ovidiu Vermesan,Peter Friess. Internet of Things-Global Technological and Societal Trend[M].River Publisher,2011.
    [34]The National Intelligence Council. Disruptive Civil Technologies Six Technologies with PotentialImpacts on US Interests out to2025[EB/OL]. http://www.dni.gov/nic/confreports_disruptive_tech.html.
    [35]Technology Review.10Emerging Technologies that will Change the World. http:而却步//www.technologyreview.com/Infotech/13060.
    [36]Noboru Koshizuka. Dreaming the Future of the Internet of Things[EB/OL]. http://www.eurojapan-ict.org/ppts_forum_July/Koshiz-uka.pdf,2009.
    [37] HISHAM M,PETER J,KENICHI S, et al., Distributed optical fiber strain sensing in a secantpiled wal[C],Proceeding of the Seventh International Symposium on Filed Measurements inGeomechanics,2007,22~31.
    [38]Harald Sundaeker,Patrick Guillemin,et al. Vision and Challenges for Realizing the Internet ofThings.publications Office of the European Union.2010.
    [39] EPoSS.Internet of Things in2020: Roadmap for the future[EB/OL].http://www.iot-visitthefuture.eu/fileadmin/documents/researchforeurope/270808_IoT_in_2020_Workshop_Report_V1-1.pdf
    [40]Gerald Santucci. The Internet of Things: A Window to Our Future[EB/OL]. http://www.theinternetofthings.eu/content/g%C3%A9rald-santucci-internet-things-window-our-future.
    [41]Gao Jia,Liu Fangli,Ning Huansheng,et al. RFID Coding,Name and Information Service forInternet of Things[J].CCWMSN07,2007.
    [42]环球交通视窗.智能交通的应用:井然有序的首尔[EB/OL].2010,http://www.fjjt.gov.cn:8000/ShowArticle.asp?ArticleID=4535.
    [43]第十七届智能交通世界大会.无处不在的智能交通[EB/OL].2010,http://-www.itschina.org/UserFiles/2010-4/26/2010426152747638.pdf.
    [44]陈康,郑纬民.云计算:系统实例与研究现状[J].软件学报,2009,20(5):1337-1348.
    [45] David Chappell. Introducing the Azure Services Platform[R].Microsoft Corporation,2008.
    [46] K. Keahey, R. Figueiredo, J. Fortes, T. Freeman1, M. Tsugawa University ofChicago,2University of Florida:Science Clouds: Early Experiences in Cloud Computing forScientific Applications
    [47]Xen. Xen in Cloud[EB/OL].http://www.xen.org/products/cloudxen.html,2010.
    [48]VMWare. Cloud Computing Services with VMWare Virtualization-Cloud Infrastructure[EB/OL].http://www.wmware.com/solutions/cloud-computing/,2010.
    [49]Citrix. Complete, cost-effective datacenter and server virtualization[EB/OL]. http://www.citrix.com/English/ps2/products/feature.asp?contentID=2300351,2010.
    [50]林雪淋.ESRI中国(北京)有限公司.ArcGIS Server与云计算[M].http://www.esrichina-bj.cn,2010.
    [51]Peter Folger. Geospatial Information and Geographic Information Systems (GIS): Current Issuesand Future Challenges[EB/OL].http://www.fas.org/sgp/crs/misc/R40625.pdf,2009.
    [52]NSDI. Towards a National Geospatial Strategy and Implementation Plan[EB/OL]. http://www.fgdc.gov/policyandplanning/future-directions/-reports/FD_Final_Report.pdf,2004.
    [53]Sierra Systems Group Inc. GeoNOVA Portal Architecture and Implementation Plan[R].http://www.gov.ns.ca/snsmr/land/geonova/pdf/Geo-NOVAPortal-Vision_Final_20030721.pdf,2003.
    [54]GeoConnections. The Canadian Geospatial Data Infrastructure[EB/OL].http://www.geoconnections.org/publications/tvip/arch_E/CGDI_Architecture_final_E.html,2005.
    [55]U.S. Geological Survey. U.S. Geological Survey Science in the Decade2007–2017[EB/OL],http://www.usgs.gov/,2007.
    [56]British Geological Survey. BGS Science Strategy2009–2014[EB/OL]. http://www.bgs.ac.uk/about/strategy2009-2014.html,2009.
    [57]王志良.物联网现在与未来[M].机械工业出版社,2010.
    [58]周洪波.物联网技术、应用、标准和商业模式[M].电子工业出版社,2011.
    [59]黄桂田,龚六堂,张全升.中国物联网发展报告(2011)[M].社会科学文献出版社,2011.
    [60]温家宝.2010年政府工作报告[EB/OL].http://www.gov.cn/2010lh/con-tent_1555767.htm.
    [61]北京市政府.建设中关村国家自主创新示范区行动计划(2010-2012年)[R].2010.
    [62]北京市交通委员会.极端天气条件下保持道路交通畅通物联网示范工程项目建议书[R].2011,4~15.
    [63]北京市交通委员会.极端天气条件下保持道路交通畅通物联网示范工程项目设计[R].2012,1~20.
    [64]北京市地质研究所.公路高边坡地质灾害监测系统建设[R].2012,10~25.
    [65]中国物联网研究发展中心.中国物联网产业发展年度蓝皮书(2010),2010.
    [66]刘强,崔莉,陈海明.物联网关键技术与应用[J].计算机科学,2010,37(6):1~4,10.
    [67]孙其博,刘杰,黎善意.物联网:概念、架构与关键技术研究综述[J].北京邮电大学学报,2010,33(3):1~9.
    [68]张新程,付航,李天璞,等.物联网关键技术[M].人民邮电出版社,2011.
    [69]刘海涛.物联网技术应用[M].机械工业出版社,2011.
    [70]王桂芬.坚持不懈探索海洋立体监测技术[EB/OL].中国科学院,2010,http://www.-scsio.ac.cn/wh/cxwk/201007/t20100709_2900303.html.
    [71]唐宇,何凯涛,肖侬,等.国家地质调查应用网格体系及关键技术研究[J].计算机研究与发展,2003,40(12):1682~1688.
    [72]吕霞,李丰丹,李健强,等.中国地质调查信息网格平台的分布式空间数据服务技术[J].地质通报,2012,31(9):1520~1530.
    [73]Brown A W,Johnston S K,Larsen G. Practice tutorial of using IBM rational software platform todevelop SOA[R].IBM Corporation,2006.
    [74]Wiki.Service-oriented architecture [EB/OL].http://en.wikipedia.org/-wiki/Service-oriented_architecture,2010.
    [75]王永志,潘懋,何文娜.基于ArcGIS和SOA的国家级油气数据库管理系统设计与实现[J].吉林大学:地球科学版(EI),2009,39(5):953~958.
    [76]王永志,潘懋,何文娜,等.基于面向服务体系结构(SOA)的钾盐资源潜力系统[J].地质通报,2009,28(6):29~32.
    [77]王永志,张道勇,潘懋.基于SOA和GIS的石油潜力数据库系统[J].吉林大学:信息科学版,2009,27(4):371~376.
    [78]国土资源部.全国国土资源“一张图”及其核查数据库建设总体方案(征求意见稿)[R],国土资源部,2009,1~5.
    [79]国土资源部.“金土工程”建设二期方案(征求意见稿)[R],国土资源部,2009,2~8.
    [80]黄华坤,易燕妮,吴晓佳.基于一张图的国土资源档案服务平台研究与实践[J].测绘与空间
    [81]李伯虎,柴旭东,侯宝存,等.一种基于云计算理念的网络化建模与仿真平台—“云仿真平台”[J].系统仿真学报,2009,21(17),5292~5299.
    [82]刘鹏程,陈榕.面向云计算的虚拟机动态迁移框架[J].计算机工程,2010,36(5):37~39.
    [83]赵华茗,李春旺,李宇,等.云计算及其应用的开源实现研究[J].数字图书馆,2009,9:1~8.
    [84]王杨,严远亭.基于P2P技术的云计算教育服务平台设计与实现[J]计算机教育,2010,16:147~150.
    [85]郑湃,崔立真,王海洋,等.云计算环境下面向数据密集型应用的数据布局策略与方法[J].计算机学报,2010,33(8):1472~1480.
    [86]郭本俊,王鹏,陈高云,等.基于MPI的云计算模型[J].计算机工程,2009,35(24):84~86.
    [87]王青山,汶博.基于RIA的网络GIS的发展与应用[J].测绘科学技术学报,2006,23(2):115~118.
    [88]汪林林,胡德华,王佐成,等.基于Flex的RIA WebGIS研究与实现[J].计算机应用2008,28(12):3257~3260.
    [89]Rong Yao, Wang Jiandong.RIA–based Visualization Platform of Flight Delay IntelligentPrediction[J].2009ISECS International Colloquium on Computing, Communication, Control,and Management,2009.
    [90]马建.物联网技术概论[M].机械工业出版社,2011.
    [91]徐勇军.物联网实验教程[M].机械工业出版社,2011.
    [92]David Chappell. Introducing the Azure Services Platform[R].Microsoft Corporation,2008.
    [93]李德毅.云计算技术发展报告[M].电子工业出版社,2011.
    [94]刘鹏.云计算[M].电子工业出版社,2011.
    [95]殷跃平,中国滑坡防治工程理论与实践[J].水文地质工程地质,1998,25(1):5-9.
    [96]李超岭.数字地质调查系统操作指南(上、中、下)[M].地质出版社,2011.
    [97]朱鸿鹄,殷建华,洪成雨,等.基于光纤传感的边坡工程监测技术[J].工程勘察,2010,38(3),6~14.
    [98]罗志会.大量程分布式光纤传感器的研究与应用[J].光电子激光,2010,21(3),851~854.
    [99]王永志,潘懋,何文娜,等.基于面向服务体系结构(SOA)的钾盐资源潜力系统[J].地质通报,2009,28(6):29~32.
    [100]王永志,张道勇,潘懋.基于SOA和GIS的石油潜力数据库系统[J].吉林大学:信息科学版,2009,27(4):371~376.
    [101]国土资源部.关于进一步完善矿业权管理促进整装勘查的通知[R].北京:国土资源部,2011:1~3.
    [102]吴文君.关于地质找矿整装勘查工作的几点认识[J].中国矿业,2011,20(2):64-66.
    [103]朱清,余振国,曾凌云.关于整装勘查区矿业权管理综合改革的思考[J].中国矿业,2011,20(11):29~31.
    [104]丁全利.首批整装勘查区矿业权设置方案评审[EB/OL].北京:国土资源部,2012[2012-10-10].http://www.mlr.gov.cn/xwdt/jrxw/201106/t20110609_876622.htm.
    [105]佘宏全,丰成友,张德全,等.西藏冈底斯中东段矽卡岩铜-铅-锌多金属矿床特征及成矿远景分析[J].矿床地质,2005,24(5):508~520.
    [106]李绪俊,郗爱华,陈静.脉状金矿定位预测的关键--主控矿因素分析[J].吉林大学学报:地球科学版,2008,38(5):731~737.
    [107]杨小峰,罗刚.云南镇康地区芦子园铅锌矿床控矿因素浅析[J].地质通报,2011,30(7):1137~146.
    [108]方维萱,胡瑞忠,谢桂青,等.云南墨江镍金矿床主要控矿因素分析与研究[J].矿物学报,2001,21(1):80~88.
    [109]廖桂香,许亚明,付宝霞.青海省金矿综合信息预测[J].吉林大学学报:地球科学版,2006,36(1):44~48.
    [110]刘志远,徐学纯.辽东青城子金银多金属成矿区综合信息找矿模型及找矿远景分析[J].吉林大学学报:地球科学版,2007,37(3):437~443.
    [111]王永志,潘懋,何文娜,等.基于面向服务体系结构(SOA)的钾盐资源潜力系统[J].地质通报,2009,28(6):29~32.
    [112]王永志,张道勇,潘懋.基于SOA和GIS的石油潜力数据库系统[J].吉林大学:信息科学版,2009,27(4):371~376.
    [113]徐兴旺,蔡新平,张宝林,等.滇西北衙金矿矿床成因类型[J].矿床地质,2006,25(增刊):201~204.
    [114]和文言,喻学惠,莫宣学,等.滇西北衙多金属矿田矿床成因类型及其与富碱斑岩关系初探[J].岩石学报,2012,28(5):1401~1412.
    [115]肖晓牛,喻学惠,莫宣学,等.滇西北衙金多金属矿床成矿地球化学特征[J].地质与勘探,2011,63(6):8~11.
    [116]郭远生,曾普胜,杨伟光,等.北衙金多金属矿床地质特征与成因[J].中国工程科学,2005,7(增刊):218~223.
    [117]全国矿业权实地核查项目办公室.全国矿业权实地核查数据验收技术要求[R].中国地质调查局发展研究中心,2010.
    [118]全国矿业权实地核查项目办.全国矿业权实地核查工作指南及技术要求[M].中国大地出版社,2008.10.
    [119]全国矿业权实地核查项目办公室.全国矿业权实地核查数据采集技术要求[R].中国地质调查局发展研究中心,2009.
    [120]何文娜,王永志,李喜宁,等.全国矿业权实地核查成果数据验收系统研发[J].地理信息世界,2011,5:19~22.
    [121]王永志,林燕,李景朝,郭佳.全国矿业权实地核查数据采集与信息系统建设[J].中国矿业,2011,20(7):45~49.
    [122]王永志,林燕,何文娜,等.基于CAD的单个矿业权空间数据成果采集系统研发[J].地理信息世界,2011,5:15~18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700