植物行为特性建模及可视化仿真技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物形态是植物的外在表现形式,是植物在生长过程中自身生理规律和环境因素相互作用的结果。因此,要在计算机上逼真地模拟植物,不仅需要对植物的外部形态进行精确建模和绘制,同时也需要对植物的行为特性进行研究,并建立符合植物自身生理规律的行为模型,才能更真实地在虚拟空间中对植物的形态和运动进行仿真。另一方面,植物所表现出的行为特性是人类认识、分析和评价植物的最基本的方式和最直接的渠道。因此,运用计算机图形学和虚拟现实的技术与方法来定量化、可视化地描述植物的行为特性,并开发相应的软件工具和交互平台,通过视觉体验和三维互动的人机交互方式来揭示植物内在的遗传特性与环境的相互作用关系,具有重要的现实意义和广阔的应用前景。
     围绕植物的三维建模和运动模拟的研究已经有了几十年的历史,经过几代研究者的努力,目前已经取得了显著的成果。但由于植物形态的复杂性和多样性,而且植物的生长过程受环境的影响,这使得逼真重构植物的形态和模拟其在各种环境条件下的行为特性是一个巨大的挑战。特别是对农学研究中以植株个体为主要研究单位的园艺植物,其形态和行为特性的真实感模拟更有待加强。一方面,相对于其他植物,园艺植物尤其是瓜果类作物的相关研究还处于起步阶段。传统以树木为对象的植物形态建模方法重点在于树木的整体结构,而忽略器官上的细节,因此难以适用于以器官和个体为基本单位的园艺植物形态的建模。其次,虽然研究者提出了各种针对农作物器官的形态建模方法,但这些方法缺乏普适性,真实感效果有待加强。在植物模型的变形和运动方面,部分研究者已提出了各种模拟方法,但在这些研究中,往往以植株个体为对象,缺乏器官尺度上的变形模拟,而且只是考虑了植物在外力作用下的变形,很少考虑植物自主的变形和运动,如植物叶片在高温下的卷曲、失水条件下的萎蔫等现象。而对于园艺植物中常见的攀援行为,尚未有研究者从可视化模拟的角度进行研究。针对以上问题,本文拟运用计算机图形学和物理模型的理论和方法,研究园艺植物的三维形态建模及其典型行为特性可视化模拟的关键技术。
     本文以我国主要园艺植物黄瓜、西瓜和番茄为研究对象,重点是通过对品种特征的观测研究,借助计算机辅助设计思想,运用几何造型和三维可视化技术,构建主要园艺植物三维形态数字化设计工具;基于已有的农业模型和知识规则,构建参数化的植物器官精确几何模型;研究基于物理模型的植物变形和运动模拟技术;最终将上述各项技术有机集成,构建一个植物行为特性可视化仿真框架,逼真地虚拟显示主要园艺植物在器官、个体和群体水平上的自然行为特性。
     具体地,本文主要开展了以下几个方面的创新研究:
     1、园艺植物器官精确几何建模和植株结构交互式生成
     针对园艺植物器官形态复杂和多变的特点,提出了基于B样条曲线的植物器官骨架表示和网格生成方法,以B样条曲线的灵活性为形态多变的植物器官几何描述提供一种统一的表示方法;首次将Delaunay三角化方法和自适应细分方法应用于植物叶片几何曲面造型中,为植物叶片的精确几何建模提供了一种普适的方法。同时,结合已有的农业模型和知识规则提取了植物器官几何模型的主控参数。基于植物的器官模型开发了交互式的园艺植物形态结构辅助设计工具,采用器官模板和渐变技术生成植物器官不同生长阶段间的过渡效果。
     2、三维植物模型真实感绘制
     为增强三维植物模型的真实感效果,采用了多种细节描述技术。针对叶片和果实,采用纹理映射技术;针对茎、叶柄等圆柱型器官,使用过程纹理技术生成适用的纹理效果。开发了植物造型表面绒毛生成技术,采用Poisson-disk分布模式确定器官曲面上绒毛的分布,并根据网格曲面的面积确定绒毛的密度;绒毛的实体用样条曲线或圆柱体表示,绒毛的长度、半径、卷曲度、方向和密度等参数都考虑了植物器官的位置信息。该方法对植株个体模型达到了实时的处理要求,能够有效地生成各种具有真实感的植物表面绒毛效果。
     3、植物器官变形实时模拟
     提出了一种基于质点-弹簧系统的植物器官变形模拟方法,并根据交互式设计的要求开发了参数化的植物器官几何造型和弹簧模型生成方法,简化了质点-弹簧模型的构造。实验结果表明,该方法能够获得具有较高真实感的变形效果,适用于多种植物器官一般情况下的变形模拟;同时,参数化的几何曲面和物理模型生成能够满足于交互式实时模拟的需要。
     4、植物叶片卷曲和萎蔫过程的模拟
     首次为模拟植物叶片的卷曲和萎蔫运动建立了似然的物理模型。构建了一个由层次化弹簧构成的双层质点-弹簧系统,该弹簧系统被用来控制叶片的运动,叶片的卷曲通过收缩上层弹簧来实现,而叶片的萎蔫或展开则通过释放弹簧来驱动,同时提供了交互式的模拟界面,用户能够交互地控制该弹簧系统的运动,从而生成叶片卷曲或萎蔫的运动动画。针对双层质点-弹簧叶片模型难以构建的问题,提出了一个叶脉骨架驱动的植物叶片变形和运动控制模型,首先从叶片骨架中生成叶脉骨架,叶脉骨架由一条主脉和若干条侧脉构成,每条叶脉被分割为若干线段,构成一个骨架链;在此基础上,将叶片曲面上的点绑定到叶脉骨架中,并通过指定骨架链上每个顶点绕某个指定的矢量旋转来控制骨架链的变形和运动;最后将叶片网格曲面上的点根据变形后的叶脉骨架进行变形,从而实现叶脉骨架驱动的叶片曲面变形。该方法已被用来模拟植物叶片的卷曲和萎蔫过程,获得了较好的真实感效果。
     5、植物攀援特性建模和攀援行为模拟
     首次可视化地模拟了卷须类园艺植物藤蔓的形态发展过程。建立了卷须生长和寻找支持物的模拟模型;基于卷须的攀援能力,建立了园艺植物藤蔓的动态生长模拟模型,根据藤蔓在三维空间中的位置以及卷须的攀附情况确定藤蔓的空间形态,从而模拟了藤蔓在重力作用下的自然生长形态;开发了直线与圆柱体、直线与包围盒、圆柱体与包围盒间的碰撞检测技术,用来检测植物生长和下垂过程中器官与障碍物、以及器官之间的碰撞,并提供实时的碰撞避免处理机制。
The morphological shape of a plant is its external representation, which may result from mutual influence between its underlying physiological process and the environmental factors. To simulate vividly the plant in computer, obviously, not only accurate modeling and rendering external appearances of a plant but also modeling its dynamic behaviors which are faithful to its underlying physiological mechanics is needed. Just in this way, the shape and motions of a plant can be simulated faithfully in virtual space. On the other hand, the behaviors characteristics of a plant are the most basic way and direct channel for human’s recognizing, analyzing and evaluating the plant. Therefore it is practical significance and broad application perspectives to reveal the mutual influence and relations between its internal heredity characteristics and the environment with visual experience and 3D human-machine interaction, by using techniques and methods in computer graphics and virtual reality to describe quantitatively and visually the behaviors characteristics of plant, and to develop relevant software and interactive platforms.
     There is a long history in modeling 3D shape of plant and simulating its motions, and remarkable achievements have been achieved thanks to many researchers’efforts. But due to the complexity and diversity of plant morphology, however, it is still a great challenge to reconstruct the shape of a plant and simulating its’behavior characteristics under different environments vividly. On the one hand, horticultural plant, especially melons and fruits, were less researched. Traditional methods for modeling plant shape generally focused on tree, in which the whole structure of tree was more important than the details on organs. Therefore, these methods would be not suitable for the modeling of horticultural plant that takes organs and individuals as basic unit. Secondly, although a various methods for modeling the morphology of crop organs have been proposed, these methods lack universality, and the realistic effects of the generated models need to be improved. In aspect of modeling deformation and motions of plant organs, some researchers have proposed various simulation methods, but they generally modeled at individual plant scale, not at organ scale. Moreover, they just simulated deformation of plant derived by extern forces, the automatically deformation and motions of a plant, such as curling of plant leaves under high temperature, are not considered yet. On the other hand, the climbing behavior which can be found commonly in horticultural plants has not been simulated from visualization perspective. Basing on the above analysis, this dissertation will focus on research the key techniques for modeling the 3D shape and simulating its typical behaviors of horticulture plants, by using theory and methodology from both computer graphics and physical modeling.
     This dissertation presents a methodology, firstly, for modeling and designing the 3D geometric shapes of main horticultural crops including cucumber, watermelon and tomato, by using techniques from computer-aid design (CAD), geometric modeling and 3D visualization; secondly, for creating parameterized geometric models of plant organs basing on existed agronomic models and knowledge rules. It is also a goal of this dissertation to develop physical models for simulating deformation and motions of plant. Lastly, the above techniques are integrated systematically to develop a visual platform for simulating typical behaviors of plants, and demonstrating vividly the natural life behaviors of main horticultural crops in virtual environment, at organic, individual and crops scales.
     Specifically, the main contributions and innovations of this dissertation can be listed as follows:
     1 Modeling accurate geometry of organs and interactive designing plant structure of horticultural crops
     To handle the diversity of species and irregularity of morphogenesis in plant, a B-splines curves-based method which using a skeleton description of organs shape and constructing the geometry of an organ from the skeleton was proposed. With this model users could create a wide range of crop organs with high realistic shape. This method aims to provide a common representation of irregular outlines of plant organs by utilizing the flexibility of B-splines curves. The principal control parameters of these geometric models were then extracted from existed agronomic models and knowledge rules. Delaunay triangulation was used to mesh irregular polygon in organs surface, such as lobed leaf surface. Furthermore, an adaptive subdivision scheme was used to smooth the generated mesh of a leaf blade. Basing on the geometric models of organs, an interface for designing crops structure interactively was developed, in which techniques such as organs templates and morphing were used to generate transitional shapes between two growth stages of an organ.
     2 Techniques for realistic rendering 3D plant models
     For improving the appearance of the computer generated plant geometric models, several details description techniques were used in this dissertation. Texture mapping was used to leaf and fruit models, while process texture generation was introduced to cylinder-like organs such as caudex and petiole. Moreover, a method for generating plant hairs that cover many plant organs was proposed. This method employed Poisson-disk pattern to assign the distribution of hairs on the surface of each organ, while the density of hairs was adjusted based on the area of organ surface. This can avoid generating irregular pattern of hairs on irregular surface. Individual hairs were then mapped onto the organ surfaces according to the generated attachment points. Hair properties including length, radius, direction and density were specified and adjusted according to positional information of the organ surface, and the geometry of individual hair can be represented as curve or cylinder. This allows generating a wide range of hairs styles. Sample results showed that the proposed method can render realistic hairs in real-time, and can represent various styles of hairy plant effectively.
     3 Real-time simulating deformation of plant organs
     A method for modeling the deformation of plant organs based on mss-spring system was proposed, and parameterized methods for generating the 3D geometry and the spring model of plant organs were developed to satisfy the needs from interactive design. This could simplify the creation of mass-spring model. Results on several plant organs demonstrated that the proposed approach is applicable for simulating deformation of plant organs with realistic effects. Further, parameterized generation of geometric surface and physical model can be used in interactive simulation at real-time speed.
     4 Simulating curling and wilting of plant leaves
     Two approximate physical kinetic models for simulating motions of plant leaves including curling and wilting were proposed in this dissertation. Firstly, a bi-layered mass-spring model consists of hierarchical spring was developed which was used to control the motions of leaves. Curling of a leaf blade was simulated by animating the spring tensions, while unfolding and wilting were simulated by animating the spring relaxation. With a suitably designed interface, animations can be obtained by manual interaction, which allowed for animating plant motions especially curling and wilting process of a leaf surface. Basing on the fact that the bi-layered mass-spring of a leaf model is difficult to be constructed, a venation skeleton-driven method for deforming plant leaves was proposed for this reason. Firstly, the leaf skeleton was used to generate a detail mesh for the leaf surface, and a venation skeleton was also generated interactively from the leaf skeleton. Each vein in the venation skeleton consisted of a segmented vertices string. Secondly each vertex in the leaf mesh was banded to the nearest vertex in the venation skeleton. We then deformed the venation skeleton by controlling the movement of each vertex in the venation skeleton by rotating it around a fixed vector. Finally the leaf mesh was mapped to the deformed venation skeleton, as such the deformation of the mesh followed the deformation of the venation skeleton. The proposed techniques have been applied to simulate leaf surface deformation resulted from biological responses of plant including wilting and curling.
     5 Modeling climbing characteristics and simulating climbing behavior of plant
     A model for simulating searching for support and growth of tendril was proposed, with this model, dynamic growth model of vine was developed. This model defined the special shape of the simulated vine according to its position in space with a considering if the tendrils on the vine have found support. By this way, the natural growth shape of a vine in gravity can be simulated. To detect collisions between organ and obstacle, organ and organ occur in the process of growth and drooping of the vine, techniques for detecting collisions between line and cylinder, line and bounding-box, cylinder and bounding-box were developed, and mechanics for avoiding collisions in real time were introduced simultaneously.
引文
[1] Deussen, O., Hanrahan, P., Lintermann, B., et al. Realistic modeling and rendering of plant ecosystems. In SIGGRAPH’98 Conference Proceedings, ACM Press, ACM SIGGRAPH, 1998, 275–286.
    [2] Zhang C., Chen T. A survey on image-based rendering-representation, sampling and compression. In EURASIP Signal Processing: Image Communication, 2004.
    [3] Behrendt, S., Colditz, C., Franzke, O., et al. Realistic real-time rendering of landscapes using billboard clouds. Computer Graphics Forum, 2005, 24(3): 507–516.
    [4] Cohen-Or D., Chrysanthou Y., Silva C. T., et al. A survey of visibility for walkthrough applications. IEEE Transaction on Visualization and Computer Graphics, 2002.
    [5] Rusinkiewicz S., Levoy M., Splat Q: A multiresolution point rendering system for large meshes. In SIGGRAPH 2000, Computer Graphics Proceedings, 2000, 343–352,
    [6] Baar J., Zwicker M., Pfister H., et al. Surface splatting. ACM Transactions on Graphics (SIGGRAPH 2001 Conference Proceedings), August 2001.
    [7] Karwowski, R., Prusinkiewicz, P. The L-system-based plant-modeling environment L-studio 4.0. In Proceedings of the 4th International Workshop on Functional-Structural Plant Models 2004, 403-405.
    [8]杨娟,赵明,潘学标.基于NURBS曲面的棉花器官建模,计算机工程与应用. 2005, 41(30):185-188.
    [9]郑文刚,郭新宇,赵春江等.玉米叶片几何造型研究,农业工程学报, 2004, 20(1):152-154.
    [10]石春林,朱艳,曹卫星.水稻叶片几何参数的模拟分析.中国农业科学. 2006, 39(5): 910-915.
    [11]郭新宇,邓旭阳,郑文刚等.玉米叶片形态建成的三维可视化研究.玉米科学,2004(专刊):27-30.
    [12]郭焱,李保国.虚拟植物的研究进展.科学通报,2001, 46 (4): 273- 280
    [13] Wang X, Guo Y, Li B. Evaluating a three dimensional model of diffuse photosynthetically active radiation in maize canopies. International Journal of Biometeorology, 2006, 50: 349-357.
    [14] Prusinkiewicz, P., Lindenmayer A. The algorithmic beauty of plants. New York. Springer-Verlag. 1990, 228.
    [15] Kaandorp, J. A. Fractal modeling growth and form in biology. New York. Springer -Verlag, 1994
    [16] De Reffye P., Edelin C., Francon J., et al. Plant models faithful to botanical structure and development. Computer Graphics, 1988, 22(4): 151-158.
    [17] Godin, C. Representing and encoding plant architecture: A review. Ann. For. Sci. 2000, 57: 413-438.
    [18]赵星, de Reffye P.,熊范纶.虚拟植物生长的双尺度自动机模型.软件学报, 2002, 25(11):116-124.
    [19] Siev?nen, R., Nikinmaa, E., Nygren, P., et al. Components of funtional-structural tree models. Ann. For. Sci. 2000, 57:399-412.
    [20] Jallas, E., Sequeira R., Martin P., et al. COTONS, a cotton simulation model for the next century. Seminar proceedings of 1’Unite’de Biométrie et Intelligence Artificielle du centre INRA, Toulouse, France. 1998.
    [21] Pearey, R.W., Yang, W. A three-dimensional crown architecture model for assessment of light capture and carbon gain by understorey plants. Oecologia. 1996, 108:1-12.
    [22] Mech, R., Prusinkiewicz, P. Visual models of plants interacting with their environment. In Proceedings of SIGGRAPH. 1996, 397-410.
    [23] Hu B.-G., de Reffye P., Zhao X., et al. GreenLab: A New Methodology towards Plant Functional-Structural Model–– Structural Aspect, In Plant growth modeling and applications (PMA'03). Beijing, China: Tsinghua University Press and Springer. 2003.
    [24] Cournède, P.-H., Yan, H.P., Kang, M.Z., et al. A review on structural factorization of plants in GreenLab model. In Sino-French workshop, ISAE, Guizhou, China, 2005.
    [25] Yan H.P., Kang M.Z., De Reffye P, et al. A dynamic, architectural plant model simulating resource-dependent growth. Annals of Botany, 2004, 93: 591-602.
    [26]张吴平,郭焱,李保国.小麦苗期根系三维生长动态模型的建立与应用.中国农业科学, 2006, 39(11):2261-2269.
    [27] Lintermann, B., Deussen, O. Interactive modeling of plants. IEEE Computer Graphics and Applications, 1999, 19(1):56–66.
    [28] Deussen, O. Digital Design of Nature - computer generated plants and organics, Bernd Lintermann Springer-Verlag New York. 2005.
    [29] Xfrog 4.0: http://www.xfrogdownloads.com/.
    [30] OnyxTREE: http://www.onyxtree.com/broadleaf.html.
    [31]郭焱,李保国.玉米冠层的数学描述与三维重建研究.应用生态学报,1999(01):41-43.
    [32] B.Loch, J.Belward, J.Hanan. Application of surface fitting techniques for the representation of leaf surfaces.In: Zerger A, Argent RM(eds).International Congress on Modelling and Simulation. Melbourne: MODSIM Press, 2005. 1272-1278.
    [33] Xu, K.H., Gossett, N., Chen, B. Knowledge-Based Modeling of Laser-Scanned Trees. In SIGGRAPH'05 Sketches, Los Angeles, CA. July-August, 2005.
    [34] Shlyakhter I. Reconstructing 3D tree models from instrumented photographs,IEEE Computer Graphics and Applications. 2001, 21(3): 53-61.
    [35] Reche-martinez, A., Martin, I., Rettakis, G. Volumetric reconstruction and interactive rendering of trees from photographs. ACM Transactions on Graphics (SIGGRAPH 2004). 2004, 23(3):720-727.
    [36] Quan, L., Tan, P., Zeng, G., et al. Image-based plant modeling. ACM Transactions on Graphics, 2006, 25(3): 599--604.
    [37] Wang, R., Hua, W., Bao, H., Peng, Q. Synthesizing trees from samples. The visual Computer, 2006.
    [38] Blinn J. F. Simulation of wrinkled surfaces. Computer Graphics (SIGGRAPH'78 Proceedings), 1978, 12(3): 286–292.
    [39] Wang L., Wang X., Tong X., et al. View-dependent displacement mapping. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2003), 2003, 22(3): 334–339.
    [40] Fowler D. R., Prusinkiewicz P., Battjes J. A collision-based model of spiral phyllotaxis. In Proceedings of SIGGRAPH, 1992. 361-368.
    [41] Fuhrer, M. Hairs, Textures, and Shades: Improving the Realism of Plant Models Generated with L-systems. [Dissertation], University of Calgary. 2005.
    [42] Mündermann, L., MacMurchy, P., Pivovarov, J., et al. Modeling lobed leaves. In Proceedings of Computer Graphics International, Tokyo, Japan, 2003. 60–65.
    [43] Prusinkiewicz P, Mündermann L, Karwowski R, et al. The use of positional information in the modeling of plants. In Proceedings of SIGGRAPH, ACM Press: MiamiBeach, FL, USA, 2001. 289–300.
    [44] Sung MH, Simpson B, Gladimir VGB. Interactive venation-based leaf shape modeling. Computer Animation and Virtual Worlds, 2005, 16(3-4): 415–427.
    [45] Runions A, Fuhrer M, Lane B, et al. Modeling and visualization of leaf venation patterns. ACM Trans. Graphics, Vol. 24, No.3, pp.702–711, 2005.
    [46] Galbraith, C., MacMurchy, P., Wyvill, B. Blobtree trees. Computer graphics forum, 2004 23(3): 351--360.
    [47] Wang L., Wang W., Oorsey J., et al. Real-time rendering of plant leaves. ACM Transactions on Graphics, 2005, 24(3): 712–719.
    [48]成迟薏,石教英,徐迎庆等.基于物理模型的窗帘运动实时动画.软件学报, 2000, 9: 90-98
    [49] Weil, J. The synthesis of cloth object. Computer Graphics, 1986, 20(4):49-54.
    [50] Kass M., Witkin A., Terzopoulos D. Snakes: active contour models. International Journal of Computer Vision 1988, 4: 321-331.
    [51] Mandal C, Qin H, Vemuri B C. A novel FEM-based dynamic framework for subdivision Surfaces. Computer-Aided Design, 2000, 32: 479-497.
    [52] Beaudoin J, Keyser J. Simulation levels of detail for plant motion. In: ACM SIGGRAPH/Eurographics, Symposium on Computer Animation (SCA), 2004. 297-304
    [53]柳有权.基于物理的计算机动画及其加速技术的研究.博士学位论文,中国科学院. 2005.
    [54] Jirasek C, Prusinkiewicz P. A biomechanical model of branch shape in plants. In Lantin M (ed) Proceedings of the western computer graphics symposium, Whistler, Canada, 1998. 23–26
    [55] Hart J, Baker B, Michaelraj J. Structural simulation of tree growth and response. The Visual Computer, 2003, 19: 151-163.
    [56] Botsch M., Pauly M., Wicke M., et al. Adaptive Space Deformations Based on Rigid Cells. Computer Graphics Forum, 2007, 26, (3): 339–347
    [57] Wang I, Wan J, Baranoski G. Physically-based simulation of plant leaf growth. Computer Animation and Virtual Worlds, 2004, 15: 237-244.
    [58] Deussen, O., Hanrahan, P., Lintermann, B., et al. Realistic modeling and rendering of plant ecosystems. In SIGGRAPH’98 Conference Proceedings, ACM Press, ACM SIGGRAPH, 1998, 275–286.
    [59] Lane, B., Prusinkiewicz, P. Generating spatial distributions for multilevel models of plantcommunities. In Proceedings of Graphics Interface 2002, 69–80.
    [60] BENES, B., and MILLAN, E.U. Virtual climbing plants competing for space. In Computer Animation Proceedings 2002, ACM Press, 2002, 33–42.
    [61] Van Haevre W., Bekaert P. A simple but effective algorithm to model the competition of virtual plants for light and space. JWSCG, 2003, 11(3):464–471.
    [62] Arvo J., Kirk D. Modeling Plants with Environment-Sensitive Automata. In Proceedings of Ausgraph’88, 1988. 27–33.
    [63] Mech, R. Modeling and simulation of the interaction of plants with the environment using L-systems and their extensions. [Dissertation], University of Calgary. 1997
    [64] Greene N. Voxel Space Automata: Modeling with Stochastic Growth Processes in Voxel Space. In Proceedings of SIGGRAPH’89, 1989.
    [65] Benes B., Mill’an E. Virtual Climbing Plants Competing for Space. IEEE Proceedings of the Computer Animation, 2002. 33-42.
    [66] Fournier C., Andrieu B. A 3D architectural and process-based model of maize development. Annals of Botany, 1998, 81(2):233-250.
    [67]赵春江,王功明,郭新宇等.基于交互式骨架模型的玉米根系三维可视化研究.农业工程学报. 2007, 23(9): 1-6.
    [68] Room P M, Hanan J, Prusinkiewicz P. Virtual plants: New Perspectives for ecologists, pathologists and agricultural scientists. Trends in Plant Science, 1996, 1: 33–38.
    [69] Hanan J, Hearn A.B. Linking physiological and architectural models of cotton. Agricultural Systems, 2003, 75 (1):47-77.
    [70] Fournier C., Andrieu B., Ljutovac S., et al. ADEL-wheat: A 3D Architectural Model of Wheat Developent. In 2003' International Symposium on Plant Growth, Modeling, Simulation, Visualization and Their Applications. Beijing, China. 2003. 54-62.
    [71] Watanabe T., Hanan J., Room P., et al. Rice morphogenesis and plant architecture: Measurement, specification and the reconstruction of structural development by 3D architectural modelling. Annals of Botany. 2005, 95:1131-1143
    [1] Prusinkiewicz, P. Modeling and visualization of biological structures. In Proceeding of Graphics Interface '93. Toronto, Ontario. May 1993. 128-137.
    [2] Karwowski, R., Prusinkiewicz, P. The L-system-based plant-modeling environment L-studio 4.0. p. 403-405. In: Godin, C., Hanan, J., Kurth, W., Lacointe, A., Takenaka, A., Prusinkiewicz, P., DeJong, T., Beveridge, C. & Andrieu, B. (eds.). Proceedings of the 4th International Workshop on Functional-Structural Plant Models. Viala Montpellier, France. 07-11 June 2004,
    [3] Fuhrer, M. Hairs, Textures, and Shades: Improving the Realism of Plant Models Generated with L-systems. [Dissertation], University of Calgary. 2005.
    [4] Lintermann, B., Deussen, O. Interactive modeling of plants. IEEE Computer Graphics and Applications. 1999, 19(1):56–65.
    [5] Mantler, S., Tobler, R.F., Fuhrmann, A.L. The state of the art in real-time rendering of vegetation. VRVis Certer for Virtual Reality and Visualization. 2003.
    [6] Taylor-Hell, J. Biomechanics in botanical trees. [Dissertation], University of Calgary. 2005.
    [7] Fournier, C., Andrieu, B. ADEL-maize: an L-system based model for the integration of growth processes from the organ to the canopy. Application to regulation of morphogenesis by light availability. Agronomie. 1999, 19: 313-327.
    [8] Ding, W.L., Xiong, F.L., Cheng, Z. Study and implementation of the expert system forgreenhouse tomato planting. In Proc. of 3rd Int. Con. on Information Technology and Applications. Sydney, Australia. July 2005. 325-329.
    [9] Mündermann, L., MacMurchy, P., Pivovarov, J., et al. Modeling lobed leaves. In Proceedings of Computer Graphics International, Tokyo, Japan. 2003. 60–67.
    [10] Loch, B.I. Surface fitting for the modelling of plant leaves. [Dissertation], University of Queensland, Australia. 2004.
    [11] Runions, A., Fuhrer, M., Lane, B., et al. Modeling and visualization of leaf venation patterns. ACM Trans. on Graphics, 2005, 24(3): 702–711.
    [12] Sung, M.H., Simpson, B., Gladimir, V.G.B. Interactive venation-based leaf shape modeling. Computer Animation and Virtual Worlds. 2005, 16(3-4): 415–427.
    [13] Cignoni P, Montani C, Scop igno R. DeWall: A fast divide and conquer Delaunay triangulation algorithm in Ed. CAD, 1998, 30 (5) : 333~341.
    [14] Smith C. On Vertex-Vertex Systems and Their Use in Geometric and Biological Modeling. [Dissertation], University of Calgary. ALBERTA, 2006.
    [15] Zhang Y C, Da F P, Song W Z. Piecewise C1 Surfaces Based on Bivariate Quartic Box-Splines for Arbitrary Triangular Meshes. Journal of Software, 2006, 17(10): 2211-2220.
    [16] Loop, C. Smooth subdivision surfaces based on triangles. [Dissertation], University of Utah, 1987.
    [17] B. Desbenoit, D. Vanderhaghe, E. Galin, et al. Interactive Modeling of Mushrooms. Eurographics, Short Paper, 2004.37-40,
    [18] Zhang B G, De Reffye P, Liu L, et al. Analysis and modeling of the root system architecture of winter wheat seedlings. In 2003' International Symposium on Plant growth, modeling, simulation, visualization and their applications. Beijing, China. 2003. 321-328.
    [19]王功明,郭新字,赵春江等.虚拟植物根系生长模型分析和比较.作物研究. 2006, 3:281-285.
    [1] Mündermann, L., MacMurchy, P., Pivovarov, J., Prusinkiewicz, P. Modeling lobed leaves. In Proceedings of Computer Graphics International, CGI (ed.), Tokyo, Japan, 2003, 60–65.
    [2] Runions A, Fuhrer M, Lane B, Federl P, Rolland-Lagan AG, Prusinkiewicz, P: Modeling and visualization of leaf venation patterns. ACM Trans. Graphics, 2005, 24(3): 702–711.
    [3] Wang L, Wang W, Oorsey J, Yang X, Guo B, Shum H.-Y. Real-time rendering of plant leaves. ACM Transactions on Graphics. 2005, 24(3): 712–719.
    [4] Galbraith, C., MacMurchy, P., and Wyvill, B. Blobtree trees. In Proceedings of Computer Graphics International 2004, 2004.
    [5] Remolar, I., Chover, M., Ribelles, J., and Belmonte, O. View dependent multiresolution model for foliage. Journal of WSCG (WSCG2003 Proceedings), February 2003.
    [6] Zhang, X.P., and Blaise, F. Progressive polygon foliage simplification. In Hu, B. and Jaeger, M. editors, In Plant Growth Modeling and Applications (Proceedings of PMA03), Beijing, China, October 2003. Springer.
    [7] Behrendt, S., Colditz, C., Franzke, O., Kopf, J., and Deussen, O. Realistic real-time rendering of landscapes using billboard clouds. In Eurographics, 2005.
    [8] Colditz, C., Coconu, L., Deussen, O., and Hege, H. Real-time rendering of complex photorealistic landscapes using hybrid level-of-detail approaches. In Real-time visualization and participation, 6th International Conference for Information Technologies in Landscape Architecture, 2005.
    [9] Gardner G Y.Simulation of natural scenes using textured quardric surfaces. Computer Graphics, 1984, 18(3): l1-20.
    [10] Perlin K.An image synthesizer. Computer Graphics,1985, 19(3): 287-296.
    [11] Peachey D.R. Solid texturing of complex surfaces. Cornputer Graphics, 1985, 19(3):279-286.
    [12] Leyser O, Day S. Mechanisms in plant development. Blackwell, Oxford, 2003.
    [13] Fuhrer M, Jensen H W, Prusinkiewicz P: Modeling Hairy Plants. In Proceedings ofPacific Graphics, 2004. 217-226.
    [14] Kajiya J T, Kay T L. Rendering fur with three dimensional textures. In Proceedings of SIGGRAPH, 1989. 271-280.
    [15] Goldman D. Fake fur rendering. In Proceedings of SIGGRAPH, 1997.127-134.
    [16] 5Miller G. From wire-frame to furry animals. In Proceedings of Graphics Interface, 1988.138-146.
    [17] Gelder A V, Wilhelms J. An interactive fur modeling technique. In Proceedings of Graphics Interface, 1997.181-188.
    [18] Lengyel J, Praun E, Finkelstein A, Hoppe H. Real-time fur over arbitrary surfaces. In Proceedings of the ACM Symposium on Interactive 3D Graphics, 2001. 227-232.
    [19] Fleischer, K.W., Laidlaw, D.H., Currin, B.L., Barr, A.H. Cellular texture generation. In Proceedings of SIGGRAPH, 1995. 239-248.
    [20]张晓鹏,吴恩华.毛发的结构造型方法.软件学报,1999, 10(9): 897-903.
    [21]杨刚,孙汉秋,王文成,吴恩华.基于GPU真实感毛发绘制.软件学报, 2006, 17(3): 577-586.
    [22]杨刚,孙汉秋,王文成,吴恩华.采用非均匀纹理层的短毛实时绘制,计算机辅助设计与图形学学报, 2007, 19(4): 430-435.
    [23] Daldegan A, Thalmann N, Kurihara T, Thalmann D. An integrated system for modeling, animating and rendering hair. In Computer Graphics Forum, 1993. 211-221.
    [24] Anjyo K, Usami Y, Kurihara T. A simple method for extracting the natural beauty of hair. In Proceedings of SIGGRAPH, 1992. 111-120.
    [25] Kim T Y, Neumann U. Interactive multiresolution hair modeling and editing. In Proceedings of SIGGRAPH, 2002. 620–629.
    [26] Yang X D, Xu Z, Wang T, Yang J. The cluster hair model. Graphical Models, 2000, 62(2): 85-103.
    [27] Fowler D. R., Prusinkiewicz P., Battjes J. A collision-based model of spiral phyllotaxis. In Proceedings of SIGGRAPH, 1992. 361-368.
    [1] Nealen A, Müller M, Keiser R, Boxerman E, Arlsonm M: Physically Based Deformable Models in Computer Graphics. In Eurographics’05, 2005.
    [2]蔡及时,孙汉秋,王平安.应用于网上虚拟手术的自适应变形模型.软件学报. 2002, 13(9):1893-1898
    [3]刘卉,陈纯,施伯乐.基于改进的弹簧-质点模型的三维服装模拟.软件学报, 2003,14(3):619~627.
    [4]谌海新,马丙辰,马桂珍,魏冬冬.质点-弹簧模型驱动的体数据模型快速变形模拟.系统仿真学报, 2006, 18(1):33-36.
    [5] Chen H X, Ma B C, Ma G Z, Wei D D. Fast Volume Deformation Simulation Using Mass-Spring Model. Journal of System Simulation, 2006, 18(1):33-36.
    [6] Spillmann J., Teschner M.: Contact Surface Computation for Coarsely Sampled Deformable Objects. in Proc. Vision, Modeling, Visualization ,2005: 289–296
    [7] Botsch M, Pauly M, Wicke M, Gross M. Adaptive Space Deformations Based on Rigid Cells. http://graphics.ethz.ch/~mbotsch/publications/eg07-space-primo.pdf ( in Proc. Eurographics 2007)
    [1] Prusinkiewicz P, Mündermann L, Karwowski R, Lane B. The use of positional information in the modeling of plants. In Proceedings of SIGGRAPH, ACM Press: Miami Beach, FL, USA, 2001. 289–300.
    [2] Mündermann L, Macmurchy P, Pivovarov J, Prusinkiewicz P. Modeling lobed leaves. In Proceedings of Computer Graphics International, CGI (ed.), Tokyo, Japan, 2003. 60–65.
    [3] Sung M H, Simposon B, Gladimir V G B. Interactive venation-based leaf shape modeling. Computer Animation and Virtual Worlds, 2005, 16(3-4): 415–427.
    [4] Nath U, Crawford B C W, Carpenter R, Coen E. Genetic control of surface curvature. Science, 2003, 299: 1404-1407.
    [5] Beaudoin J, Keyser J. Simulation levels of detail for plant motion. In ACM SIGGRAPH/Eurographics, Symposium on Computer Animation (SCA), 2004. 297-304
    [6]柳有权.基于物理的计算机动画及其加速技术的研究. [博士学位论文],中国科学院. 2005.
    [7] Jirasek C, Prusinkiewicz P. A biomechanical model of branch shape in plants. In Proceedings of the western computer graphics symposium, Lantin M editor, Whistler, Canada, 1998. 23–26
    [8] Hart J, Baker B, Michaelraj J. Structural simulation of tree growth and response. The Visual Computer, 2003, 19: 151-163.
    [9] Wang I, Wan J, Baranoski G. Physically-based simulation of plant leaf growth. Computer Animation and Virtual Worlds, 2004, 15: 237-244.
    [10] Sharon E., Roman B. and Harry L. Geometrically driven wrinkling observed in free plastic sheets and leaves, Physical Review E., 2007, 75: 1-7.
    [11] Kobbelt L., Bareuther T. and Seidel H-P. Multiresolution shape deformations for meshes with dynamic vertex connectivity, Proceedings of EUROGRAPHICS, 2000. 249-260.
    [12] Bloomenthal J. and Lim C. Skeletal methods of shape manipulation. In Proceedings of Shape Modelling International’99, Aizu-Wakamatsu, Japan, 1999. 44–47.
    [13] Alexa, M. Differential coordinates for local mesh morphing and deformation, The Visual Computer, 2003, 19(2): 105-114.
    [14] Yu Y., Zhou K., Xu D., Shi X., Bao H., Guo B. and Shum H.Y. Mesh editing with poisson-based gradient field manipulation, ACM Trans. Graphics, 2004, 23(3): 644-651.
    [15] Gibson S F F, Mirtichk B. A survey of deformable modeling in computer graphics, MERL, Cambridge, 1997.
    [16] Nealen A, Müller M, KeiserR R, Boxerman E, Arlsonm M. Physically based deformable models in computer graphics. Computer graphics Forum, 2006, 25(4). 809-836.
    [17]谌海新,马丙辰,马桂珍,魏冬冬.质点-弹簧模型驱动的体数据模型快速变形模拟.系统仿真学报, 2006, 18(1):33-36.
    [18] Weil, J. The synthesis of cloth object. Computer Graphics, 1986,20(4):49-54.
    [19] Terzopoulos D, Waters K. Phisically-based facial modelling, analysis and animation. The journal of visualization and computer animation. 1990, 73-80
    [20] Kang Y M, G.Cho H. Bilayered approximate integration for rapid and plausible animation of virtual cloth with realistic wrinkles, In Pro. of Computer animation CA'02, 2002.
    [21] D'Aulignac D, Cavusoglu M C, Laugier C. Modeling the dynamics of the human thigh for a realistic echographic simulator with force feedback, In Proc. of the 2nd international conference on medical image computing-assisted intervention MICCAI'99, 1999.
    [22] Blum, H., A transformation for extracting new descriptors of shape, Symposium on Models for the Perception of Speech and Visual Form, MIT Press, 1967.
    [23] Giblin, P., Kimia, B.B., A formal classification of 3D medial axis points and their local geometry. Computer Vision and Pattern Recognition (South Carolina), 2000, 566-575.
    [24] Amenta, N., Bern, M., Kamvysselis, M., A new Voronoi-based surface reconstruction algorithm, Proceedings of ACM SIGGRAPH (Orlando), 1998, 415-421.
    [25] Hisada, M., Belyaev, A.G., Kunii, T.L., A skeleton-based approach for detection of perceptually salient features on polygonal surfaces, Computer Graphics Forum, 2002, 21(4): 1-12.
    [1] Darwin, C. The movements and habits of climbing plants. Appleton, New York, 1888.
    [2]蔡永立,宋永昌.浙江天童常绿阔叶林藤本植物的适应生态学研究II.攀援能力和单株攀援效率.植物生态学报. 2005, 29 (3):386-393.
    [3] Darwin C. On the movements and habits of climbing plants. Journal of the Linnean Society (Botany), 1867, 9:1-118.
    [4] Putz FE, Mooney HA. The Biology of Vines. Cambridge Press, Cambridge, 1991, 1-353.
    [5]陶建平,钟章成.支持物倾角对攀援植物栝楼形态和生长的影响.生态学报, 2003, 23(1): 1-7.
    [6]陶建平,钟章成,黄林.苦瓜植株不同构件层次对支持物直径变化的行为反应.植物生态学报. 2003(1):86-92.
    [7]颜立红,祁承经,彭春良.湖南湖北藤本植物物种多样性和生态特征.林业科学. 2006, 42(11):17-22.
    [8] Goriely A., et al. Mechanics of climbing and attachment in twining plants. Physical review letters. 2006, 97,184-302.
    [9] Neukirch, S., Goriely, A. Twining plants: how thick should their supports be? In the 5th Plant Biomechanics Conference, 2006.
    [10] McMillen T., Goriely A. Tendril perversion in intrinsically curved rods. J. Nonlinear Science, 2002, 12:241–281.
    [11] Wendy K. S., N. M Holbrook. The importance of frictional interactions in maintaining the stability of the twining habit.American Journal of Botany, 2005.92(11): 1820–1826.
    [12] Arvo J., Kirk D. Modeling Plants with Environment-Sensitive Automata. In Proceedings of Ausgraph’88, 1988. 27–33.
    [13] Mech, R. Modeling and simulation of the interaction of plants with the environment using L-systems and their extensions. [Dissertation], University of Calgary. 1997.
    [14] Greene N. Voxel Space Automata: Modeling with Stochastic Growth Processes in Voxel Space. In Proceedings of SIGGRAPH’89, 1989.
    [15] Benes B., Mill’an E. Virtual Climbing Plants Competing for Space. IEEE Proceedings of the Computer Animation, 2002. 33-42.
    [16]蔡永立,宋永昌.藤本植物生活型系统的修订及中国亚热带东部藤本植物的生活型分析.生态学报, 2000(5):808-814.
    [17]范昭炜.实时碰撞检测技术研究, [博士学位论文],浙江大学, 2003.
    [18] Samet H. Spatial data structures: quadtree, octrees and other hierarchical methods.Addison Wesley, 1989, 23-27.
    [19] Naylor BF, Amanatides JA, Thibault WC. Merging BSP trees yield polyhedral modeling results.In Proceedings of ACM SIGGRAPH, 1990, 115–124.
    [20] McNeely W, Puterbaugh K, Troy J. Six degree-of-freedom haptic rendering using voxel sampling.In Proceedings of Siggraph 1999, 401–408.
    [21] Hubbard, P.M. Approximating polyhedra with spheres for time critical collision detection. ACM Transactions on Graphics, 1996, 15(3): 179–210.
    [22] Van Den Bergen. Efficient collision detection of complex deformable models using AABB trees.Journal of Graphics Tools.1997, 2(4).1–13.
    [23] Gottschalk S, Lin, M.C., and Manocha D. OBB Tree: a hierarchical structure for rapid interference detection. In Proceedings of SIGGRAPH’96, ACM SIGGRAPH, New Orleans, USA,Aug. 1996,171-180.
    [24] James T. Klosowski. Efficient collision detection using bounding volume hierarchies of k-Dops, IEEE Transactions on Visualization and Computer Graphics. 1998, 4(1): 26–27.
    [25]魏迎梅,吴泉源,石教英.碰撞检测中的固定方向凸壳包围盒的研究,软件学报. 2001, 12(7): 105–109.
    [26] Ehmann S, Lin M C. Accurate and fast proximity queries between polyhedra using convex surface decomposition. In Proceedings of the Eurographics Conference, Manchester, 2001, 500–510.
    [27] Larsson T., Akenine-M, LLER T. Collision detection for continuously deforming bodies.In Eurographics, 2001, 325–333.
    [28] Mezger J., Kimmerle S., Etzmuss O. Hierarchical Techniques in Collision Detection for Cloth Animation.Journal of WSCG, 2003, 322–329.
    [29] Ganovelli, F., Dingliana, J., O'Sullivan, C. Buckettree: Improving collision detection between deformable objects. In Spring Conf.on Comp. Graphics, 2000, 156–163.
    [30] Bridson R., Marino S., Fedkiw R. Simulation of clothing with folds and wrinkles. In Proc.ACM/Eurographics Symposium on Computer Animation, 2003, 28–36.
    [31] Frisken S.F., Perry R.N., Rockwood P., Jones T.R. Adaptively sampled distance fields: A general representation of shape for computer graphics. SIGGRAPH 2000, Computer Graphics Proceedings, 2000, 249–254.
    [32] Heidelberger, B., Teschner, M., and Gross, M. Detection of collisions and self-collisions using image-space techniques. Journal of WSCG. 2004, 12(3): 145–152.
    [33] Govindaraju, N., Lin, M., and Manocha, D. Fast and reliable collision detection using graphics hardware. In Proc.of ACM VRST, 2004.
    [34] Baciu, G., Wong, S. Hardware-assisted self-collision for deformable models.In ACM Symposium on VRST, 2002, 129–136.
    [35] Navazo I, Ayala D, Brunet P. A geometric modeler based on the exact octree representation of polyhedra.Computer Graphics Forum, 1986, 5(2):91–104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700