忆阻电路系统的建模与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
忆阻器的成功研制为电子电路的设计提供了新的途径并使该电路具有新的功能.其非易失性可以更好地解决神经计算中所面临的问题和挑战.忆阻器将会在人工神经网络的学习和训练中起到非常重要的作用,而随着人工神经网络的发展,忆阻器也将会在模糊逻辑,基因计算、和神经-模糊系统中起关键作用.因此,基于忆阻器的复杂系统的建模和控制问题成为了忆阻器研究的重点和前沿.
     另外,当系统的动态行为变得复杂的时候,就会使得对此时间序列中重复或接近重复的模式的识别变得比较困难,因此使用数据吸引子的重构变得尤为重要.这也是人们为何迫切要去发现混沌系统的原因.然而由于忆阻器的状态依赖性,目前对于基于忆阻器的混沌系统的同步控制相关的研究成果还比较少.
     同时为了从本质上保证整个电路系统的内部稳定性,需要考虑它的无源性问题.在实际基于忆阻器的电路中不可避免存在着噪声扰动和各种时滞.而目前还没有见到关于带混合时滞的随机脉冲系统的无源性研究的相关工作的报道.
     忆阻器最终的用途之一是实现人工智能而广泛应用于人类脑神经网络.但目前为止,基于忆阻器的递归神经网络的电路设计与系统建模,以及相关系统的时滞依赖指数无源性和全局指数同步问题都还是公开问题,值得人们进行深入研究.
     随着忆阻系统的智能化,人们需要对基于忆阻器的智能系统的协调控制进行研究,建立相应的协议以解决控制系统或其他应用之间存在的通讯网络时滞和信息丢失问题.在实际中,往往会遇到在极短的传输时间需要传输大量数据的问题,怎样减少传感器和控制极点之间的通讯已引起人们极大的兴趣.
     基于上述考虑,本文利用Lyapunov稳定性理论、矩阵理论、不等式、模糊化方法等分析工具对忆阻电路系统的建模和控制进行深入系统的研究.研究内容及创新成果包含以下几个方面:
     建立了新的基于忆阻器的电路系统,得到了相应的动力学方程,研究了带有不同参数的基于忆阻器的电路系统的同步问题,以及基于忆阻器的不同电路系统的同步问题.
     研究了一类基于忆阻器的带混合时滞的随机脉冲分段线性系统的无源性问题.采用一个新的Lyapunov-Krasovskii函数来设计控制器,使得闭环系统是全局无源的.控制器的参数可以通过求解相关的线性矩阵不等式(LMI)获得.所得结果也可应用于一般系统.
     讨论了基于忆阻器的递归神经网络的时滞依赖指数无源性问题.在这个过程中,充分考虑了神经元激励函数和时变时滞的信息,与已有相关文献相比,减少了计算量和保守性.同时分析和研究了基于忆阻器的递归神经网络的全局指数同步问题,设计了一种新的基于忆阻器的神经网络,建立了相应的动态方程,并采用并行分布式补偿(PDC)模糊策略来分析此系统,并将所得结论与已有结果进行了比较.
     研究了带事件触发控制器的忆阻系统的分布式控制问题,采用一种新的PDC模糊化方法将复杂的忆阻系统线性化为两个子系统,提出了一种事件触发控制策略来更新控制算法从而镇定忆阻系统,并将所得结果扩展到带量化和网络时滞的系统,控制器只在自身触发时更新,这样就减少了通讯量并降低了控制器的更新频率.
     这些研究工作深刻揭示了基于忆阻器的电路系统的本质特征.既丰富了忆阻器研究的理论成果,又为基于忆阻器的电路实现与应用技术提供了可靠的依据,具有非常重要的应用价值.
The implementation of memristor provides a novel way to design circuits and achievenew functions. The non-volatile property of memristor provides a good chance to meet thechallenges in front of Neuromorphic Computation. And memristor is a promising solutionfor learning and training of Artificial Neural Networks. Along with the development ofArtificial Neural Networks, the memristor will play a key role in the fuzzy logic, geneticalgorithm and neuro-fuzzy systems. Therefore, modeling and control of memristor-basedcomplex system becomes the focus of memristor research.
     Otherwise, the complex the dynamical behaviors of systems become will make it diffi-cult to recognize the pattern of the model in time serize, therefore, it is urgent to employ thereconstruction of the data attractors. This is the cause why people plug into the discoveryof chaotic systems. However, as the state-dependence of memristor, there are few works onthe research of synchronization of memristor-based chaotic systems.
     Meanwhile, it is necessary to investigate the passive problem for circuit systems toguarantee the inter stability of the whole system. And there exist noise disturbances andvariable time-delays in the memristor-based circuits. Therefore, it is necessary to investigatethe noise disturbances in the process to study the passivity problem of memristor-baseddelayed piecewise linear systems. However, there are no related works on the passivityproblem of stochastic impulsive system with mixed delays.
     The terminal implementation of memristor will be in artificial intelligent as ArtificialNeural Networks at last. However, the problems about the circuit design and system model-ing of memristor-based recurrent neural networks as well as related delay-dependent expo-nential passivity and global exponential synchronization are open for further discovery.
     As the memristive systems become intelligent, it is necessary to investigate the coop-eration problem of memristor-based intelligent systems and design corresponding protocolsto solve the problems of existing delays and data losses in the communication networksbetween the control systems or other applications. Then how to reduce the communicationbetween the sensors and control nodes evokes researchers great interesting.
     Based on the above discussion, Lyapunov stability theory, matrix theory, inequality,fuzzy method are employed to investigate the modeling and control of memristive circuitsystems. The main contents and inventions include:
     New memristor-based circuit systems, as well as corresponding dynamical equationsare set up. Then, we investigate the synchronization problem between circuits with differ- ent parameters, as well as different circuits, and study the passivity problem of memristor-based stochastic piecewise systems with mixed delays. A controller is designed by a newLyapunov-Krasovskii functional to make the closed system global passive. The gains of thecontroller can be obtained by the related LMIs. And the obtained results can be extended togeneral systems.
     And the delay-dependent exponential passivity problem of memristor-based recurrentneural networks has been discussed with the information of the neural activation functionaand varying-time delays. Compared with existing references, the obtained results reducecomputational burdens and conservativeness. Furthermore, we design a new memristor-based recurrent neural networks, set up correponding dynamical equation, employ PDCfuzzy strategy to study these networks, and investigate the global exponential synchroniza-tion problem of these networks. Furthermore, we compare the obtained results with existingones.
     Then, we study the distributed event-triggered control of memristive systems. First,a new PDC fuzzy method is employed to linearize the complex memristive systems intotwo subsystems, then, an event-triggered control strategy is taken to update the controller tostabilize the memristive systems, and the obtained results are extended to the systems withquantization and network induced delays, and the controller is updated only at its own eventtimes, this will reduce the communication and the update frequency of the controller.
     All these works deeply discovery the properties of memristor-based circuit system,which will promot the study of memristor, and provide reliable clues for the implementationand application of memristor-based circuits.
引文
[1] Chua L. Memristor-The missing circuit element. IEEE Transactions on Circuits Theory,1971,18:507-519.
    [2] Strukov D, Snider G, Stewart D, Williams R. The missing memristor found. Nature,2008,453:80-83.
    [3] Wing J. Computational thinking and thinking about computing. Philosophical Transactions of theRoyal Society A,2008,366:3717-3725.
    [4] Noorden R. Memristor is electronics’ missing link. Chemistry World,2008,5:25.
    [5] Itoh M, Chua L. Memristor oscillators. International Journal of Bifurcation and Chaos,2008,18:3183-3206.
    [6] Goknar I. Models and modeling: be careful and use your imagination. IEEE Antennas and Propa-gation Magazine,2008,50:215-221.
    [7] Jo S, Kim K, Lu W. High-density crossbar arrays based on a simemristive system. Nano Letters,2009,9:870-874.
    [8] Jo S, Kim K, Lu W. Programmable resistance switching in nanoscale two-terminal devices. NanoLetters,2009,9:496-500.
    [9] Pershin Y, Di Ventra M. Spin memristive systems: spin memory effects in semiconductor spin-tronics. Physical Review B,2008,78:15.
    [10] Chen X, Wu G, Bao D. Resistive switching behavior of Pt/MgO.2ZnO.8O/Pt devices for non-volatile memory applications. Applied Physics Letters,2008,93:9.
    [11] Snider G. Self-organized computation with unreliable, memristive nanodevices. Nanotechnology,2009,189:36.
    [12] Tulina N, Borisenko I, Sirotki V. Reproducible resistive switching effect for memory applicationsin hetero contacts based onstrongly correlated electron systems. Physics Letters A,2008,372:6681-6686.
    [13] Beck A, Bednorz J, Gerber C, Rossel C, Widmer D. Reproducible switching effect in thin oxidefilms for memory applications. Applied Physics Letters,2000,77:139.
    [14] Choi B, Jeong D, Kim S, Rohde C, Choi S, Oh J, Kim H, Hwang C, Szot K, Waser R, ReichenbergB, Tiedke S. Resistive switching mechanism of TiO thin films grown by atomic-layer deposition.Journal of Applied Physics,2005,98:033715.
    [15] Yang J, Pickett M, Li X, et al. Memristive switching mechanism for metal/oxide/metal nanode-vices. Nature Nanotechonlogy,2008,3:429-433.
    [16] Wu J, McCreery R. Solid-State electrochemistry in molecule/TiO2molecular hetero junctions asthe basis of the TiO2“Memristor”. Journal of the Electrochemical Society,2009,156:29-37.
    [17] Roska T, Chua L. The CNN universal machine: An analogic array computer. IEEE Transactionson Circuits and Systems II,1993,40:163-172.
    [18] Kyprianidis I, Volos Ch, Stouboulos I. Chaotic dynamics from a nonlinear circuit based on mem-ristor with cubic nonlinearity. AIP Conference Proceedings,2010,1203:626-631.
    [19] Muthuswamy B, Kokate P. Memristor-based chaotic circuits. IETE Technical Review,2009,26:417-429.
    [20] Joglekar Y, Wolf S. The elusive memristor: properties of basic electrical circuits. European Journalof Physics,2009,30:661-675.
    [21] Batas D, Fiedler H. A memristor spice implementation and a new approach for magnetic fluxcontrolled memristor modeling. IEEE Transactions on Nanotechnology,2011,2:250-255.
    [22] Pershin Y, Di Ventra M. Practical approach to programmable analog circuits with memristors.IEEE Transactions on Circuits and Systems I: Regular Papers,2010,57:1857-1864.
    [23] Rak A, Cserey G. Macromodeling of the memristor in SPICE. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2010,29:632-636.
    [24] Petras I. Fractional-order memristor-based Chua’s circuit. IEEE Transactions on Circuits and Sys-tems II: Express Briefs,2010,57:975-979.
    [25] Wang X, Chen Y, Gu Y, Li H. Spintronic memristor temperature sensor. IEEE Electron DeviceLetters,2010,31:20-22.
    [26] Vujisic M, Stankovic K, Marjanovic N, Osmokrovic P. Simulated effects of proton and ion beamirradiation on titanium dioxide memristors. IEEE Transactions on Nuclear Science,2010,57:1798-1804.
    [27] Wang F, Helian N, Wu S, Lim M, Guo Y, Parker M. Delayed switching in memristors and mem-ristive systems. IEEE Electron Device Letters,2010,31:755-757.
    [28] Shin S, Kim K, Kang S. Compact models for memristors based on charge-flux constitutive re-lationships. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2010,29:590-598.
    [29] Shadaram A, Mirzakuchaki S, Zakerian F. A one-memristor cell implementation of a non-volatilememory system. Canadian Journal on Electrical and Electronics Engineering,2012,2:346-352.
    [30] Wang F, Helian N, Wu S, Yang X, Guo Y, Lim G. Delayed switching applied to memristor neuralnetworks. Journal of Applied Physics,2012,111:07E317.
    [31] Kim H, Pd Sah M, Yang C, Roska T, Chua L. Neural synaptic weighting with a pulse-basedmemristor circuit. IEEE Transactions on Circuits and Systems I,2012,59:148-158.
    [32] Howard G, Gale E, Bull L, Costello B, Adamatzky A. Evolution of plastic learning in spikingnetworks via memristive connections. IEEE Transactions on Evolutionary Computation,2012,5:711-729.
    [33] Rajendran J, Manem H, Karri R, Rose G. An energy-efficient memristive threshold logic circuit.IEEE Transactions on Computer,2012,61:474-486.
    [34] Manem H, Rajendran J, Rose G. Stochastic gradient descent inspired training technique for aCMOS/Nano memristive trainable threshold gate array. IEEE Transactions on Circuits and Sys-tems I,2012,59:1051-1060.
    [35] Jo S, Chang T, Ebong I, Bhadviya B, Mazumder P, Lu W. Nanoscale memristor device as synapsein neuromorphic systems. Nano Letters,2010,10:1297-1301.
    [36] Erokhin T, Berzina A, Smerieri A, Camorani P, Erokhina S, Fontana M. Bio-inspired adaptivenetworks based on organic memristors. Nano Communication Networks,2010,1:108-117.
    [37] Farnood M, Shouraki S, Farshad M. Memristive fuzzy edge detector. Journal of Real-Time ImageProcessing,2011,1-11.
    [38] Farnood M, Shouraki S. Programming of memristor crossbars by using genetic algorithm. Proce-dia Computer Science,2011,3:232-237.
    [39] Farnood M, Saeed B. Mixed analog-digital crossbar-based hardware implementation of sign-signLMS adaptive filter. Analog Integrated Circuits and Signal Processing,2011,66:41-48.
    [40] Farnood M, Bagheri S. Memristive Neuro-Fuzzy System. IEEE transactions on systems, man, andcybernetics Part B,2013,43:269-285.
    [41] Keemink, S. Mimicking synaptic plasticity in memristive neuromorphic systems.(2012). Avail-able at: http://igitur-archive.library.uu.nl/student-theses/2012-0831-200644/UUindex.html
    [42] Lorenz E. Deterministic nonperiodic flow. Journal of Atmosphere Sciences,1963,20:130-141.
    [43] Robinson J. Attractor: Encyclopedia of Nonlinear Science. NewYork: Routledge,2005.
    [44] Feng G, Cao J. Master-slave synchronization of chaotic systems with a modified impulsive con-trollers. Advances in Difference Equations,2013,2013(24), DOI:1186/1687-1847-2013-24.
    [45] El-Dessoky M, Yassen M. Adaptive feedback control for chaos control and synchronizationfor new chaotic dynamical system. Mathematical Problems in Engineering,2012,2012(2012):347210.
    [46] Louodop P, Fotsin H, Bowong S, Kammogne A. Adaptive time-delay synchronization of chaoticsystems with uncertainties using a nonlinear feedback coupling. Journal of Vibration and Control,2012, DOI:10.1177/1077546312467811.
    [47] Ji D, Jeong S, Park J, Won S. Robust adaptive backstepping synchronization for a class of uncertainchaotic systems using fuzzy disturbance observer. Nonlinear Dynamics,2012,69(3):1125-1136.
    [48] Lin Z, Wang H, Efficient image encryption using chaos-based PWL memristor. IETE TechnicalReview,2010,27(4):318-325.
    [49] Zhong Q, Yu Y, Yu J. Fuzzy modeling and impulsive control of a memristor-based chaotic system.Chinese Physics Letters,2010,27(2):020501.
    [50] Zames. G. On the input-output stability of time-vayring nonlinear feedbacks ystems. Part I: Con-nections derived using concepts of loop gain, conicity and posivity. IEEE Transactions on Auto-matic Control,1966,11(8):228-239.
    [51] Vidyasagar M. L2stability of intreconnected systems using a reformulation of passivity theorem.IEEE Transactions on Circuits and Systems,1977,24(11):637-645.
    [52] Willems. J. Dissipative dynamical systems. Part I: general theory. Archive for Rational Mechanicsand Analysis,1972,45(5):321-351.
    [53] Willems J. Dissipative dynamical systems. Part II: linear systems with quadratic supply rates.Archive for Rational Mechanics and Analysis,1972,45(5):352-393.
    [54] Arack M. Passivity as a design tool for group coordination. IEEE Transactions on AutomaticControl,2007,52(8):1380-1390.
    [55] Calcev G. Passivity approach to fuzzy control systems. Automatica,1998,33(3):339-344.
    [56] Chua L. Passivity and complexity. IEEE Transactions on Circuits and Systems I,1999,46(1):71-82.
    [57] Florchinger P. A passive system approach to feedback stabilization of nonlinear control stochasticsystems. SIAM Journal on Control and Optimization,1999,37(6):1848-1864.
    [58] Wu C. Synchronization in arrays of coupled nonlinear systems: passivity, circle criterion, andobserver design. IEEE Transactions on Circuits and Systems I,2001,48(10):1257-1261.
    [59] Xie L, Fu M, Li H. Passivity analysis and passification for uncertain signal processing systems.IEEE Transactions on Signal Processing,1998,46(9):2394-2403.
    [60] Yaesh I, Shaked U. Stochastic passivity and its application in adaptive control. IEEE Transactionson Automatic Control,2009,54(1):136-142.
    [61] Fridman E, Shaked U. On delay dependent passivity, IEEE Transactions on Automatic Control,2002,47(4):664-669.
    [62] Gao H, Chen T, Chai T. Passivity and passification for networked control systems. SIAM Journalon Control and Optimization,2007,46(4):1299-1322.
    [63] Liang J, Wang Z, Liu X. Robust passivity and passification of stochastic fuzzy time-delay systems.Information Sciences,2010,180(9):1825-1737.
    [64] Lin W, Byrnes C. Passivity and absolute stabilization of a class of discrete time nonlinear systems.Automatica,1995,31(2):263-267.
    [65] Zhao J, Hill D. Passivity and stability of switched systems: a multiple storage function method.Systems and Control Letters,2008,57(2):158-164.
    [66] Mahmoud M, Ismail A. Passivity and passification of time-delay systems. Journal of MathematicalAnalysis and Applications,2004,292(1):247-258.
    [67]李桂芳,刘星,马艳琴,杨成梧.一类非线性系统的鲁棒无源性综合问题.系统工程与电子技术,2008,28(10):1938-1943.
    [68]邵汉永,冯纯伯.线性离散时滞系统的输出反馈耗散控制.控制理论与应用,2005,22(4):627-631.
    [69]关新平,华长春,唐英干.一类非线性系统的鲁棒无源化控制.控制与决策,2001,16(5):599-608.
    [70]董心壮,张庆灵.时变不确定广义系统的鲁棒无源控制.控制理论与应用,2004,21(4):517-520.
    [71]张先明,吴敏.线性时滞系统的时滞相关无源控制.控制理论与应用,2005,22(3):391-401.
    [72]俞立,潘海天.具有时变不确定线性系统的鲁棒无源控制.自动化学报,1998,24(3):368-372.
    [73]李琴,张庆灵.基于LMI的不确定广义系统鲁棒无源化.系统工程与电子技术,2007,29(3):422-426.
    [74]冯纯伯.应用无源性分析研究时变非线性系统的稳定性.自动化学报,1997,23(11):775-781.
    [75] Yu. W, Li. X. Some stability properties of dynamic neural networks. IEEE Transactions on Circuitsand Systems I,2001,48(2):256-259.
    [76] Yu. W, Li. X. Passivity analysis for dynamic multilayer neuro identifier. IEEE Transactions onCircuits and Systems I,2003,50(1):173-178.
    [77] McCulloch W, Pitts W. A logical calculus of the ideas imminent in nervous activity. Bulletin ofMathematical Biophysics,1943,5:115-133.
    [78] Hebb D O. The Organization of Behaviour. New York: Wiley,1949.
    [79] Rosenblatt F. The perceptron: a probabilistic model for information storage and organization inthe brain. Psychological Reviews,1958,65(6):386-408.
    [80] Widrow B, Hoff M. Adaptive switching circuit, IRE WESCON convertion reeord: part4. Com-puters: Man-machine Systems. Los Angeles,1960.
    [81] Minsky M, Papert S. Perceptrons. Cambridge, MA: MIT Press,1969.
    [82] Hopfield J. Neural networks and physical systems with emergent collective computational abili-ties. Proeeeding Nation Academy Science USA,1982,79(8):2554–2558.
    [83] Hopfield J. Neurons with graded response have collective computational properties like those oftwo-stage neurons. proeeeding Nation Academy Science USA,1984,81(10):3088–3092.
    [84] Tank D, Hopfield J. Simple neural optimization networks: An A/D converter, signal decisioncircuit and a linear programming circuit. IEEE Transactions on Circuits and Systems I,1986,33(5):533-541.
    [85] Rumelhart D, Hinton G, Williams R. Learning representations of back propagating errors. Nature,1986,323(9):533-536.
    [86] Cohen M, Grossberg S. Absolute stability and global pattern formation and parallel memory stor-age by competitive neural networks. IEEE Transactions on Systems, Man, and Cybernetics,1983,13(5):815-821.
    [87] Hinton G, Sejnowski T, Ackley D. Boltzmann machines: constraint satisfaction networks tha learn.Carnegie-Mellon University, Technical Report CMU-CS-84-119,1984.
    [88] Chua L, Yang L. Cellular neural networks: theory. IEEE Transactions on Circuits and Systems I.1988,35(10):1257-1272.
    [89] Chua L, Yang L. Cellular neural networks: applications. IEEE Transactions on Circuits and Sys-tems I.1988,35(10):1273-1290.
    [90] Kosko B. Bidirectional associative memories. IEEE Transactions on Systems, Man, and Cyber-netics,1988,18(1):49-60.
    [91] Smith L. Handbook of Nature-Inspired and Innovative Computing: Integrating Classical Modelswith Emerging Technologies. Springer, New York,2006,433-475.
    [92] Ananthanarayanan R, Eser S, Simon H, Modha D. Proceedings of2009IEEE/ACM ConferenceHigh Performance Networking Computing, Portland, OR, November,2009.
    [93] Choi T, Shi B, Boahen K. An on-off orientation selective address event representation imagetransceiver chip. IEEE Transactions on Circuits and Systems I,2004,51:342-353.
    [94] Indiveri G. A neuromorphic VLSI device for implementing2-D selective attention systems. IEEETransactions on Neural Networks,2001,12:1455-1463.
    [95] Liu S, Douglas R. Temporal coding in a silicon network of integrate-and-fire neurons. IEEE Trans-actions on Neural Networks,2004,15:1305-1314.
    [96] Cao J, Huang D, Qu Y. Global robust stability of delayed recurrent neural networks. Chaos, Soli-tions and Fractals,2005,23:221-229.
    [97] Cao J, Yuan K, Li H. Global asymptotical stability of recurrent neural networks with multiplediscrete delays and distributed delays. IEEE Transactions on Neural Networks,2006,17:1646-1651.
    [98] Chen A, Cao J, Huang L. An estimation of upperbound of delays for global asymptotic stabilityof delayed Hopfield neural networks. IEEE Transactions on Circuits and Systems I,2002,49:1028-1032.
    [99] Hu S, Wang J. Global asmptotic stability and global exponential stability of continuous-time re-current neural networks. IEEE Transactions on Automatic Control,2002,47:802-807.
    [100] Huang H, Cao J. On global asymptotic stability of recurrent neural networks with time-varyingdelays. Applied Mathatics and Computation,2003,142:143-154.
    [101] Shen Y, Wang J. An improved algebraic criterion for global exponential stability of recurrentneural networks with time-varying delays. IEEE Transactions on Neural Networks,2008,19:528-531.
    [102] Wen, S, Zeng, Z. Dynamics analysis of a class of memristor-based recurrent networks with time-varying delays in the presence of strong external stimuli. Neural Processing Letters,2012,35:47-59.
    [103] Wen, S, Zeng, Z, Huang, T. Dynamics behaviors of memristor-based delayed recurrent networks.Neural Computing and Applications,2012, DOI:10.1007/s00521-012-0998-y.
    [104] Zeng Z, Wang J. Global exponential stability of recurrent neural networks with time-varying delaysin the presence of strong external stimuli. Neural Networks,2006,19:1528-1537.
    [105] Zeng Z, Wang J, Liao X. Global asmptotic stability and global exponential stability of neuralnetworks with unbounded time-varying delays. IEEE Transactions on Circuits and Systems II,2005,52:168-173.
    [106] Zhao W, Zhu Q. New results of global robust expoential stability of neural networks with delays.Nonlinear analysis: Real World Applications,2010,11:1190-1197.
    [107] Balasubramaniam P, Kalpana K, Rakkiyappan R. Linear matrix inequality approach for synchro-nization control of fuzzy cellular neural networks with mixed time delays. Chinese Physics B,2012,21:048402.
    [108] Cao J, Chen G, Li P. Global synchronization in an array of delayed neural networks with hybridcoupling. IEEE Transactions on Systems, Man and Cybernatics B,2008,38:488-498.
    [109] Park, M, Kwon, O, Park, J, Lee, S, Cha, E. Synchronization criteria for coupled neural net-works with interval time-varying delays and leakage delay. Applied Mathematics and Compu-tation,2012,218:6762-6775.
    [110] Xing, Z, Peng, J. Exponential lag synchronization of fuzzy cellular neural networks with time-varying delays. Journal of The Franklin Institute,2012,349:1074-1086.
    [111] Zhang, G, Wang, T, Li, T, Fei, S. Exponential synchronization for delayed chaotic neural networkswith nonlinear hybrid coupling. Neurocomputing,2012,85:53-61.
    [112] Willems J. The analysis of feedback systems. MIT Press, Cambridge, MA,1971.
    [113] Li X, Liao X. Passivity analysis of neural networks with time delay. IEEE Transactions on Circuitsand Systems-Part II: Express Briefs,2005,52:471-475.
    [114] Chen Y, Wang H, Xue A, Lu R. Passivity analysis of stochastic time-delay neural networks. Non-linear Dynamics,2010,61:71-82.
    [115] Li H, Wang C, Gao H, Shi P. New passivity results for uncertain discrete-time stochastic neuralnetworks with mixed time delays. Neurocomputing,2012,73:3291-3299.
    [116] Li H, Gao H, Shi P. New passivity analysis of neural networks with discrete and distributed delays.IEEE Transactions on Neural Networks,2010,21:1842-1847.
    [117] Song Q, Liang J, Wang Z. Passivity analysis of discrete-time stochastic neural networks with time-varying delays. Neurocomputing,2009,72:1782-1788.
    [118] Wu Z, Park J, Su H, Chu J. New results on exponential passivity of neural networks with time-varying delays. Nonlinear Analysis: Real World Applications,2012,13:1593-1599.
    [119] Wu Z, Shi P, Su H, Chu J. Passivity analysis for discrete-time stochastic Markovian jump neuralnetworks with mixed time delays. IEEE Transactions on Neural Networks,2011,22:1566-1575.
    [120] Xu S, Zheng W, Zou Y. Passivity analysis of neural networks with time-varying delays. IEEETransactions on Circuits and Systems-Part II: Express Briefs,2009,56:325-329.
    [121] Zhang Z, Mou S, Lam J, Gao H. New passivity criteria for neural networks with time-varyingdelay. Neural Networks,2010,22:864-868.
    [122] Zhu S, Shen Y, Chen G. Exponential Passivity of neural networks with time-varying delay anduncertainty. Physics Letters A,2010,375:136-142.
    [123] Gao Y, Wang L. Asynchronous consensus of continuous-time multi-agent system with intermittentmeasurements. International Journal of Control,2010,83:552-562.
    [124] Moreau L. Stability of multi-agent systems with time-dependent communication links. IEEETransactions on Automatic Control,2005,50: 169-182.
    [125] Hu J, Feng G. Distributed tracking control of leader-follower multi-agent systems under noisymeasurement. Automatica,2010,46:1382-1387.
    [126] Li T, Zhang J. Mean square average-consensus under measurement noises and fixed topologies:necessary and sufficient conditions. Automatica,2009,45:1929-1936.
    [127] Hu J. On robust consensus of multi-agent systems with communication time-delays. Kybernetika,2009,45:768-784.
    [128] Walsh G, Ye H, Bushnell L. Stability analysis of networked control systems. IEEE Transactionson Control System Technology,2002,10:438-446.
    [129] Elia N, Mitter S. Stabilization of linear systems with limited information. IEEE Transactions onAutomatic Control,2001,46:1384-1400.
    [130] De persis C, Sailer R, Wirth F. On a small-gain approach to distributed event-triggered control.Proceeding of18th IFAC World Congress, Milano, Italy, Aug.2011.
    [131] Wang X, Lemmon M. Event-triggering in distributed networked control systems. IEEE Transac-tions on Automatic Control,2011,56:586-601.
    [132] Tabuada P. Event-triggered real-time scheduling of stabilizing control tasks. IEEE Transactions onAutomatic Control,2007,52:1680-1685.
    [133] Dimarogonas D, Frazzoli E, Johansson K. Distributed event-triggered control for multi-agent sys-tems. IEEE Transactions on Automatic Control,2012,57:1291-1297.
    [134] Mazo M, Tabuada P. Decentralized event-triggered control over wireless sensor/actuator networks.IEEE Transactions on Automatic Control,2011,56:2456-2461.
    [135] Seyboth G, Dimarogonas D, Johansson K. Event-based broadcasting for multi-agent average con-sensus. Automatica,2013,49:245-252,2013.
    [136] Fan Y, Feng G, Wang Y, Song C. Distributed event-triggered control of multi-agent systems withcombinational measurements. Automatica, DOI:10.1016/j.automatica.2012.11.010.
    [137] Gu K. An integral inequality in the stability problem of time-delay systems. Proceedings IEEECDC2000, Sydney,2805-2810.
    [138] Zhao, W, Tan, Y. Harmless delay for global exponential stability of Cohen-Grossberg neural net-works. Mathematics Compututaion and Simulations,2007,74:47-57.
    [139] Chen N, Liu Y, Liu B, Gui W. Parameter absolute stabilization for interconnected Lurie time-delaysystems with polytopic uncertainty. Asian Journal of Control,2013, DOI:10.1002/asjc.661.
    [140] Wang L, Liu D. H∞filtering design for2D discrete-time linear systems with polytopic uncer-tainty. Circuit, Systems and Signal Processing,2013,32(1):333-345.
    [141] Yeh K, Chen C, Lo D, Liu K. Neural-network fuzzy control for chaotic tuned mass damper systemswith time delays. Journal of Vibration and Control,2012,18(6):785-795.
    [142] Chen C. Applications of neural-network-based fuzzy logic control to a nonlinear time-delaychaotic system. Journal of Vibration and Control,2012, DOI:10.1177/1077546312461370.
    [143] Wu, X, Chen, G, Cai, J. Chaos synchronization of the master-slave generalized Lorenz systemsvia linear state error feedback control. Physics D,2007,229:52-80.
    [144] Wu, X, Cai, J, Wang, M. Global chaos synchronization of the parameterically excited Duffingoscillators by linear state feedback control. Chaos Solition and Fraction,2008,36:121-128.
    [145] Yao X, Wu L, Zheng W, Wang C. Passivity analysis and passification of Markovian jump systems.Circuits, Systems and Signal Processing,2010,29:709-725.
    [146] Zhang Y, Xu S, Chu Y. Sliding mode observer-controller design for uncertain Markovian jumpsystems with time delays. Internatinal Journal of Robust and Nonlinear Control,2012,22:355-368.
    [147] Feng Z, Lam J, Gao H. Delay-dependent robust H∞controller synthesis for discrete singular delaysystems. International Journal of Robust and Nonlinear Control,2011,21:1880-1902.
    [148] Li X. New results on global exponential stabilization of impulsive functional differential equationswith infinite delays or finite delays. Nonlinear Analysis: RWA,2010,11:4194-4201.
    [149] Haykin S. Neural Network, Prentice-Hall, NJ,1994.
    [150] Niculescu S. Delay Effects on stability: A Robust Control Approach, Springer-Verlag, New York,2001.
    [151] Zhu Q, Song B. Exponential stability of impulsive nonlinear stochastic differential equations withmixed delays. Nonlinear Analysis: RWA,2011,12:2851-2860.
    [152] Gergel-Hackett M, Hamadani B, Suehle J, Richter C, Hacker C, Gundlach D. A flexible solution-processed memristor. IEEE Electrical Device Letters,2009,30:706-708.
    [153] Chiu C, Chiang T. Robust output regulation of T-S fuzzy systems with multiple time-varying stateand input delays. IEEE Transactions on Fuzzy Systems,2009,17:962-975.
    [154] Dong J, Wang Y, Yang, G. Control synthesis of continuous-time T-S fuzzy systems with localnonlinear models. IEEE Transactions on Systems, Man and Cybernetics B Cybernetics,2009,39:1245-1258.
    [155] Liu X, Zhong S. T-S fuzzy model-based impulsive control of chaotic systems with exponentialdecay rate. Physics Letters A,2007,370:260-264.
    [156] Park C, Cho Y. T-S model based indirect adaptive fuzzy control using online parameter estimation.IEEE Transactions on Systems, Man and Cybernetics B Cybernetics,2004,34:2293-2302.
    [157] Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modelling and control.IEEE Transactions on Systems, Man and Cybernetics,1985SMC-15:116-132.
    [158] Li S, Ge Z. Fuzzy modeling and synchronization of two totally different chaotic systems via novelfuzzy model. IEEE Transactions on Systems, Man and Cybernetics B Cybernetics,2011,41:1015-1026.
    [159] Arik S. Global robust stability analysis of neural networks with discrete time delays. Chaos, Soli-tions and Fractals,2005,26:1407-1414.
    [160] Ozcan N, Arik S. Global robust stability analysis of neural networks with multiple time delays.IEEE Transactions on Circuits and Systems I,2006,153:166-176.
    [161] Izhikevich E, Edelman G. Proc. Natl. Acad. Sci. U.S.A.2008,105:3593-3598.
    [162] Indiveri G, Chicca E, Douglas R. A VLSI array of low-power spiking neurons and bistablesynapses with spike-timing dependent plasticity. IEEE Transactions on Neural Networks,2006,17:211-221.
    [163] The Scientific American Book of the Brain. New York, Scientifc American,1999.
    [164] Borghetti J, Li Z, Straznicky J, et al, A hybrid nanomemristor/transistor logic circuit capable ofself-programming. Proceeding of the National Academy of Sciences of the United States of Amer-ica.2008,106(6):1699-1703.
    [165] Prodromakis T, Toumazou C. A review on memristive devices and applications. IEEE InternationalConference on Electronics, Circuits, and Systems (ICECS),2010,936-939.
    [166] Eshraghian K, Kyoung-Rok Cho, Kavehei O, Soon-Ku Kang, Abbott, D, Sung-Mo Steve Kang.Memristor MOS Content Addressable Memory (MCAM): Hybrid Architecture for Future HighPerformance Search Engines. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,2011,19:1407-1417.
    [167] Pershin, Y, Di Ventra, M. Experimental demon-stration of associative memory with memristiveneural net-works. Neural Networks,2010,23(7):881-886.
    [168] Klimo, Martin, Ondrej Such. Memristors can implement fuzzy logic.2010, arXiv preprint arXiv:1110.2074
    [169] Ventra M, Pershin Y, Chua L. Circuit elements with memory: Memritors, Memcapacitors, andMeminductors. Proceedings on IEEE,2009,97:1717-1724.
    [170] Bao B, Liu Z, Xu J. Transient chaos in smooth memristor oscillator. Chinese Physics B,2010,19:1-6.
    [171] Wang F, Helian N, Wu S, Lim M, Guo Y, Parker M. Delayed switching in memristors and mem-ristive systems. IEEE Electronic Device Letters,2010,31:755-757.
    [172] Aubin J, Haddad G. Cadenced runs of impulse and hybrid control systems. International Journalof Robust and Nonlinear Control,2001,11:401-415.
    [173] Belkoura L, Floquet T, Ibn Taarit K. Estimation problems for a class of impulse systems. Interna-tional Journal of Robust and Nonlinear Control,2011,21:1066-1079.
    [174] Zhang Z. Robust H∞control of a class of discrete impusive switched systems. Nonlinear Analysis,2009,71: e2790-e2796.
    [175] Liu F, Guan Z, Wang H, Li Y. Impulsive control of bifurcations. Mathematic and ComputingSimulations,2009,79:2180-2191.
    [176] Du B, Zhang X. Delay-dependent stability analysis and synthesis for uncertain impulsive switchedsystem with mixed delays. Dyscrete Dynamic Nature Society,2011,2011:1-9.
    [177] Yang H, Jiang B, Cocquempot V. Observer-based fault-tolerant control for a class of hybrid im-pulsive systems. Internatinal Journal of Robust and Nonlinear Control,2010,20:448-459.
    [178] Johansson M, Rantzer A. Computation of piecewise quadratic lyapunov functions for hybrid sys-tems. IEEE Transactions on Automatic Control,1998,43:555-559.
    [179] Johansson M, Rantzer A,A˙re′n K. Piecewise quadratic stability of fuzzy systems. IEEE Transac-tions on Fuzzy Systems,1999,7:713-722.
    [180] Forti, M, Nistri, P. Global convergence of neural networks with discontinous neuron activations.IEEE Transactions on Circuits and Systems I,2003,50:1421-1435
    [181] Bacciotti, A, Rosier, L. Liapunov functions and stability in control theory. Springer, Berlin,2005.
    [182] Clarke F, Ledyaev Y, Stem R, Wolenski R. Nonsmooth analysis and control theory. Springer, NewYork,1988.
    [183] Filippov A. Differential equations with discontinuous right-hand side, Mathematics its applica-tions.1988, MA: Kluwer Academic, Boston.
    [184] Liu Y, Wang Z, Liang J, Liu X. Synchronization and state estimation for discrete-time complexnetworks with distributed delays. IEEE Transactions on Systems, Man, and Cybernetics, B Cyber-netics,2008,13:1314-1325.
    [185] Anta A, Tabuada P. To sample or not to sample: Self-triggered control for nonlinear systems. IEEETransactions on Automatic Control,2010,55:2030-2042.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700