盐和低温胁迫下水稻种子萌发的遗传研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是世界上最重要的粮食作物,盐、低温和干旱等是水稻生产上常见的非生物胁迫因子,严重影响水稻的生长和生产,阐明水稻耐这些逆境胁迫的遗传机理,改良水稻的抗逆性一直是水稻遗传育种研究的热点问题之一。本论文利用两个水稻重组自交系群体,研究了在盐和低温两种逆境胁迫下水稻种子萌发的遗传机理。
     以IR26 (Oryza sativa L. spp. indica)和韭菜青(japonica)、IR28 (indica)和大关稻(japonica)为亲本,通过“单粒传法”获得IR26/韭菜青和IR28/大关稻重组自交系(RILs)群体(F2:7),并构建相应的SSR分子连锁图谱进行比较,结果表明,IR26/韭菜青和IR28/大关稻RILs群体亲本DNA多态率分别为25.9%和24.6%,基因组中分别有57和74个SSR座位发生偏分离,偏分离率分别为42.2%和44.3%,均主要偏向于籼型亲本。分析群体内各株系每条染色体的基因型,发现IR26/韭菜青和IR28/大关稻RILs群体中均存在异常偏分离家系,偏分离率分别为47.2%和52.9%;亲本对各家系遗传贡献率呈正态分布,表明双亲对子代的遗传贡献基本上是平衡的,且群体中存在多个遗传结构相似的家系;构建的IR26/韭菜青、IR28/大关稻分子连锁图谱分别能覆盖水稻基因组2225.3 cM、1846.6 cM,平均图距分别为16.5 cM、11.1 cM,适合于在全基因组进行QTL检测。在IR26/韭菜青、IR28/大关稻基因组中分别检测到6、8个偏分离热点区(SDR),其中的3个偏分离热点区(SDR 2、SDR 4-2、SDR 12-1)为本研究首次报道。
     利用IR26/韭菜青F2:9重组自交系(RILs)为作图群体构建水稻分子遗传连锁图谱,分别在正常条件下(水)和100 mmol/L的NaCl胁迫下处理水稻种子10 d,鉴定种子的萌发能力,包括吸胀速率、发芽率、发芽指数、根长、芽长和活力指数。采用主基因-多基因遗传模型分离分析法进行遗传分析和复合区间作图法进行QTL定位。结果表明,盐胁迫显著抑制了水稻种子萌发,发芽早期(0~5d)是水稻种子萌发盐敏感期,RILs家系间种子萌发存在显著差异。除吸胀速率外,其他种子萌发性状之间均呈极显著正相关。RILs种子萌发性状的次数分布呈连续变异,表明种子萌发性状是由多基因控制的数量遗传性状,且多数RILs偏向于盐敏感型。水稻不同的萌发性状受不同遗传模式控制,其中吸胀速率由2对主基因模型控制,发芽指数、活力指数由2对主基因+多基因模型控制,根长由2对主基因或2对主基因+多基因模型控制,发芽率、芽长由3对主基因+多基因模型控制,以主基因遗传为主,主基因遗传率为12.5%~99.0%。在正常条件下,共检测到12个QTLs:2个控制吸胀速率(qIR-8、qIR-10)、1个控制发芽率(qGR-7)、1个控制发芽指数(qGI-2)、4个控制根长(qRL-1、qRL-4、qRL-9、qRL-10)、2个控制芽长(qSL-7、qSL-11)、2个控制活力指数(qVI-6、qVI-7),单个QTL能解释12.5%~25.5%的表型变异。在盐胁迫条件下,共检测到4个QTLs:2个控制吸胀速率(qIR-4、qIR-9)、1个控制发芽率(qGR-2)、1个控制活力指数(qVI-8),单个QTL能解释9.1%-46.6%的表型变异,其中控制发芽率的qGR-2为一主效QTL贡献率为46.6%。QTLs的表达存在时效性,比较以往报道的水稻耐盐相关QTLs,未发现与qVI-8、qGI-8位置相近的QTL,可能为两个新的耐盐基因座。
     利用IR28/大关稻F2:9重组自交系(RILs)为作图群体构建水稻分子遗传连锁图谱,分别在正常条件下(30℃)处理10 d和低温14℃下处理23 d鉴定种子的萌发能力,包括吸胀速率、发芽率、发芽指数、根长、芽长和活力指数。采用主基因-多基因混合遗传模型分离分析法进行遗传分析和复合区间作图法进行QTL定位。结果表明,水稻种子萌发能力受低温胁迫抑制,RILs家系间种子萌发能力存在显著差异。除吸胀速率外,其他性状之间均呈极显著正相关。RILs种子萌发性状的次数分布呈连续变异,表明种子萌发性状是由多基因控制的数量遗传性状,且多数RILs偏向于冷敏感型。水稻不同的萌发性状受不同遗传模式控制,其中吸胀速率、根长、芽长、活力指数由2对主基因+多基因模型控制,发芽率由2对或3对主基因模型控制,发芽指数由2对主基因控制,以主基因遗传为主,主基因遗传率为26.4%-95.3%。在正常条件下,共检测到11个QTLs:3个控制吸胀速率(qIR-6、qIR-9、qIR-11)、2个控制发芽指数(qGI-1、qGI-7)、2个控制根长(qRL-11、qRL-12)、2个控制芽长(qSL-8、qSL-9)、2个控制活力指数(qVI-2、qVI-9),单个QTL能解释15.1%-32.4%的表型变异。在低温胁迫条件下,共检测到7个QTLs:2个控制吸胀速率(qIR-6、qIR-9)、1个控制发芽率(qGR-4)、2个控制发芽指数(qGI-4-1、qGI-4-2)、2个控制根长(qRL-4-1、qRL-4-2),单个QTL能解释9.1%~37.0%的表型变异,其中控制吸胀速率的qIR-6为一主效QTL,贡献率为31.0%~34.5%,控制发芽指数的qGI-4-2为另一主效QTL,贡献率为37.0%。QTLs的表达存在时效性,比较以往报道的水稻耐冷相关QTLs,未发现与qRL-4-2位置相近的QTL,可能为一个新的耐冷基因座。
Rice is the most important crop in the world. However, the growth and production of rice are limitted frequently by some abiotic stresses, such as salinity, drought, and low temperature. Therefore, improving the abiotic stress tolerance in rice has become one main objective of rice research. Two recombine inbred lines (RILs) populations were used to investigate the genetic control of rice seed germination under salt and cold stress in this thesis.
     In the last decade, the development of rice molecular linkage maps has provided powerful tool to carry out rice genomic researches, such as QTL mapping, map-based cloning, comparative genomics, genetic diversity research and marker-assisted selection breeding. Here, two F2:1 recombinant inbred lines (RILs) populations, IR26/Jiucaiqing and IR28/Daguandao, respectively, derived from a cross between IR26 (Oryza sativa L. spp. indica) and Jiucaiqing (japonica), and IR28 (indica) and Daguandao (japonica), were used to construct two SSR molecular linkage maps. The results showed that the DNA polymorphism between parents of IR26/Jiucaiqing and IR28/Daguandao were similar, with polymorphic rate 42.2% and 44.3%, respectively. There were 57 and 74 SSR loci showing genetic distortion, mainly partial to indica parents, among IR26/Jiucaiqing and IR28/Daguandao genome, respectively, with the segregation distortion rate 42.2% and 44.3%. The genotype of each line at each chromosome was analyzed; there were genetic distortion lines in two RILs with segregation distortion rate 47.2% and 52.9%, respectively. The distribution of paternal contribution was normal in progenies which illustrated that genetic contributions from the parents were equals, and some lines with similar genotypic components in two RILs. In addition, the two genetic maps of IR26/Jiucaiqing and IR28/Daguandao covered 2225.3 cM and 1846.6 cM of rice genome, respectively, with the average interval of 16.5 cM and 11.1 cM, which were suitable for QTL mapping. The two maps differed in mapped markers, sequenced order of markers, genetic distance and average distance on the maps. Finally, six and eight segregation distortion regions (SDRs) were detected on IR26/Jiucaiqing and IR28/Daguandao chromosomes, respectively, three new SDRs (SDR 2, SDR 4-2, SDR 12-1) were detected here, and several gametophytic genes (ga) and sterile gene (s) were located near some SDRs, indicating that segregation distortion could be partially caused by gametophytic genes and sterile genes.
     One F2:9 recombinant inbred lines (RILs) population, derived from a cross between IR26 (Oryza sativa L. spp. indica) and Jiucaiqing (japonica), was used to determine the germination ability including imbibition rate, germination rate, germination index, root length, shoot length and vigor index under control (water) and salt stress (100 mM NaCl) for 10 d. A major gene plus polygene mix inheritance model and the composite interval mapping (CIM) were applied to conduct genetic analysis for germination ability. The results showed that the performances of rice seed germination were mostly limited by salt stress and the early germination stage (0-5 d) might be the salt sensitive stage in rice. There were significant differences in all germination traits under salt stress among RILs. Correlation coefficients among the germination traits, except the imbibition rate, under salt stress were all positively significant. The frequency distributions of germination traits in RILs population showed continuous segregation, suggesting these were quantitative traits controlled by several genes, and more RILs were skewed to salt sensitive type. Each trait was controlled by the specific genetic model:imbibition rate controlled by two major genes, germination index and vigor index controlled by two major genes plus polygene, germination rate and shoot length regulated by three major genes plus polygene, and root length controlled by two major genes or two major genes plus polygene, and mainly dominated by major genes with high heritability values, accounted for 12.5%-99.0% of the total phenotypic variation. In the control group, twelve QTLs were identified:two for imbibition rate (qIR-8 qIR-10), one for germination rate (qGR-7), one for germination index (qGI-2), four for root length (qRL-1 qRL-4 qRL-9 qRL-10), two for shoot length (qSL-7 qSL-11) and two for vigor index (qVI-6 qⅥ-7), respectively, accounting for 12.5%-25.5% of the total phenotypic variance individually. In the saline group, four QTLs were identified: two for imbibition rate (qIR-4 qIR-9), one for germination rate (qGR-2) and one for vigor index (qⅥ-8), respectively, explaining 9.1%-46.6% of the total phenotypic variance individually. One major QTL qGR-2 was explaning 46.6% of the total phenotypic variance. The expression of QTLs was developmentally regulated and growth stage-specific. Most of the QTLs observed here were located in regions similar to the QTLs for rice salt tolerance reported previously, but qⅥ-8 and qGI-8 are reported here for the first time.
     One F2:9 recombinant inbred lines (RILs) population, derived from a cross between IR28(Oryza sativa L. spp. indica) and Daguandao (japonica), was used to determine the germination ability including imbibition rate, germination rate, germination index, root length, shoot length and vigor index under control (30℃) for 10 d and cold stress (14℃) for 23 d. A major gene plus polygene mix inheritance model and the composite interval mapping (CIM) were applied to conduct genetic analysis for germination ability. The results showed that the performances of rice seed germination were mostly limited by cold stress and there were significant differences in all germination traits under cold stress among RILs. Correlation coefficients among the germination traits, except the imbibition rate, under cold stress were all positively significant. The frequency distributions of germination traits in RILs population showed continuous segregation, suggesting these were quantitative traits controlled by several genes, and more RILs were skewed to cold sensitive type. Each trait was controlled by the specific genetic model:imbibition rate, root length, shoot length and vigor index controlled by two major genes plus polygene, germination rate controlled by two or three major genes and germination index regulated by two major genes, and mainly dominated by major genes with high heritability values, accounted for 26.4%~95.3% of the total phenotypic variation. In the control group, eleven QTLs were identified:three for imbibition rate(qIR-6 qIR-9 qIR-11), two for germination index (qGI-1 qGI-7), two for root length (qRL-11 qRL-12), two for shoot length (qSL-8 qSL-9) and two for vigor index (qVI-2 qVI-9), respectively, accounting for 15.1%~32.4% of the total phenotypic variance individually. In the cold group, seven QTLs were identified: two for imbibition rate (qIR-6 qIR-9), one for germination rate (qGR-4), two for germination index (qGI-4-1 qGI-4-2) and two for root length (qRL-4-1 qRL-4-2), respectively, explaining 9.1%~37.0% of the total phenotypic variance individually. One major QTL qIR-6 explained for 31.0%~34.5% of the total phenotypic variance, and another major QTL qGI-4-2 accounted for 37.0% of the total phenotypic variance. The expression of QTLs was developmentally regulated and growth stage-specific. Most of the QTLs observed here were located in regions similar to the QTLs for rice cold tolerance reported previously, but qRL-4-2 is reported here for the first time.
引文
[1]曹钢强,朱军,何慈信,高用明,吴平.水稻穗长上位性效应和QE互作效应的QTL遗传研究.浙江大学学报(农业与生命科学版),2001,27(1):55-61
    [2]曹立勇,赵建根,占小登,李登楼,何立斌,程式华.水稻耐热性的QTL定位及耐热性与光合速率的相关性.中国水稻科学,2003,17(3):223-227
    [3]陈亮,楼巧君,孙宗修,邢永忠,余新桥,罗利军.水稻低温发芽力的QTL定位.中国水稻科学,2006,20(2):159-164
    [4]陈庆全,余四斌,李春海,牟同敏.水稻抽穗开花期耐热性QTL的定位分析.中国农业科学,2008,41(2):315-321
    [5]段远霖,赵守环,吴为人,周元昌,祁建民,潘润森,林荔辉,陈志伟,官华忠,毛大梅.用SSR标记提高水稻分子连锁图谱密度.分子植物育种,2003,1(4):475479
    [6]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2001
    [7]盖钧镒.植物数量性状遗传体系的分离分析方法研究.遗传,2005,27(1):130-136
    [8]龚继明,何平,钱前,沈利爽,朱立煌,陈受宜.水稻耐盐性QTL的定位.科学通报,1998,43(17):1847-1850
    [9]龚继明,郑先武,杜保兴,钱前,陈受宜,朱立煌,何平.控制水稻重要农艺性状的QTL在盐胁迫与非胁迫条件下的对比研究.中国科学(C辑),2000,30(6):561-569
    [10]顾兴友,梅曼彤,严小龙,郑少玲,卢永根.水稻耐盐性数量性状位点的初步检测.中国水稻科学,2000,14(2):65-70
    [11]顾兴友,郑少玲,严小龙,卢永根.水稻苗期耐盐性遗传的世代平均数分析.作物学报,1999,25(6):686-690
    [12]韩龙植,高熙宗,朴钟泽.水稻耐冷性遗传及基因定位研究概况与展望.中国水稻科学,2002,16(2):193-198
    [13]韩龙植,乔永利,曹桂兰,张媛媛,安永平,芮钟斗,高熙宗.水稻生长早期耐冷性QTL分析.中国水稻科学,2005,19(2):122-126
    [14]韩龙植,乔永利,张媛媛,曹桂兰,芮钟斗,高熙宗.水稻孕穗期耐冷性QTLs分析.作物学报,2005,31(5):653-657
    [15]何风华.水稻QTL分析的研究进展.西北植物学报,2004,24(11):2163-2169
    [16]何小红,徐辰武,蒯剑敏,顾世,李韬.数量性状基因作图精度的主要影响因子.作物学报,2001,27(4):469475
    [17]侯名语,王春明,江玲,万建民,Hideshi Y, Atsushi Y水稻低温发芽力QTL定位和遗传分析.遗传学报,2004,31(7):701-706
    [18]胡颂平,杨华,邹桂花,刘鸿艳,刘国兰,梅捍卫,蔡润,李名寿,罗利军.水稻胚芽鞘长度与抗旱性的关系及QTL定位.中国水稻科学,2006,20(1):19-24
    [19]纪素兰,江玲,王益华,刘世家,刘喜,翟虎渠,万建民.利用回交重组自交群体检测水稻耐低温发芽数量性状基因座.南京农业大学学报,2007,30(1):1-6
    [20]姜树坤,徐正进,陈温福.水稻QTL图位克隆的特征分析.遗传,2008,30(9):1121-1126
    [21]奎丽梅,谭禄宾,涂建,卢义宣,孙传清.云南元江野生稻抽穗开花期耐热QTL定位.农业生物技术学报,2008,16(3):461-464
    [22]兰涛,郑军,吴为人,汪斌.用微卫星标记构建两系稻培矮64s/E32的分子遗传连锁图.遗传,2003,25(5):557-562
    [23]李余生,王州飞,唐海娟,张红生.太湖流域粳稻地方品种产量相关性状遗传分析.中国水稻科学,2006,20:272-276
    [24]李余生,朱镇,张亚东,赵凌,王才林.水稻稻曲病抗性的主基因+多基因混合遗传模型分析.作物学报,2008,34(10):1728-1733
    [25]永书,彭勇,叶少平,李平,孙林静,马忠友,李艳萍.水稻籼粳交F2、F6群体遗传连锁图谱的比较分析.遗传,2007,29(9):1110-1120
    [26]林鸿宣,柳原城司,庄杰云,仙北俊弘,郑康乐,八岛茂夫.应用分子标记检测水稻耐盐性的QTL.中国水稻科学,1998,12(2):72-78
    [27]刘凤霞,孙传清,谭禄宾,李德军,付永彩,王象坤.江西东乡野生稻孕穗开花期耐冷基因定位.科学通报,2003,48(17):1864-1867
    [28]莫惠栋.质量-数量性状的遗传分析Ⅰ.遗传组成和主基因基因型鉴别.作物学报,1993,19(1):1-6
    [29]彭勇,永书,王世全,吴发强,李双成,邓其明,李平.水稻SSR标记在RI群体的偏分离分析.分子植物育种,2006,4(6):786-790
    [30]钱前,曾大力,何平,郑先武,陈英,朱立煌.水稻籼粳交DH群体苗期的耐冷性QTLs分析.科学通报,1999,44(22):2402-2407
    [31]钱前.水稻基因设计育种.北京:科学出版社,2007
    [32]乔永利,韩龙植,安永平,张媛媛,曹桂兰,高熙宗.水稻芽期耐冷性QTL的分子定位.中国农业科学,2005,38(2):217-221
    [33]沈圣泉,朱军.籼粳杂种主要性状的遗传及其与环境互作效应.浙江农业大学学报,1997,23(2):5217-222
    [34]孙传清,张文绪.水稻根系性状和叶片水势的遗传及其相关研究.中国农业科学,1995,28:42-48
    [35]滕胜,钱前,曾大力,国广泰史,藤本宽,黄大年,朱立煌.水稻苗期耐旱性基因位点及其互 作的分析.遗传学报,2002,29(3):235-240
    [36]田翠,张涛,蒋开锋,杨莉,郑家奎.水稻QTL定位研究进展.基因组学与应用生物学,2009,28(3):557-562
    [37]汪斌,兰涛,吴为人.盐胁迫下水稻苗期Na+含量的QTL定位.中国水稻科学,2007,21(6):585-590
    [38]王辉,曹立勇,郭玉华,程式华.水稻生理特性与抗旱性的相关分析及QTL定位.中国水稻科学,2008,22(5):477-484
    [39]王建飞,陈宏友,杨庆利,姚明哲,周国安,张红生.盐胁迫浓度和盐胁迫时的温度对水稻耐盐性的影响.中国水稻科学,2004,18(5):449-454
    [40]王永军,吴晓雷,喻德跃,章元明,陈受宜,盖钧镒.重组自交系群体的检测调整方法及其在大豆NJRIKY群体的应用.作物学报,2004,30(5):413-418
    [41]吴为人,唐定中,李维明.数量性状的遗传剖析和分子剖析.作物学报,2000,26(4):501-507
    [42]辛业芸.水稻产量性状QTL定位研究进展.湖南农业大学学报(自然科学版),2007,33(4):396-402
    [43]熊振民.早籼品种苗期耐冷性的遗传研究.中国水稻科学,1990,4(2):75-78
    [44]徐吉臣,李晶昭,郑先武,邹亮星,朱立煌.苗期水稻根部性状的QTL定位.遗传学报,2001,28(5):433-438
    [45]寻梅梅,江玲,刘世家,陈平,王茂青,翟虎渠,万建民.利用回交重组自交系群体检测水稻苗期耐冷性基因座.南京农业大学学报,2006,29(2):123-126
    [46]严长杰,李欣,程祝宽,于恒秀,顾铭洪,朱立煌.利用分子标记定位水稻芽期耐冷性基因.中国水稻科学,1999,13(3):134-138
    [47]杨庆利,王建飞,丁俊杰,张红生.7个水稻品种苗期耐盐性的遗传分析.南京农业大学学报,2004,27(4):6-10
    [48]杨树明,曾亚文,杜娟,普晓英,刘昆,桂敏,张浩.水稻丽粳2号近等基因系杂种后代耐冷性遗传研究.植物遗传资源学报,2006,7(3):306-309
    [49]姚明哲,王建飞,陈宏友,杨庆利,周国安,张红生.太湖流域粳稻地方品种韭菜青的苗期耐盐性遗传分析.中国水稻科学,2004,18(6):503-506
    [50]叶昌荣,加藤明,齐藤浩二,伊势一男,戴陆园,杨勤忠.云南稻种冲腿的孕穗期耐冷性QTL分析.中国水稻科学,2001,15(1):13-16
    [51]叶少平,张启军,李杰勤,赵兵,殷得所,李平.用(培矮64S/Nipponbare)F2群体对水稻产量构成性状的QTL定位分析.作物学报,2005,31(2):1620-1627
    [52]曾亚文,中士全,林兴华,徐福荣.强耐冷性籼粳水稻杂交后代孕穗期耐冷性研究.华中农业大学学报,2000,19(5):411-416
    [53]詹庆才,朱克永,陈祖武,曾曙珍.利用水稻F2分离群体进行苗期耐冷性数量性状基因定位.湖南农业大学学报(自然科学版),2004,30(4):303-306
    [54]张光恒,曾大力,胡时开,苏岩,阿加拉铁,郭龙彪,钱前.水稻苗期耐淹相关性状QTL分析.作物学报,2006,32(9):1280-1286
    [55]张露霞,王松凤,江玲,万建民.利用重组自交系群体检测水稻芽期耐冷性QTL.南京农业大学学报,2007,30(4):1-5
    [56]张启军,叶少平,虞德容,李平,吕川根,邹江石.六张水稻遗传连锁图谱的比较分析.西南农业学报,2005,18(5):584-592
    [57]张涛,杨莉,蒋开锋,黄敏,孙群,陈温福,郑家奎.水稻抽穗扬花期耐热性的QTL分析.分子植物育种,2008,6(5):867-873
    [58]张玉山,陈庆全,吴薇,徐才国.水稻SSR标记遗传连锁图谱着丝粒的整合及其偏分离分析.华中农业大学学报,2008,27(2):167-171
    [59]赵向前,吴为人.水稻ILP标记遗传图谱的构建.遗传,2008,30(2):225-230
    [60]赵志刚,江玲,肖应辉,张文伟,翟虎渠,万建民.水稻孕穗期耐热性QTLs分析.作物学报,2006,32(5):640-644
    [61]朱昌兰,江玲,张文伟,王春明,翟虎渠,万建民.稻米直链淀粉含量和胶稠度对高温耐性的QTL分析.中国水稻科学,2006,20(3):248-252
    [62]朱昌兰,肖应辉,王春明,江玲,翟虎渠,万建民.水稻灌浆期耐热害的数量性状基因位点分析.中国水稻科学,2005,19(2):117-121
    [63]朱成松,王付华,王建飞,李广军,张红生,章元明.回交、DH和RIL偏分离群体遗传图谱的重新构建.科学通报,2007,52(8):918-922
    [64]朱军.包括基因型×环境互作效应的种子遗传模型及其分析方法.遗传学报,1996,23(1):56-68
    [65]朱军.广义遗传模型与数量遗传分析新方法.浙江农业大学学报,1994,20(6):551-559
    [66]朱军.数量性状遗传分析的新方法及其应用.浙江大学学报(农业与生命科学版),2000,26(1):1-6
    [67]朱军.运用混合线性模型定位复杂数量性状基因的方法.浙江大学学报(自然科学版),1999,33(3):327-335
    [68]Akbar M, Khush GS, HilleRisLambers D. Genetics of salt tolerance in rice, In:Jones MP, ed., Rice genetics proceeding of international rice genetics symposium, IRRI, Philippines,1985,5:399-409
    [69]Ali ML, Pathan MS, Zhang J, Bai G, Sarkarung S, Nguyen HT. Mapping QTLs for root traits in a recombinant inbred population from two indica rice ecotypes in rice. Theor Appl Genet,2000,101: 756-766
    [70]Andaya VC Mackill DJ. QTLs conferring cold tolerance at the booting stage of rice using recombinant inbred lines from a japonica × indica cross. Theor Appl Genet,2003,106:1084-1090
    [71]Andaya VC, Mackill DJ. Mapping of QTLs associated with cold tolerance during the vegetative stage in rice. J Expt Bot,2003,54:2579-2585
    [72]Andaya VC, Tai TH. Fine mapping of the qCTS12 locus, a major QTL for seedling cold tolerance in rice. Theor Appl Genet,2006,113:467-475
    [73]Andaya VC. Tai TH. Fine mapping of the qCTS4 locus associated with seedling cold tolerance in rice(Oryza sativa L.). Mol Breeding,2007,20:349-358
    [74]Armenta-Soto J, Chang TT, Loreto GC, O'Toole JC. Genetic analysis of root characters and their relations to drought resistance in rice. Crop Sci,1985,25:936-941
    [75]Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science,2005, 309(5735):741-745
    [76]Atchley W, Zhu J. Developmental quantitative genetics, conditional epigenetic variability and growth in mice. Genetics,1997,147:765-776
    [77]Bedi S, Basra AS. Chilling injury in germinating seeds:basic mechanisms and agricultural implications. Seed Sci Res,1993,3(4):219-229
    [78]Boyer JS. Plant productivity and environment. Science,1982,218:443-448
    [79]Cai HW, Morishima H. QTL clusters reflect character associations in wild and cultivated rice. Theor Appl Genet,2002,104:1217-1228
    [80]Cao DD, Jin H, Huang XX, Wang XJ, Guan YJ, Wang ZF. Relationships between changes of kernel nutritive components and seed vigor during development stages of F1 seeds of sh2 sweet corn. J Zhejiang Univ Sci B,2008,12:964-968
    [81]Causse MA, Fulton TM., Cho YG, Ahn SN, Chunwongse J, Wu K, Xiao J, Yu Z, Ronald PC, Harrington SE, Second G, McCouch SR, Tanksley SD. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics,1994,138:1251-1274
    [82]Champoux MC, Wang G, Sarkarung S, Mackill DJ, O'Toole JC, Huang N, McCouch SR. Locating genes associated with root morphology and drought avoidance in rice via linkage to RFLP markers. Theor Appl Genet,1995,90:969-981
    [83]Chem CS, Sung FJM. Prevention of injury during inhibition in Shrunken-2 corn seeds by osmotic control water uptake. Seed Sci Technol,1991,19(2):469-476
    [84]Chen X, Temnykh S, Xu Y, Cho YG, McCouch SR. Development of a microsatellite framework map providing genome-wide coverage in rice(Oryza sativa L.). Theor Appl Genet,1997,95: 553-567
    [85]Cho YG, McMouch SR, Kuiper M, Kang MR, Pot J, Groenen J. Integrated map of AFLP, SSLP and RFLP markers using a recombinant inbred population of rice (Oryza sativa L.). Theor Appl Genet, 1998,97:370-380
    [86]Chung GS. The rice cold tolerance program in Korea.-In:Report of a rice cold tolerance workshop-Manila:IRRI,1979,-7-19
    [87]Churchill GA, Doerge RW. Empirical threshold values for quantitative trait mapping. Genetics, 1994,138:963-971
    [88]Courtois B, McLaren G, Sinha PK, Prasad K, Yadav R, Shen L. Mapping QTLs associated with drought avoidance in upland rice. Molecular Breeding,2000,6:55-66
    [89]Dai L, Lin X, Ye C, Ise K, Saito K, Kato A, Xu F, Yu T, Zhang D. Identification of quantitative trait loci controlling clod tolerance at the reproductive stage in Yunnan landrace of rice, Kunmingxiaobaigu. Breeding Science,2004,54:253-258
    [90]Dellaporta SL, Wood T, Hicks TB. A plant DNA mini preparation:version II. Plant Mol Bio Rep, 1983,1:19-21
    [91]Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehdl, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes & Development,2004,18(8):926-936
    [92]Ekanayake IJ, O'Toole JC, Garrity DP, Masajo TM. Inheritance of root characters and their relations to drought resistance in rice. Crop Sci,1985,25:927-933
    [93]Elkind Y, Cahaner A. A mixed model for the effects of single gene, polygenes and their interaction on quantitative traits:I. The model and experimental design. Theor Appl Genet,1986,72:377-383
    [94]Eshed Y, Zamir D. Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics,1996,143:1807-1817
    [95]Fan CC, Xing YZ, Mao HL, Lu TT, Han B, Xu CG, Li XH, Zhang QF. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet,2006,112(6):1164-1171
    [96]Faure S, Noyer JL, Horry JP, Bakry F, Lanaud C, Gonzalez de L. A molecular marker-based linkage map of diploid bananas. Theor Appl Genet,1993,87:517-526
    [97]Flowers TJ, Koyama ML, Flowers SA, Sudhakar C, Singh KP, Yeo AR. QTL:Their place in engineering tolerance of rice to salinity. J Exp Bot,2000,51:99-106
    [98]Foolad MR, Stoltz T, Dervinis C, Rodriguez RL, Jones RA. Mapping QTLs conferring salt tolerance during germination in tomato by selective genotyping. Molecular Breeding,1997,3: 269-277
    [99]Fujino K, Sekiguchi H, Matsuda Y, Sugimoto K, Ono K, Yano M. Molecular indentification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice. Proc Natl Acad Sci USA,2008,105:12623-12628
    [100]Fujino K, Sekiguchi H, Sato T, Kiuchi H, Nonoue Y, Takeuchi Y, Ando T, Lin SY, Yano M. Mapping of quantitative trait loci controlling low-temperature germinability in rice(Oryza sativa L.). Theor Appl Genet,2004,108:794-799
    [101]Fujino K. A major gene for low temperature germinability in rice(Oryza sativa L.). Euphytica, 2004,136:63-68
    [102]Fukui K, Lijima K. Somatic chromosome map of rice by imaging methods. Theor Appl Genet, 1991,81:589-596
    [103]Gai JY, Wang JK. Identification and estimation of a QTL model and its effects. Theor Appl Genet, 1998,97:1162-1168
    [104]Garcia-Oliveira AL, Tan L, Fu Y, Sun C. Genetic identification of quantitative trait loci for contents of mineral nutrients in rice grain. J Integr Plant Biol,2009,51(1):84-92
    [105]Gregorio GB, Senadhira D. Genetic analysis of salinity tolerance in rice. Theor Appl Genet,1993, 86:333-338
    [106]Guo L, Ma L, Jiang H, Zeng D, Hu J, Wu L, Gao Z, Zhang G, Qian Q. Genetic analysis and fine mapping of two genes for grain shape and weight in rice. J Integr Plant Biol,2009,51(1):45-51
    [107]Guo Y, Mu P, Liu J, Lu Y, Li Z. QTL mapping and Q×E interactions of grain cooking and nutrient qualities in rice under upland and lowland environments. J Genet Genomics.2007,34(5):420-428
    [108]Han L, Qiao Y, Zhang S, Zhang Y, Cao G, Kim J, Lee K, Koh H. Identification of quantitative trait loci for cold response of seedling vigor traits in rice. Journal of Genetics and Genomics,2007, 34(3):239-246
    [109]Harushima H, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin SY, Antonio BA, Parco A, Ka-jiya H, Huang N, Yamamoto K, Nagamura Y, Kurata N, Khush GS, Sasaki T. A high-density rice genetic linkage map with 2275 makers using F2 population. Genetics,1998, 148(1):479-494
    [110]Harushima Y, Kurata N, Yano M, Nagamura Y, Sasaki T, Minobe Y, Nakagahra M. Detection of segregation distortion in an indica-japonica rice cross using a high-resolution molecular map. Theor Appl Genet,1996,92:145-150
    [111]He GM, Luo XJ, Tian F, Li KG, Zhu ZF, Su W, Qian XY, Fu YC, Wang XK, Sun CQ, Yang JS. Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice. Genome Res,2006,16(5):618-626
    [112]Hosseini MK, Powell AA, Bingham IJ. Comparison of the seed germination and early seedling growth of soybean in saline conditions. Seed Science Research,2002,12:165-172
    [113]Izawa T, Shimamoto K. Becoming a model plant:the importance of rice to plant science. Trend Plant Sci,1996,1:95-99
    [114]Jiang C, Pan X, Gu M. The use of mixture models to detect effects of major genes on quantitative characters in plant breeding experiment. Genetics,1994,136:383-394
    [115]Jiang L, Guo L, Jiang H, Zeng D, Hu J, Wu L, Liu J, Gao Z, Qian Q. Genetic analysis and fine-mapping of a dwarfing with withered leaf-tip mutant in rice. J Genet Genomics,2008,35(12): 715-721
    [116]Jiang L, Liu S, Hou M, Tang J, Chen L, Zhai H, Wan J. Analysis of QTLs for seed low temperature germinability and anoxia germinability in rice(Oryza sativa L.). Field Crops Research, 2006,98:68-75
    [117]Johnson DW, Smith SE, Dobrenz AK. Genetic and phenotypic relationships in response to NaCl at different developmental stages in alfalfa. Theor Appl Genet,1992,83:833-838
    [118]Jones MP. Genetic analysis of salt tolerance in mangrove swamp rice. In:Jones MP, ed., Rice genetics proceeding of international rice genetics symposium, IRRI, Philippines,1985,5:41-122
    [119]Jun BT, Kim JI, Cho SY. Studies on inheritance of quantitative characters in rice. Ⅷ.Analysis on low temperature germination in diallel cross of F2 generation. Korean J Breeding,1987,19(3): 240-244
    [120]Kamoshita A, Zhang J, Siopongeo J, Sarkarung S, Nguyen HT, Wade LJ. Effects of phenotyping environment on identification of quantitative trait loci for rice root morphology under anaerobic conditions. Crop Sci,2002,42:255-265
    [121]Knox MR, Ellis T. Excess heterozygosity contributes to genetic map expansion in pea recombinant inbred populations. Genetics,2002,162:861-873
    [122]Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hdl under short-day conditions. Plant Cell Physiol,2002,43(10):1096-1105
    [123]Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, Yano M. An SNP caused loss of seed shattering during rice domestication. Science,2006,312(5778):1392-1306
    [124]Konishi T, Yano Y, Abe K. Geographic distribution of alleles at the Ga2 locus for segregation distortion in barley. Theor Appl Genet,1992,85(4):419-422
    [125]Koyama ML, Levesley A, Koebner RMD, Flowers TJ, Yeo AR. Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiology,2001,125: 406-422
    [126]Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue N, Wu J, Antonio BA, Shomura A, Shimizu T, Lin SY, Inoue T, Fukuda A, Shimano T, Kuboki Y, Toyama T, Miyamoto Y, Kirihara T, Hayasaka K, Miyao A, Monna L, Zhong HS, Tamura Y, Wang ZX, Momma T, Umehara Y, Yano M, Sasaki T, Minobe Y. A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nature Genetics,1994,8:365-372
    [127]Kuroki M, Saito K, Matsuba S, Yokogami N, Shimizu H, Ando I, Sato Y. A quantitative trait locus for cold tolerance at the booting stage on rice chromosome 8. Theor Appl Genet,2007,115: 593-600
    [128]Lafitte HR, Price AH, Courtois B. Yield response to water deficit in an upland rice mapping population:Associations among traits and genetic markers. Theor Appl Genet,2004,109: 1237-1246
    [129]Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics,1987,1:174-181
    [130]Lee KS, Choi WY, Ko JC, Kim TS, Gregorio GB. Salinity tolerance of japonica and indica rice (Oryza sativa L.) at the seedling stage. Planta,2003,216:1043-1046
    [131]Lee SY, Ahn JH, Cha YS, Yun DW, Lee MC, Ko JC, Lee KS, Eun MY. Mapping of quantitative trait loci for salt tolerance at the seedling stage in rice. Mol Cells,2006,21(2):192-196
    [132]Li CB, Zhou AL, Sang T. Rice domestication by reducing shattering. Science,2006,311(5769): 1936-1939
    [133]Li J, Xiao J, Grandillo S, Jiang L, Wan Y, Deng Q, Yuan L, McCouch SR. QTL detection for rice grain quality traits using an interspecific backcross population derived from cultivated Asian (O. sativa L.) and African (O. glaberrima S.) rice. Genome,2004,47(4):697-704
    [134]Li W, Jiang L, Zhou S, Wang C, Liu L, Chen L, Ikehashi H, Wan J. Fine mapping of pss1, a pollen semi-sterile gene in rice(Oryza sativa L.). Theor Appl Genet,2007,114:939-946
    [135]Li ZK, Yu SB, Lafitte HR, Huang N, Courtois B, Hittalmani S, Vijayakumar CH, Liu GF, Wang GC, Shashidhar HE, Zhuang JY, Zheng KL, Singh VP, Sidhu JS, Srivantaneeyakul S, Khush GS. QTL x environment interactions in rice. I. heading date and plant height. Theor Appl Genet,2003, 108:141-153
    [136]Lilley JM, Ludlow MM, McCouch SR, O'Toole JC. Locating QTL for osmotic adjustment and dehydration tolerance in rice. Journal of Experimental Botany,1996,47(302):1427-1436
    [137]Lin HX, Zhu MZ, Yano MJ, Gao P, Liang ZW, Su WA, Hu XH, Ren ZH, Chao DY QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet,2004,108: 253-260
    [138]Lin SY, Ikehashi H, Yanagihara S, Kawashima K. Segregation distortion via male gametes in hybrid between Indica and Japonica or wide compatibility varieties of rice(Oryza satica L.). Thor Appl Genet,1992,84(7-8):812-818
    [139]Liu G, Zhang Z, Zhu H, Zhao F, Ding X, Zeng R, Li W, Zhang G. Detection of QTLs with additive effects and additive-by-environment interaction effects on panicle number in rice(Oryza sativa L.) with single-segment substitution lines. Theor Appl Genet,2008,116:923-31
    [140]Liu Q, Zhang Y, Chen S. Plant protein kinase genes induced by drought, high salt and cold stresses. Chinese Science Bulletin,2000,45(13):1153-1157
    [141]Liu Q, Zhao N, Yamaguch Shinozaki K, Shimozaki K. Regulatory role of DREB transcription factors in plant drought, salt and cold tolerance. Chinese Science Bulletin,2000,45(11):970-975
    [142]Liu T, Mao D, Zhang S, Xu C, Xing Y. Fine mapping SPP1, a QTL controlling the number of spikelets per panicle, to a BAC clone in rice(Oryza sativa L.). Theor Appl Genet.2009,118(8): 1509-1517
    [143]Lorieux M, Goffinet B, Perrier X, Gonzalez D de L, Lanaud C. Maximum-likelihood models for mapping genetic markers show segregation distortion.1. Backcross populations. Theor Appl Genet, 1995,90(1):73-80
    [144]Lorieux M, Perrier B, Goffinet B, Lanaud C, Gonzalez D de L. Maximum-likelihood models for mapping genetic markers show segregation distortion.2. F2 populations. Theor Appl Genet,1995, 90(1):81-89
    [145]Lou Q, Chen L, Sun Z, Xing Y, Li J, Xu X, Mei H, Luo L. A major QTL associated with cold tolerance at seedling stage in rice(Oryza sativa L.). Euphytica,2007,158:87-94
    [146]Lu CF, Shen LS, Tan ZB, Xu YB, He P, Zhu LH. Comparative QTL mapping of agronomic quantitative traits across environments. Theor Appl Genet,1996,93 (8):1211-1217
    [147]Lu H, Romero-Severson J, Bernardo R. Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet,2002,105:622-628
    [148]Lyttle TW. Segregation distorters. Annu Rev Genet,1991,25(1):551-557
    [149]Mackill DJ, Coffinan WR, Rutger JN. Pollen shedding and combining ability for high temperature tolerance in rice. Crop Science,1982,22:730-733
    [150]McCouch SR, Cho YG., Yano M, Paul E, Blinstrub M, Mori-shima H, Kinoshita T. Report on QTL nomenclature. Rice Genet News,1997,14:11-13
    [151]McCouch SR, Kochert G, Yu ZH, Wang ZY, Khush GS, Coffman WR, Tanksley SD. Molecular mapping of rice chromosomes. Theor Appl Genet,1988,76:815-829
    [152]McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2240 new SSR markers for rice(Oryza sativa L.). DNA Research, 2002,9:199-207
    [153]Miura K, Lin SY, Araki H, Nagamine T, Kuroki M, Shimizu H, Ando I, Yano M. Genetical studies on germination of seed and seedling establishment for breeding of improved rice varieties suitable for direct seeding culture. JARQ,2004,38(1):1-5
    [154]Miura K, Lin SY, Yano M, Nagamine T. Mapping quantitative trait loci controlling low-temperature germinability in rice(Oryza sativa L.). Breeding Science,2001,51:293-299
    [155]Morishita H. Inheritance of low temperature tolerance at young seedling stage. Japan:National Institute of Genetics,1996,411-413
    [156]Nakagahra M, Okuno K, Vaughan D. Rice genetic resources:history, conservation, investigative characterization and use in Japan. Plant Mol Biol,1997,35:69-77
    [157]Nasu S, Suzuki J, Ohta R, Hasegawa K, Yui R, Kitazawa N, Monna L, Minobe Y. Search for and analysis of single nucleotide polymorphisms (SNPs) in rice(Oryza sativa L., Oryza rufipogon L.) and establishment of SNP markers. DNA Res,2002,9:163-171
    [158]Nishimura A, Ashikari M, Lin S, Takashi T, Angeles ER, Yamamoto T, Matsuoka M. Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. Proc Natl Acad Sci USA,2005,102(33):11940-11944
    [159]Nonoue Y, Fujino K, Hirayama Y, Yamanouchi U, Lin SY, Yano M. Detection of quantitative trait loci controlling extremely early heading in rice. Theor Appl Genet,2008,116:715-722
    [160]Prasad SR, Bagali PG, Hittalmani S, Shashidhar HE. Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice(Oryza sativa L.). Curr Sci,2000,78: 162-164
    [161]Price AH, Steele KA, Moore BJ, Barraelough PP, Clark LJ. A combined RFLP and AFLP linkage map of upland rice(Oryza sativa L.) used to identify QTLs for root-penetration ability. Theor Appl Genet,2000,100:49-56
    [162]Price AH, Steele KA, Moore BJ, Jones RGW. Upland rice gowning in soil-filled chambers and exposed to contrasting water-deficit regimes:Ⅱ. Mapping QTL for root morphology and distribution. Field Crops Research,2002,76:25-43
    [163]Price AH, Tomos AD. Genetics dissection of root growth in rice(Oryza sativa L.) Ⅱ:Mapping quantitative trait loci using molecular markers. Theor Appl Genet,1997,95:143-152
    [164]Redona ED, Mackill DJ. Quantitative trait locus analysis for rice panicle and grain characteristics. Theor Appl Genet,1998,96:957-963
    [165]Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetic,2005,37: 1141-1146
    [166]Saito A, Yano M, Kishimoto N, Nakagahra M, Yoshi-mura A, Saito K, Kuhara S, Ukai Y, Kawase M, Na-gamine T, Yoshimura S, Ideta O, Ohsawa R, Hayano Y, Iwata N, Sugiura M. Linkage map of restriction fragment length polymorphism loci in rice. Jpn J Breed,1991,41(4):665-670
    [167]Saito K, Hayano-Saito Y, Maruyama-Funatsuki W, Sato Y, Kato A. Physical mapping and putative candidate gene identification of a quantitative trait locus Ctbl for cold tolerance at the booting stage of rice. Theor Appl Genet,2004,109:515-522
    [168]Saito K, Miura K, Nagano K, Hayano-Saito Y, Araki H, Kato A. Identification of two closely linked quantitative trait loci for cold tolerance on chromosome 4 of rice and their association with anther length. Theor Appl Genet,2001,103:862-868
    [169]Sallaud C, Lorieux M, Roumen E, Tharreau D, Berruyer R, Svestasrani P, Garsmeur O, Ghesquiere A, Notteghem JL. Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy. Theor Appl Genet,2003,106:794-803
    [170]Sanguinetti CJ, Neto ED, Simpson AJ. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques,1994,17(5):914-921
    [171]Sasaki T. Studies on breeding for germinability at low temperature of rice varieties adapted to direct sowing cultivation in flooded paddy field in cool region. Bull Hokkaido Pref Agric Expert Station,1974,24:1-90
    [172]Shen L, Courtois B, McNally KL, Robin S, Li Z. Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection. Theor Appl Genet,2001, 103:75-83
    [173]Shi C, Zhu J. Analysis of seed and maternal genetic effects for nutritive quality traits of grain in indica rice. Seed Science and Technique,1998,26(2):481-488
    [174]Shi CH, Xue JM, Yu YG, Yang XE, Zhu J. Analysis of genetic effects for nutrient quality traits in indica rice. Theor Appl Genet,1996,92(8):1099-1102
    [175]Shi CH, Zhu J, Zang RC, Chen GL. Genetic and heterosis analysis for cooking quality traits of indica rice in different environments. Theor Appl Genet,1997,95(1-2):294-300
    [176]Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB. Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet,2005, 110(3):550-560
    [177]Song XJ, Huang W, Shi M, Zhu MZ, Lin HX. A QTL for rice grain width and weight encodes a reviously unknown RING-type E3 ubiquitin ligase. Nature Genetics,2007,39(5):623-630
    [178]Takahashi Y, Shomura A, Sasaki T, Yano M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the a subunit of protein kinase CK2. Proc Natl Acad Sci USA, 2001,98(14):7922-7927
    [179]Takehisa H, Shimodate T, Fukuta Y, Ueda T, Yano M, Yamaya T, Kameya T, Sato T. Identification of quantitative trait loci for plant growth of rice in paddy field flooded with salt water. Field Crops Research,2004,89:85-95
    [180]Takeuchi Y, Hayasaka H, Chiba B, Tanaka I, Shimano T, Yamagishi M, Nagano K, Sasaki T, Yano M. Mapping quantitative trait loci controlling cool-temperature tolerance at booting stage in temperate Japonica rice. Breeding Science,2001,51:191-197
    [181]Tan YF, Xing YZ, Li JX, Yu SB, Xu CG, Zhang Q. Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid. Theor Appl Genet,2000,101:823-829
    [182]Tanksley SD. Mapping polygenes. Annu Rev Genet,1993,27:205-233
    [183]Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.), frequency, length variation, transposon associations, and genetic marker potential. Genomeres,2001,11(8):1441-1452
    [184]Temnykh S, Park WD, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR. Mapping and genome organization of microsatellite sequences in rice(Oryza sativa L.). Theor Appl Genet,2000,100:697-712
    [185]Toriyama K, Futsuhara Y.-Genetics studies on cool tolerance in rice. I. Inheritance of cool tolerance.-Japan J Breeding,1960,10(3):143-153
    [186]Tripathy JN, Zhang J, Robin S, Nguyen TT, Nguyen HT. QTLs for cell-membrane stability mapped in rice (Oryza satia L.) under drought stress. Theor Appl Genet,2000,100(8):1197-1202
    [187]Ueda T, Sato T, Hidema J, Hirouchi T, Yamamoto K, Kumagai T, Yano M. qUVR-10, a major quantitative trait locus for ultraviolet-B resistance in rice, encodes cyclobutane pyrimidine dimer photolyase. Genetics,2005,171(4):1941-1950
    [188]Venuprasad R, Shashidhar HE, Hittalmani S, Hemamalini GS. Tagging quantitative trait loci associated with grain yield and root morphological traits in rice (Oryza sativa L.) under contrasting moisture regimes. Euphytica,2002,128:293-300
    [189]Wan XY, Wan JM, Jiang L, Wang JK, Zhai HQ, Weng JF, Wang HL, Lei CL, Wang JL, Zhang X, Cheng ZJ, Guo XP. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor Appl Genet,2006,112(7):1258-1270
    [190]Wu WR, Li WM, Tang DZ, Lu HR, Worland AJ. Time-related mapping of quantitative trait loci underlying tiller number in rice. Genetics,1999,151:297-303
    [191]Xiao J, Fulton T, Tanksley SD. Identification of QTL affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet,1996, 92(2):230-244
    [192]Xiao J, Li J, Grandillo S, Ahn SN, Yuan L, Tanksley SD. Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics,1998,150: 899-909
    [193]Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Science,2006,442(7103):705-708
    [194]Xu LM, Zhou L, Zeng YW, Wang FM, Zhang HL, Shen SQ, Li ZC. Identification and mapping of quantitative trait loci for cold tolerance at the booting stage in a japonica rice near-isogenic line. Plant Science,2008,174:340-347.
    [195]Xu X, Chen H, Fujimura T, Kawasaki S. Fine mapping of a strong QTL of field resistance against rice blast, Pikahei-1(t), from upland rice Kahei, utilizing a novel resistance evaluation system in the greenhouse. Theor Appl Genet,2008,117:997-1008
    [196]Xu Y, Zhu L, Xiao J, Huang N, McCouch SR. Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice(Oryza sativa L.). Mol Gen Genet,1997,253:535-545
    [197]Xue Y, Jiang L, Su N, Wang JK, Deng P, Ma JF, Zhai HQ, Wan JM. The genetic basic and fine-mapping of a stable quantitative-trait loci for aluminium tolerance in rice. Planta,2007,227(1): 255-262
    [198]Yadav R, Courtois B, Huang N, McLaren G. Mapping genes controlling root morphology and root distribution in a double-haploid population of rice. TheorAppl Genet,1997,94:619-632
    [199]Yan JQ, Zhu J, He CX, Benmoussa M, Wu P. Molecular dissection of developmental behavior of plant height in rice(Oryza sativa L.). Genetics,1998,150:1257-1265
    [200]Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hdl, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell,2000, 12(12):2473-2484
    [201]Yao MZ, Wang JF, Chen HY, Zhai HQ, Zhang HS. Inheritance and QTL mapping of salt tolerance in rice. Rice Science,2005,12(1):25-32
    [202]Ye C, Kato A, Saito K, Ise K, Dai L, Yang Q. QTL Analys is of cold tolerance at the booting stage in Yunnan rice variety Chongtui. Chinese J Rice Sci,2001,15(1):13-16
    [203]Yu B, Lin Z, Li H, Li X, Li J, Wang Y, Zhang X, Zhu Z, Zhai W, Wang X, Xie D, Sun C. TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J,2007,52(5):891-898
    [204]Yu SB, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, Zhang Q, Saghai-Maroof MA. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA,1997,94: 9226-9231
    [205]Yu SB, Li JX, Xu CG, Tan YF, Li XH, Zhang Q. Identification of quantitative trait loci and epistatic interactions for plant height and heading date in rice. Theor Appl Genet,2002,104: 619-625
    [206]Zenbayashi K, Ashizawa T, Tani T, Koizumi S. Mapping of the QTL (quantitative trait locus) conferring partial resistance to leaf blast in rice cultivar Chubu 32. Theor Appl Genet,2002,104: 547-552
    [207]Zhang J, Zheng HG, Aari A, Pantuwan G, Nguyen TT, Tripathy JN, Sarial AK, Robin S, Babu RC, Nguyen BD, Sarka-rung S, Blum A, Nguyen HT. Locating genomic regions associated with components of drought resistance in rice:Comparative mapping within and across species. Theor Appl Genet,2001,103:19-29
    [208]Zhang QJ, Ye SP, Li JQ, Zhao B, Liang YS, Peng Y, Li P. Construction of a microsatellite linkage map with two sequenced rice varieties. Genetica Sinica,2006,33(2):152-160
    [209]Zhang Y, Luo L, Xu C, Zhang Q, Xing Y. Quantitative trait loci for panicle size, heading date and plant height co-segregating in trait-performance derived near-isogenic lines of rice(Oryza sativa). Theor Appl Genet,2006,113:361-368
    [210]Zhang YM, Gai JY. Methodologies for segregation analysis and QTL mapping in plants. Genetica, 2009,136:311-318
    [211]Zhang ZH, Su L, Li W, Chen W, Zhu YG. A major QTL conferring cold tolerance at the early seedling stage using recombinant inbred lines of rice(Oryza sativa L.). Plant Science,2005,168: 527-534
    [212]Zhao B, Deng QM, Zhang QJ, Li JQ, Ye SP, Liang YS, Peng Y, Li P. Analysis of segregation distortion of molecular markers in F2 population of rice. Acta Genetica Sinica,2006,33(5):449-457
    [213]Zhou L, Chen L, Jiang L, Zhang W, Liu L, Liu X, Zhao Z, Liu S, Zhang L, Wang J, Wan J. Fine mapping of the grain chalkiness QTL qPGWC-7 in rice(Oryza sativa L.). Theor Appl Genet,2009, 118:581-590
    [214]Zhou PH, Tan YF, He YQ, Xu CG, Zhang Q. Simultaneous improvement for four quality traits of Zhenshan 97, an elite parent of hybrid rice, by molecular marker-assisted selection. Theor Appl Genet,2003,106:326-333
    [215]Zhou Y, Li W, Wu W. Genetic dissection of heading time and its components in rice. Theor Appl Genet,2001,102:1236-1242
    [216]Zhu J. Analysis of conditional effects and variance components in developmental genetics. Genetics,1995,141(4):1633-1639
    [217]Zhu JK. Plant salt tolerance. Trends Plant Sci,2001,6:66-71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700