薄膜生长的宽光谱监控技术及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高性能的光学薄膜器件的制备需要有先进的薄膜制备技术、监控技术及检测技术作支撑。作为一种非常重要的薄膜生长监控技术,光学监控技术正从单波长监控方式向多波长和宽光谱监控方式发展。以提高薄膜生长监控精度及薄膜生长工艺为目标,本论文针对宽光谱监控技术进行了研究,同时也研究了生长速率、薄膜厚度、温度等参数对薄膜的光学常数的影响。主要内容包括:
     1、研制了用于电子束蒸发薄膜生长设备的一套宽光谱监控系统,解决了系统研制过程中的各种软硬件问题。对传统的宽光谱监控数据处理方法进行了改进,大大减少了计算量。提出软硬两种处理方法去除衬底干涉噪声,并分别采用K9玻璃衬底和双面抛光硅片衬底制备了窄带滤波片,均实现了良好的带通特性。利用宽光谱监控系统的在位误差补偿功能,所制备的薄膜的最终光谱与理论模拟光谱符合得很好,验证了所研发的红外宽光谱监控系统具有满意的监控效果。
     2、研究了SiO2薄膜光学常数随生长厚度变化的趋势,及这种趋势与生长速率的关系。利用电子束蒸发方法在硅片衬底上制备系列SiO2薄膜样品,厚度范围为~1m到600nm。采用变角度椭圆偏振光谱仪对薄膜样品进行测量,每个样品获得200多组椭偏参数。选用适当的模型进行拟合得到了SiO2薄膜的折射率色散关系及厚度值。实验结果表明快速生长和慢速生长的SiO2超薄膜的折射率随厚度变化趋势不同,慢速生长的薄膜更容易形成致密膜层。
     3、基于单振子的洛伦兹色散模型,分析了材料的光学常数随温度变化的关系。采用自制的温度可变的椭偏测量样品室对样品进行变温,从而实现了在不同温度下对样品进行椭偏参数的测量,并进一步获得不同温度条件下样品光学常数的色散曲线。作为例子,对硅片和金膜进行了变温椭偏测量。测量结果显示,材料光学常数随温度发生了变化,能隙左右的光学常数随温度变化的趋势不同,与包含温度因素的洛伦兹色散模型的理论分析相符合。实验表明,变温椭偏适合用于确定一些固体材料(例如半导体)的能隙位置。
The manufacturing of the optical thin film devices with high performance depends on the development of the advanced film deposition, monitoring and measurement techniques. As one type of the important monitoring techniques for film deposition, optical monitoring methods have always attracted much attention. In place of conventional single wavelength monitoring, multi-wavelength monitoring and broadband optical monitoring have been developed. With the purpose of improving the effect of the monitoring methods for film deposition and the quality of the deposition technique, the work focused on developing a broadband optical monitoring system and studying the effect of the deposition rate、film thickness、temperature etc. on the optical constants of the deposited films. The main work is shown as follows:
     1. A broadband monitoring system was set up with solving encountered software and hardware problem and applied to an electron beam evaporation system for film deposition. The conventional data processing was improved and the computational amount was obviously reduced. Both hardware-based and software-based methods were proposed to filter the interferential effect caused by the substrate. The noise-filtering methods were applied to the real deposition of narrow band filters using both K9 glass and silicon as substrates, and with in-situ error compensation process based on BOM technique, several narrow band filters with good performance, which is in accordance with the theoretical design, were finally obtained. The results demonstrated the validity of this broad band monitoring method on film deposition.
     2. The thickness dependence of the optical constants of SiO2 films at different deposition rates was studied. All samples of SiO2 films with thickness ranging from~1 nm to 600 nm were deposited on Si substrates by EBE method, and then measured with variable-angle spectroscopic ellipsometry(VASE). More than 200 sets of ellipsometric parameters were obtained for each sample. The optical constants and thicknesses of SiO2 films have been obtained with fitting the measured data using appropriate model. The results showed that the evolution of optical constants of SiO2 films with thickness differs for the samples deposited at higher rates and the samples at lower rates, and it is favorable to deposit films at low rate for getting denser film.
     3. The temperature dependence of optical constants of solid materials was analyzed using the single-oscillator-based Lorentz dispersion model. The spectroscopic ellipsometer was applied to the measurement of the samples at different temperature and a self-built sample box with temperature variable was used to keep sample at a certain temperature during measurement. The dispersion curves of samples for various temperatures were obtained. At present, the temperature dependence of optical constants for Si and Au samples were studied using the spectroscopic ellipsometry (SE) with temperature variable. The results showed that, the optical constants of materials change with temperature, and the trend of variation with temperature for the optical constants below the gap and above the gap is different, which is in accordance with the theoretical analysis using the Lorentz dispersion model with considering temperature effect. The SE with temperature variable can be applied to determination of the energy gap for some solid materials such as semiconductors.
引文
[1]H. A. Macleod. Thin-Film Optical Filters (3rd ed) [M]. Bristol and Philadelphia: Institute of Physics,2001.
    [2]Max Born, Emil Wolf.光学原理(第七版)[M].北京:电子工业出版社,2005.
    [3]唐晋发,顾培夫.现代光学薄膜技术[M].浙江:浙江大学出版社,2007.
    [4]尹树百.薄膜光学—理论与实践[M],北京:科学出版社,1987.
    [5]希瑟M利德尔著.唐晋发,顾培夫译.多层薄膜设计中的计算机辅助技术[M],浙江:浙江大学出版社,1984.
    [6]钟迪生编著.真空镀膜[M].辽宁:辽宁大学出版社,2001.
    [7]吴自勤,王兵.薄膜生长[M].北京:科学出版社,2001.
    [8]李正中著.薄膜光学与镀膜技术(第二版)[M].北京:艺轩图书出版社,2001.
    [9]廖振兴,杨芳.光学薄膜膜厚监控方法及其发展[J].激光杂志,2004,25(4):10-12.
    [10]H. A. Macleod. Monitoring of optical coatings [J]. Applied Optics,1981,20(1): 82-89.
    [11]Bruno Badoil, Fabien Lemarchand. Interest of broadband optical monitoring for thin-film filter manufacturing [J]. Optical Society of America,2007,46(20): 4294-4303.
    [12]占美琼,谭天亚.石英晶体监控膜厚仪的发展与应用[J].激光与光电子学进展,2006,42(2):57-60.
    [13]马志亮,王夏.光学干涉滤光片的石英晶体膜厚自动监控技术[J].光学仪器, 2005,27(6):89-93.
    [14]C. C. Lee, K. Wu, C. C. Kuo, and S. H. Chen. Improvement of the optical coating process by cutting layers with sensitive monitor wavelengths [J]. Optical Express, 2005,13(13):4854-4861.
    [15]Fachun Lai, Xiaochun Wu, Binping Zhuang, Qu Yan, and Zhigao Huang. Dual wavelengths monitoring for optical coatings [J]. Optical Express,2008,16(13): 9436-9442.
    [16]A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina. Statistical approach to choosing a strategy of monochromatic monitoring of optical coating production [J]. Applied Optics,2006,45(30):7863-7870.
    [17]A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina. Investigation of the effect of accumulation of thickness errors in optical coating production by broadband optical monitoring[J]. Applied Optics,2006,45(27):7026-7034.
    [18]D. Ristau, H. Ehlers, T. Gross, M. Lappschies. Optical broadband monitoring of conventional and ion processes[J]. Applied Optics,2006,45(7) 1495-1501.
    [19]L. Li, Y. H. Yen. Wideband monitoring and measuring system for optical coatings[J]. Applied Optics,1989,28(14):2889-2894.
    [20]B. Vidal, A. Fornier, E. Pelletier. Wideband optical monitoring of nonquarterwave multilayer filters[J]. Applied Optics,1979,18(22):3851-3856.
    [21]R. M. A. Azzam and N. M. Bashara. Ellipsometry and Polarized Light [M]. Amsterdam:North-Holland,1977.
    [22]毛鹏辉.并行快速椭圆偏振分析方法的研究[D].上海:复旦大学,2010.
    [23]美国国家研究理事会编,上海应用物理研究中心译.驾驭光:21世纪光科学与工程学[M].上海:上海科学技术文献出版社,2001年.
    [24]Tao Han. Study of a high-resolution infrared spectrometer by using an integrated multigrating structure [J]. Review of science instruments,2006,76(8):083118.
    [25]Y. R. Chen, B. Sun, T. Han, C. H. Xu, P. Zhou, X. F. Li, S. Y. Wang, Y. X. Zheng, and L. Y. Chen. Densely folded spectral images of a CCD spectrometer working in the full 200-1000 nm wavelength range with high resolution [J]. Optics Express,2005,13(25):10049-10054
    [26]M. H. Liu, S. X. Pan, Y. R. Chen, Y. F. Wu, Q. Y. Cai, P. H. Mao, Y. X. Zheng, and L. Y. Chen. Path-folded infrared spectrometer consisting of 10 sub-gratings and a two-dimensional InGaAs detector [J]. Optics Express,2009,17(17):14956-14966
    [1]Tao Han. Study of a high-resolution infrared spectrometer by using an integrated multigrating structure [J]. Review of science instruments,2006,76(8):083118.
    [2]M. H. Liu, S. X. Pan, Y. R. Chen, Y. F. Wu, Q. Y. Cai, P. H. Mao, Y. X. Zheng, and L. Y. Chen. Path-folded infrared spectrometer consisting of 10 sub-gratings and a two-dimensional In GaAs detector [J]. Optics Express,2009,17(17):14956-14966
    [3]韩涛.集成二维多光栅光谱成像系统的研制及其应用[D].上海:复旦大学,2005.
    [4]L. I. Epstein. The design of optical filters[J]. Journal of the Optical Society of America,1952,42(11):806-810.
    [5]A. Thelen. Equivalent layers in multilayer filters[J]. Journal of the Optical Society of America,1966,56(11):1533-1538.
    [6]J. Mouchart. Thin film optical coatings.5:Buffer layer theory [J]. Applied Optics, 1978,17(1):72-75.
    [7]K. Rabinovitch, A. Pagis. Multilayer antireflection coatings:theoretical model and design parameters[J]. Applied Optics,1975,14(6):1326-1334.
    [8]A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, A. Thelen. Optical coating design algorithm based on the equivalent layers theory[J]. Applied Optics, 2006,45(7):1530-1538.
    [9]H. A. Macleod. Thin-Film Optical Filters (3rd ed) [M]. Bristol and Philadelphia: Institute of Physics,2001.
    [10]Max Born, Emil Wolf.光学原理(第七版)[M].北京:电子工业出版社,2005.
    [11]唐晋发,顾培夫.现代光学薄膜技术[M].浙江:浙江大学出版社,2007.
    [12]吴云飞.宽光谱监控薄膜生长系统的研制[D].上海:复旦大学,2008.
    [13]冈萨雷斯.数字图像处理(第二版)[M],北京:电子工业出版社,2003:55-220.
    [14]马云飞,王自鑫.光学镀膜近红外膜厚监控的信号压噪[J].光学仪器,2004,26(2):99-104.
    [15]马孜,肖琦,姚德武.薄膜光学监控信号的数字信号处理[J].光学仪器, 2004,26(2):95-98.
    [16]W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery著,傅祖芸,丁岩,赵梅娜译.C语言数值算法程序大全[M],北京:电子工业出版社,1995:124-337.
    [17]Gerald Recktenwald著,伍卫国,万群,张辉译.数值算法和Matlab实现与应用[M],北京:机械工业出版社,2004:316-356.
    [1]H. A. Macleod. Thin-Film Optical Filters (3rd ed) [M]. Bristol and Philadelphia: Institute of Physics,2001.
    [2]H. A. Macleod. Monitoring of optical coatings [J]. Applied Optics,1981,20(1): 82-89.
    [3]B. Vidal, A. Fornier, and E. Pelletier. Optical monitoring of nonquarterwave multilayer filters[J]. Applied Optics,1978,17(7):1038-1047.
    [4]C. C. Lee, K. Wu, C. C. Kuo, and S. H. Chen. Improvement of the optical coating process by cutting layers with sensitive monitor wavelengths [J]. Optics Express, 2005,13(13):4854-4861.
    [5]C. C, Lee and K. Wu. In situ sensitive optical monitoring with proper error compensation[J]. Optics Letters,2007,32(15):2118-2120.
    [6]C. C. Lee and Y. J. Chen. Multilayer coating monitoring using admittance diagram[J]. Optics Express,2008,16(9):6119-6124.
    [7]Fachun Lai, Xiaochun Wu, Binping Zhuang, Qu Yan, and Zhigao Huang. Dual wavelengths monitoring for optical coatings. Optics Express,2008,16(13): 9436-9442.
    [8]A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina. Statistical approach to choosing a strategy of monochromatic monitoring of optical coating production [J]. Applied Optics,2006,45(30):7863-7870.
    [9]A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina. Investigation of the effect of accumulation of thickness errors in optical coating production by broadband optical monitoring[J]. Applied Optics,2006,45(27):7026-7034.
    [10]B. Vidal, A. Fornier, E. Pelletier. Wideband optical monitoring of nonquarterwave multilayer filters[J]. Applied Optics,1979,18(22):3851-3856.
    [11]L. Li, Y. H. Yen. Wideband monitoring and measuring system for optical coatings[J]. Applied Optics,1989,28(14):2889-2894.
    [12]Bruno Badoil, Fabien Lemarchand. Interest of broadband optical monitoring for thin-film filter manufacturing [J]. Optical Society of America,2007,46(20): 4294-4303.
    [13]Tao Han. Study of a high-resolution infrared spectrometer by using an integrated multigrating structure [J]. Review of science instruments,2006,76(8):083118.
    [14]Y. R. Chen, B. Sun, T. Han, C. H. Xu, P. Zhou, X. F. Li, S. Y. Wang, Y. X. Zheng, and L. Y. Chen. Densely folded spectral images of a CCD spectrometer working in the full 200-1000 nm wavelength range with high resolution [J]. Optics Express,2005,13(25):10049-10054.
    [15]M. H. Liu, S. X. Pan, Y. R. Chen, Y. F. Wu, Q. Y. Cai, P. H. Mao, Y. X. Zheng, and L. Y. Chen. Path-folded infrared spectrometer consisting of 10 sub-gratings and a two-dimensional InGaAs detector [J]. Optics Express,2009,17(17):14956-14966.
    [1]M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel. Ultrathin (<4 nm) SiO2 and Si-O-N gate dielectric layers for silicon microelectronics:Understanding the processing, structure, and physical and electrical limits[J]. Journal of Applied Physics,2001,90(5):2057-2121.
    [2]Paras N. Prasad. Nanophotonics[M]. New York:Wiley-Interscience,2004.
    [3]P. Mutti, G. Ghislotti, S. Bertoni, L. Bonoldi, G. F. Cerofolini, L. Meda, E. Grilli and M. Guzzi. Room-temperature visible luminescence from silicon nanocrystals in silicon implanted SiO2 layers[J]. Applied Physics Letters,1995,66(7):851-853.
    [4]B. Pivac, P. Dubcek, I. Capan, H. Zorc, S. Bernstorff, S. Duguay and A. Slaoui. Structural analysis of annealed amorphous SiO/SiO2 superlattice[J]. Thin Solid Films, 2008,516(20):6796-6799.
    [5]Francis O'Sullivan, Ivan Celanovic, Natalija Jovanovic, John Kassakian, Shoji Akiyama, and Kazumi Wada. Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications[J]. Journal of Applied Physics, 2005,97(3):033529.
    [6]J. A. Moreno, B. Garrido, P. Pellegrino, C. Garcia, J. Arbiol, J. R. Morante, P. Marie, F. Gourbilleau, and R. Rizk. Size dependence of refractive index of Si nanoclusters embedded in SiO2[J]. Journal of Applied Physics,2005,98(1):013523.
    [7]Han G. Yoo and Philippe M. Fauchet. Dielectric constant reduction in silicon nanostructures[J]. Physical Review B,2008,77(11):115355.
    [8]K. J. Hebert, S. Zafar, E. A. Irene, R. Kuehn, T. E. McCarthy, and E. K. Demirlioglu. Measurement of the refractive index of thin SiO2 films using tunneling current oscillations and ellipsometry[J]. Applied Physics Letters,1996,68(2): 266-268.
    [9]Katsuhiko Furukawa, Yichun Liu, Hiroshi Nakashima, Dawei Gao, Yasuhiro Kashiwazaki, Kiichiro Uchino, Katsunori Muraoka, and Hirohisa Tsuzuki. Effects of oxygen content on properties of silicon oxide films prepared at room temperature by sputtering-type electron cyclotron resonance plasma[J]. Journal of Applied Physics, 1998,84(8):4579-4584.
    [10]Werner Frammelsberger, Guenther Benstetter, Thomas Schweinboeck, Richard J Stamp, and Janice Kiely. Characterization of thin and ultra-thin SiO2 films and SiO2/Si interfaces with combined conducting and topographic atomic force microscopy[J]. Microelectronics Reliability,2003,43(9-11):1465-1470.
    [11]Yong Jai Cho, Hyun Mo Cho, Yun Woo Lee, Hoi Youn Lee, In Won Lee, Sang Kil Lee, Jung Woo Sun, Sang Young Moon, Ho Kyoon Chung, Hyun Yong Pang, Sang June Kim and Sang Youl Kim. Optical characterization of silicon dioxide layers grown on silicon under different growth conditions[J]. Thin Solid Films,1998, 313-314(1-2):292-297.
    [12]Y. Wang and E. A. Irene. Consistent refractive index parameters for ultrathin SiO2 films[J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures,2000,18(1):279-282.
    [13]A. Kalnitsky, S. P. Tay, and J. P. Ellul. Measurements and Modeling of Thin Silicon DioxideFilms on Silicon[J]. Journal of the Electrochemical Society,1990, 137(1):234-238.
    [14]B. M. Ayupov, V. A. Gritsenko, Hei Wong, and C. W. Kim. Accurate Ellipsometric Measurement of Refractive Index and Thickness of Ultrathin Oxide Film[J]. Journal of The Electrochemical Society,2006,153(12):F277-F282.
    [15]R. M. A. Azzam and N. M. Bashara. Ellipsometry and Polarized Light[M]. North-Holland, Amsterdam,1977.
    [16]K. Vedam. Spectroscopic ellipsometry:a historical overview[J]. Thin Solid Films, 1998,313-314(1-2):1-9.
    [17]J. A. Woollam, P. G. Snyder, and M. C. Rost. Variable angle spectroscopic ellipsometry:A non-destructive characterization technique for ultrathin and multilayer materials[J]. Thin Solid Films,1988,166:317-323.
    [18]Yong Jai Cho, Yun Woo Lee, Hyun Mo Cho, In Won Lee, and Sang Youl Kim. Ellipsometric examination of optical property of the Si-SiO2 interface using the s-wave antireflection[J]. Journal of Applied Physics,1999,85(2):1114-1119.
    [19]L. Y. Chen and D. W. Lynch. Scanning ellipsometer by rotating polarizer and analyzer[J]. Applied Optics,1987,26(24):5221-5228.
    [20]L. Y. Chen, X. W. Feng, Y. Su, H. Z. Ma, and Y. H. Qian. Design of a scanning ellipsometer by synchronous rotation of the polarizer and analyzer[20]. Applied Optics,1994,33(7):1299-1305.
    [21]郑玉祥,陈良尧.近代光学[M].北京:电子工业出版社,2011.
    [22]唐晋发,顾培夫.现代光学薄膜技术[M].浙江:浙江大学出版社,2007.
    [23]复旦大学光科系.光学专业实验讲义[M].上海:复旦大学光科系,2005.
    [24]Feliciano Giustino, Angelo Bongiorno and Alfredo Pasquarello. Atomistic models of the Si(100)-SiO2 interface:structural, electronic and dielectric properties [J]. Journal of Physics:Condensed Matter,2005,17(21):S2065
    [25]John K. Tomfohr, Otto F. Sankey. Simple Estimates of the Electron Transport Properties of Molecules[J]. Solid State Physics,2002,233(1):59-69.
    [26]Hisham Z. Massoud and Henryk M. Przewlocki. Effects of stress annealing in nitrogen on the index of refraction of silicon dioxide layers in metal-oxide-semiconductor devices[J]. Journal of Applied Physics,2002,92(4): 2202-2206.
    [1]H. A. Macleod. Thin-Film Optical Filters (3rd ed) [M]. Bristol and Philadelphia: Institute of Physics,2001.
    [2]唐晋发,顾培夫.现代光学薄膜技术[M].浙江:浙江大学出版社,2007.
    [3]D. Karaiskaj, C. Engtrakul, T. McDonald, M. J. Heben, and A. Mascarenhas. Intrinsic and Extrinsic Effects in the Temperature-Dependent Photoluminescence of Semiconducting Carbon Nanotubes[J]. Physical Review Letter,2006,96(10):106805.
    [4]S. Guha, J. D. Rice, Y. T. Yau, C. M. Martin, M. Chandrasekhar, H. R. Chandrasekhar, R. Guentner, P. Scanduicci de Freitas, and U. Scherf. Temperature-dependent photoluminescence of organic semiconductors with varying backbone conformation [J]. Physical Review B,2003,67(12):125204.
    [5]K.I. Lin, K.C. Chen, T.S. Wang, Y.T. Lu and J.S. Hwang.Studies of electro-optical properties and band alignment of InGaPN/GaAs heterostructures by photoreflectance and photoluminescence [J]. Physica E:Low-dimensional Systems and Nanostructures, 2006,32(1-2):211-214.
    [6]N. Koteeswara Reddy, Y. B. Hahn, M. Devika, H. R. Sumana, and K. R. Gunasekhar. Temperature-dependent structural and optical properties of SnS films[J]. Journal of Applied Physics,2007,101(9):093522.
    [7]H. Rinnert, O.Jambois, and M. Vergnat. Photoluminescence properties of size-controlled silicon nanocrystals at low temperatures [J]. Journal of Applied Physics, 2009,106(2):023501.
    [8]Y. P. Varshni. Temperature dependence of the energy gap in semiconductors[J]. Physica.1967.34(1):149-154.
    [9]Leonard I. Kamlet, Fred L. Terry and George N. Maracas. A temperature-dependent model for the complex dielectric function of GaAs[J].1997, 26(12):1409-1416.
    [10]C. Z. Tan. Review and analysis of refractive index temperature dependence in amorphous SiO2[J]. Journal of Non-Crystalline Solids,1998,238(1-2):30-36.
    [11]Francesco G. Della Corte, Maurizio Esposito Montefusco, Luigi Moretti, Ivo Rendina, and Giuseppe Cocorullo. Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models[J]. Journal of Applied Physics,2000,88(12):7115.
    [12]Andrea Marini. Ab Initio Finite-Temperature Excitons[J]. Physical Review Letter, 2008,101(10):106405.
    [13]L. Vina, S. Logothetidis, and M. Cardona. Temperature dependence of the dielectric function of germanium[J]. Physical Review B,1984,30(4):1979-1991.
    [14]P. Lautenschlager, M. Garriga, L. Vina, and M. Cardona. Temperature dependence of the dielectric function and interband critical points in silicon[J]. Physical Review B,1987,36(9):4821-4830.
    [15]K. P. O'Donnell and X. Chen. Temperature dependence of semiconductor band gaps[J]. Applied Physics Letters,1991,58(25):2924-2926.
    [16]S. A. Lourenco, I. F. L. Dias, J. L. Duarte, E. Laureto, E. A. Meneses, J. R. Leite, and I. Mazzaro. Temperature dependence of optical transitions in AlGaAs[J]. Journal of Applied Physics,2001,89(11):6159.
    [17]Bhavtosh Bansal, V. K. Dixit, V. Venkataraman, and H. L. Bhat. Temperature dependence of the energy gap and free carrier absorption in bulk InAs0.05Sb0.95 single crystals[J]. Applied Physics Letters,2003,82(26):4720-4722.
    [18]Y. J. van der Meulen and N. C. Hien. Design and operation of an automated, high-temperature ellipsometer[J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA,1974,64(6):804-811.
    [19]J. B. Cui, K. Amtmann, J. Ristein, and L. Ley. Noncontact temperature measurements of diamond by Raman scattering spectroscopy[J]. Journal of Applied Physics,1998,83(12):7929.
    [20]Shibu Saha, Navina Mehan, K. Sreenivas, and Vinay Gupta. Temperature dependent optical properties of (002) oriented ZnO thin film using surface plasmon resonance[J]. Applied Physics Letters,2009,95(7):071106.
    [21]R. M. A. Azzam and N. M. Bashara. Ellipsometry and Polarized Light [M]. Amsterdam:North-Holland,1977.
    [22]毛鹏辉.并行快速椭圆偏振分析方法的研究[D].上海:复旦大学,2010.
    [23]章志鸣,沈元华,陈惠芬.光学[M].北京:高等教育出版社,2002.
    [24]郑玉祥,陈良尧.近代光学[M].北京:电子工业出版社,2011.
    [25]http://www.ybzhan.cn/company_news/detail/15875.html
    [26]http://www.docin.com/p-54293118.html

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700