铋基低维结构氧化物的合成及其光学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛酸铋(Bi4Ti3Oi2)及其掺杂铁电材料因其高的电阻率、良好的抗疲劳特性、高介电常数和对环境友好等特点受到人们的广泛关注。因具有独特的光学和电学特性,钛酸铋基材料在热释电探测器、紫外探测器、非制冷红外探测器、非制冷红外焦平面阵列和铁电存储等领域具有很大的应用前景。在结构上,Bi4Ti3Oi2属于Aurivillius层状结构。具体地,在纵轴(c轴)方向上两个相邻的(Bi2O2)2+层中间夹有三层(Bi2Ti3O10)2-结构。在电学方面,钛酸铋的居里温度(Tc)约675℃,即在常温(300K)下具有很好的铁电特性。另外因其含有铋氧层而漏电小和抗疲劳特性良好等优点备受亲睐。在热学和光学方面,它具有介电常数高和热释电性能良好等优点。随着器件小型化、高密度和集成化的发展、纳米结构铁电材料的物理特性研究受到广泛的重视。另外,在众多多铁材料(BiFeO3、BiMnO3、YMnO3、TbMnO3和HoMnO3)中,铁酸铋(BiFeO3, BFO)材料因是唯一一种在常温下同时具有铁电(Tc≈1103K)和铁磁(TN≈643K)特性而备受世人关注。理论和实验证明BFO薄膜具有很大的剩余极化(Pr=100μC/cm2),该特性有利于BFO应用于高容量、快速和低功耗等特点的铁电随机存储器。然而BFO薄膜存在漏电流大、矫顽场大和磁性弱等缺陷限制了其在硅基集成电路中的应用。基于Spaldin理论,化学元素特别是稀土元素掺杂是改善其电磁特性的重要手段。在稀土元素掺杂中,镧元素通过降低氧空位降低漏电流来改善BFO的铁电特性。另外,锰元素的掺杂通过形成稳定的MnO6结构抑制BFO在高电场下的漏电流。因此,本论文系统研究了钙钛矿结构铁电氧化物及其稀土元素掺杂低维结构铁电材料如Bi4-xLaxTi3O12(BLT)和Bi1-xLaxFe0.92Mn0.08O3(BLFM)等的合成及其光学和电学特性的改善。
     采用具有低成本、大面积合成以及工艺成熟的溶胶-凝胶(Sol-Gel)技术与无机氧化铝模板相结合的方法制备了钛酸铋(Bi4Ti3O12)、铁酸铋(BiFeO3)和二氧化钛(TiO2)及其元素掺杂的不同孔径和壁厚的一维纳米管阵列和不同厚度的具有TiO6八面体结构的多晶薄膜。本文的主要工作和创新点包括以下几点:
     一、采用溶胶-凝胶技术与无机氧化铝模板相结合的方法制备了不同孔径(50、100和200nm)和一维(BLT)纳米管阵列。研究表明,(a)BLT纳米管阵列在保持其铁电性质的同时呈现出独特的拉曼和荧光增强等光学特性。具体地,外径为50、100和200nm的BLT纳米管阵列的拉曼增强因子分别是92、257、和623。该现象可能与纳米管独特的表面、晶粒尺寸、管壁内部微结构及拉伸应力有很大的关系。(b)与此同时,该纳米管阵列依然保持着BLT独特的铁电特性。(c)该研究表明BLT纳米管阵列在新型光电多功能器件上具有潜在的应用价值。
     二、在初步结合BLT纳米材料的光学和电学性质在光电器件具有潜在的应用的基础上,我们要尽可能地整合铁酸铋材料的多方面的特性如铁酸铋材料在光学、电学和磁学的特性。(a)基于Spalding关于铁电和铁磁现象的来源假设,我们通过掺杂对铁酸铋的光学和电学性质等物理特性进行初步优化。采用溶胶-凝胶技术在砷重掺杂硅衬底上成功制备了高质量单斜结构的未掺杂及其镧和锰共掺杂铁酸铋多铁薄膜。(b)X射线衍射分析结果表明,该系列薄膜为钙钛矿结构并且没有出现其他晶体结构,随着镧掺杂浓度的提高,薄膜的三角晶系结构在一定程度上向四方晶系发生转变。(c)研究表明,镧和锰元素的掺杂提高了铁酸铋薄膜的致密度,减少了薄膜表面及其内部的缺陷,进而在保证较大的剩余极化的前提下有效降低了铁酸铋电导率,即大大改善了其漏电特性。(d)该结果有利于研究基于硅工艺的非挥发性铁电随机存储器的应用。该研究结果有利于我们进一步研究铁酸铋纳米管的光学、铁电和铁磁等性质。
     三、采用非水解溶胶-凝胶技术在Si(100)衬底上分别制备了金红石相和锐钛矿相不同铁掺杂浓度的Ti02多晶薄膜。(a)对于金红石相铁掺杂的Ti02薄膜,随着铁掺杂浓度的增加,薄膜表面变得越来越致密,其拉曼活性的声子频率发生不同程度的移动,而红外活性的声子模式的展宽发生了变化。我们采用四相结构模型和Adachi色散函数,通过拟合椭偏数据的方法提取该系列样品在近红外-可见-近紫外这一很广的光谱范围内的光学常数、禁带宽度和吸收系数等。研究表明,通过在二氧化钛的带隙内引入新的能级Fe t2g降低了二氧化钛的禁带宽度。另外,铁元素降低了二氧化钛从金红石相向锐钛矿相转变的相变温度。(b)对于锐钛矿相铁掺杂的TiO2多晶薄膜,随着铁掺杂浓度的增加,拉曼活性声子模式Blg(515cm-1)的强度增加的同时Alg(519cm-1)声子模强度减弱。由于多声子模式的参与,拉曼光谱上显示额外的振动模式。讨论发现这些额外的拉曼峰与表面形貌、氧空位和晶体缺陷等因素有关。室温环境下的光致发光光谱显示随着铁浓度的增加,发光强度快速下降。究其原因,铁的引入可能是延长了以光的形式辐射能量的电子跃迁寿命和/或缩短了以非光的形式辐射能量的电子跃迁寿命。最后我们通过研究低温环境下Fe:TiO2多晶薄膜的光致发光光谱,光致发光光谱中分别在1.9、2.0、2.2、2.4和2.6eV能量附近的发光峰分别来源于氧空位(1.9eV)、局域激子(2.0eV和2.2eV)、自束缚激子(2.4eV),X1a和T1b之间的间接跃迁(2.6eV)。
Bismuth titanate (Bi4Ti3O12, BIT) ferroelectric materials have received much attention because of its low conductivity, higher fatigue resistivity, high dielectric constant, etc. It can be used in the applications of pyroelectric detectors, ultraviolet detectors, uncooled infrared detectors, infrared focal plane arrays and ferroelectric memories due to the unique optical and electrical properties. As we know, bismuth titanate belongs to the family of Aurivillius compounds consists of three (Bi2Ti3O10)2-blocks sandwiched between two (Bi2O2)2+sheets along the tetragonal c axis. More importantly, BIT films can be deposited at675℃, which is significantly lower than the synthesis temperature of other layer-type ferroelectric materials such as SrBi2Ta2O9. In addition, compared with undoped BIT, lanthanum (La)-substituted bismuth titanate (Bi4-xLaxTi3O12, BLT) has the significant advantages in electrical properties such as larger remnant polarization (Pr), smaller coercive field (Ec), lower dielectric loss and higher fatigue resistivity. The electrical properties of the BLT bulk and film materials have been the most extensively studied, while the detailed microstructure and optical properties, which are directly related to electronic band structures, have not been fully clarified. In addition, among multiferroic materials such as BiFeO3(BFO), BiMnO3, YMnO3, TbMnO3and HoMnO3, BFO is known to be the only one with simultaneous ferroelectric (Tc≈1103K) and G-type antiferromagnetic (TN≈643K) orderings at room temperature. BFO film has a large remanent polarization of about100μC/cm2along the [111]c or [001]h directions of pseudo-cubic or hexagonal structure in theory and experiments, as compared to its bulk counterpart. Therefore, it can be used for nonvolatile ferroelectric random access memories (NVFRAMs), which has large capacity, ultra-fast operating speed (10-9s), low-power consumption, and high ratio of resistance in forward and reverse directions. However, there are some obstacles to be overcome in BFO films for NVFRAMs:high leakage current, ferroelectric reliability, high coercive field, the formation of the schottky contact between metallic electrode and Si, etc. Chemical modification of the Bi site for BFO is expected to improve the ferroelectric behaviors. Among the doping elements, the rare earth elements such as La are adopted to enhance ferroelectric properties and decrease leakage current because of the reduced oxygen vacancies by stabilizing oxygen octahedron. Moreover, it has been reported that the Mn3+(d5configuration) substitution of Fe3+site (Fe3+, d4configuration) can increase the resistivity in the high electric field region because of the formation of more distorted (Fe, Mn)O6octahedra. Thus, ferroelectric behaviors of (La, Mn)-substitutions BFO films on n+-Si substrates should be investigated systematically for the applications of spintronics, multiple-state memories, information storage process, and uncooled infrared sensors, etc.
     In this work, iron-doped titanium dioxide, lanthanum (La)-substituted bismuth titanate and (La and Mn)-substitutions BFO films and nanotubes have been prepared by the Sol-Gel technology due to some superiorities:a fast fabrication process, large-area deposition, composition control, and low cost. The studies of these optical and electrical properties are helpful for the applications of optoelectronic and memories devices. The main works and innovations of this dissertation are listed in details as following:
     Ⅰ. Bi3.25Lao.75Ti3O12nanotube arrays with the different outer diameters of about50,100, and200nm have been prepared by the template-assisted Sol-Gel method.(a) The Raman scattering enhancement has been observed from highly ordered ferroelectric Bi3.25La0.75Ti3O12nanotube arrays. The enhancement factor are evaluated to be about92,257, and623corresponding to the outer diameters of50,100, and200nm, respectively. The phenomena can be attributed to the unique surface, microstructure, grain size, and tensile stress in the curved nanotube walls.(b) The photoluminescence emissions are enhanced signifcantly and the ferroelectricity of BLT-NT arrays have been well remained.(c) The optical and electrical behaviors of the BLT nanostructure demonstrate that it is suitable for fabricating multifunctional devices.
     Ⅱ. Based on the investigations of the optical and electrical properties of the BLT nanotube arrayes, which is suitable for fabricating multifunctional devices, we expectate to combine as many as physicochemical properties of BiFeO3material for fabricating multifunctional devices. As we know, BFO is the only one with simultaneous ferroelectric (Tc≈1103K) and G-type antiferromagnetic (TN≈643K) orderings at room temperature. However, there are some obstacles to be overcome in BFO film:high leakage current, ferroelectric reliability, high coercive field, the formation of the schottky contact between metallic electrode and Si, etc. As the first step, the optical, electrical and magnetic properties of the bismuth ferrite films should be investigated in detail,(a) Based on the hypothesis of Spaldin, La-substituted Bi1-xLaxFe0.92Mn0.08O3(BLFMx,0≤x≤0.2) films were directly deposited on heavily As-doped Si(100) by the Sol-Gel technology.(b) The XRD analysis shows that the films exhibit pure perovskite phase structure. The rhombohedral structure is distorted to a tetragonal one by doping Mn and La elements.(c) Moreover, the substitutions of Mn and La impress the leakage current density and enhance the ferroelectric behavior by reducing oxygen vacancies, formation of homogeneous microstructure, stabilizing perovskite structure, inducing lattice distortion and so on. These results could be crucial for the silicon-based technology, non-volatile ferroelectric random access memory applications.(d) It is important to further investigate the optical, ferroelectric, and magnetic properties of the bismuth ferrite nanotubes, which is suitable for fabricating multifunctional devices.
     III. Rutial and anatase iron-doped titanium dioxide nanocrystalline (TiO2:Fe) film with differente compositions have been deposited on Si(100) substrates by a facile nonhydrolytic sol-gel route.(a) For the rutile TiO2:Fe films, as the Fe concentration increasing, the surface becomes more dense, Raman-active phonon modes are shifted toward a lower frequency side, and the broadening of the infrared active phonon modes are changed. A four-phase structure model and the Adachi dispersion function as well as ellipsometric data fitting were used to extract the optical constants (band gap and absorption coefficients) in the near infrared-visible-near ultraviolet range. It suggests that the band gap of titanium dioxide is reduced by the introduction of a new level (Fe t2g) within the band gap. In addition, iron induces the phase transform from rutile to anatase.(b) For the iron doped anatase TiO2polycrystalline films, as the Fe concentration increasing, the intensity of Raman active phonon mode B1g (515cm-1) increases, while that of the Aig (519cm-1) phonon mold decreases. The second active Raman modes may be are originated from surface morphology, oxygen vacancies, crystal defects and so on. The intensity of the photoluminescence peaks at room temperature decreases rapidly with increasing iron concentration since the Fe incorporation could prolong the radiative life time and/or shorten the non-radiative life time. Finally, we study the low temperature photoluminescence spectrum of the anatase Fe:TiO2films, the emissions comes from oxygen vacancy (1.9eV), localized exciton (2.0eV and2.2eV), self-bound exciton (2.4eV), and the X1a and F1b indirect transition (2.6eV).
引文
[1]N. A. Spaldin, S.-W. Cheong, and R. Ramesh, Phys. Today 63,38-43 (2010).
    [2]O. Auciello, J. F. Scott, and R. Ramesh, Phys. Today 51,22-27 (1998).
    [3]李文武,华东师范大学博士论文,2012。
    [4]符春林,铁电薄膜材料及应用(科学出版社,2009年)。
    [5]钟维烈,铁电体物理学(第二版,科学出版社,2003)。
    [6]N. A. Hill, J. Phys. Chem. B 104,6694-6709 (2000).
    [7]N. A. Spaldin, and W. E. Pickett, J. Solid State Chem.176,615-632 (2003).
    [8]T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature 426, 55-58 (2003).
    [9]A. Q. Jiang, C. Wang, K. J. Jin, X. B. Liu, J. F. Scott, C. S. Hwang, T. A. Tang, H. B. Lu, and G Z. Yang, Adv. Mater.23,1277-1281 (2011).
    [10]J. Ma, J. M. Hu, Z. Li, and C.-W. Nan, Adv. Mater.23,1062-1087 (2011).
    [11]J. G Wu, J. Wang, D. Q. Xiao, and J. G Zhu, AIP Adv.1,022138-022110 (2011).
    [12]S. R. Basu, L. W. Martin, Y. H. Chu, M. Gajek, R. Ramesh, R. C. Rai, X. Xu, and J. L. Musfeldt, Appl. Phys. Lett.92,091905 (2008).
    [13]G. Komandin, V. Torgashev, A. Volkov, O. Porodinkov, I. Spektor, and A. Bush, Phys. Solid State 52,734-743 (2010).
    [14]R. P. S. M. Lobo, R. L. Moreira, D. Lebeugle, and D. Colson, Phys. Rev. B 76, 172105 (2007).
    [15]X. S. Xu, J. F. Ihlefeld, J. H. Lee, O. K. Ezekoye, E. Vlahos, R. Ramesh, V. Gopalan, X. Q. Pan, D. G Schlom, and J. L. Musfeldt, Appl. Phys. Lett.96, 192901 (2010).
    [16]J. F. Scott,J. Mater. Chem.22,4567-4574 (2012).
    [17]G Catalan, and J. F. Scott, Adv. Mater.21,2463-2485 (2009).
    [18]干福熹和王阳元,信息材料(天津大学出版社,2000年)。
    [19]唐伟忠,薄膜材料制备原理、技术及应用(冶金工业出版社,2003年)。
    [20]雷蕾,华南理工大学硕士论文,2012年。
    [21]刘亚,江南大学硕士论文,2008年。
    [22]刘静,东北师范大学博士论文,2011年。
    [23]钟玲珑,天津大学硕士论文2010年。
    [24]王鹤,武汉理工大学硕士论文,2012年。
    [25]张存芳,华南理工大学博士论文,2009年。
    [26]冯端,师昌绪和刘治国,材群群学导论(化学工业出版社,2002年)。
    [27]C. J. Brinker, and G W. Scherer, Sol-gel science:the physics and chemistry of sol-gel processing (Academic Press, Inc.,1990).
    [28]J. Z. Zhang, Y. D. Shen, Y. W. Li, Z. G. Hu, and J. H. Chu, J. Phys. Chem. C.114, 15157-15164(2010).
    [29]M. L. Yan, W. Y. Lai, Y. Z. Wang, S. X. Li, and C. T. Yu, J. Appl. Phys.77,1816 (1995).
    [30]J. G. Wu, and J. Wang, Acta Mater.58,1688-1697 (2010).
    [31]H. Buhay, S. Sinharoy, W. H. Kasner, M. H. Francombe, D. R. Lampe, and E. Stepke, Appl. Phys. Lett.58,1470-1472 (1991).
    [32]H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh, Science 303,661-663 (2004).
    [33]Y. Y. Liao, Y. W. Li, Z. G Hu, and J. H. Chu, Appl. Phys. Lett.100,071905 (2012).
    [34]张俊双,暨南大学硕士论文,2011年。
    [35]方亮,苏州大学硕士研究生学位论文,2004年。
    [36]S. Choopun, T. Matsumoto, and T. Kawai, Appl. Phys. Lett.67,1072-1074 (1995).
    [37]L. F. Jiang, W. Z. Shen, and H. Z. Wu,J. Appl. Phys.91,9015-9018 (2002).
    [38]F. Yue, J. Chu, J. Wu, Z. Hu, Y. Li, and P. Yang, Appl. Phys. Lett.92,121916 (2008).
    [39]M. Schuisky, K. Kukli, M. Ritala, A. Harsta, and M. Leskela, Chem. Vapor Depos.6,139-145 (2000).
    [40]J. Shi, and X. Wang, Cryst. Growth Des.11,949-954 (2011).
    [41]R. Ramesh, S. Aggarwal, and O. Auciello, Mater. Sci. Eng., R 32 (6),191 (2001).
    [42]G M. Luo, M. L. Yan, Z. H. Mai, W. Y. Lai, and Y. T. Wang, Phys. Rev. B 56, 3290(1997).
    [43]G S. Wang, J. G Cheng, X. J. Meng, J. Yu, Z. Q. Lai, J. Tang, S. L. Guo, J. H. Chu, G Li, and Q. H. Lu, Appl. Phys. Lett.78,4172-4174 (2001).
    [44]王矜奉,固体物理教程(山东大学出版社,2004年)。
    [45]刘粤惠和刘平安,X射线衍射分析原理与应用(化学工业出版社,2003年)。
    [46]Z. L. Wang, and J. Song, Science 312,242-246 (2006).
    [47]J. Z. Zhang, X. G Chen, Y. D. Shen, Y. W. Li, Z. G Hu, and J. H. Chu, Phys. Chem. Chem. Phys.13,13096-13105 (2011).
    [48]W. Wu, K. Yu, H. Mao, Z. Zhang, and Z. Zhu, Cryst. Res. Technol.45,393-397 (2010).
    [49]胡安和章维益,固体物理学(高等教育出版社,2011年)。
    [50]J. Goldstein, D. Newbury, D. Joy, C. Lyman, P. Echlin, E. Lifshin, L. Sawyer and J. Michael, Scanning Electron Microscopy and X-ray Microanalysis. (Kluwer Academic/Plenum,2003).
    [51]M. K. Singh, E. Titus, G Goncalves, P. A. A. P. Marques, I. Bdikin, A. L. Kholkin, and J. J. A. Gracio, Nanoscale 2,700-708 (2010).
    [52]S. Singh, and S. B. Krupanidhi, J. Nanosci. Nanotechno.8,335-339 (2008).
    [53]A. V. Crewe, M. Isaacson, and D. Johnson, Rev. Sci. Instrum.40,241-246 (1969).
    [54]S. Singh, and S. B. Krupanidhi, Phys. Rev. A 375,2176-2180 (2011).
    [55]S. Triebwasser, Phys. Rev.118,100 (1960).
    [56]G Jegert, A. Kersch, W. Weinreich, U. Schroder, and P. Lugli, Appl. Phys. Lett. 96,062113(2010).
    [57]S. Zhang, L. Wang, Y. Chen, D. Wang, Y. Yao, and Y. Ma, J. Appl. Phys. 111, 074105 (2012).
    [58]D. S. L. Pontes, L. Gracia, F. M. Pontes, A. Beltran, J. Andres, and E. Longo, J. Mater. Chem.22,6587-6596 (2012).
    [59]M. Chandra Sekhar, P. Kondaiah, S. V. Jagadeesh Chandra, G Mohan Rao and S. Uthanna,Appl. Surf. Sci.258 (5),1789-1796 (2011).
    [60]R. S. Chao, R. K. Khanna and E. R. Lippincott, J. Raman Spectrosc.3 (2-3), 121-131 (1975).
    [61]D. A. Clayton, D. M. Benoist, Y. Zhu, and S. Pan, ACS Nano 4,2363-2373 (2010).
    [62]L. Li, C. K. Tsung, Z. Yang, G D. Stucky, L. D. Sun, J. F. Wang, and C. H. Yan, Adv. Mater.20,903-908 (2008).
    [63]C. J. Duan, A. C. A. Delsing, and H. T. Hintzen, Chem. Mater.21,1010-1016 (2009).
    [64]J. J. Zhu, W. W. Li, G S. Xu, K. Jiang, Z. G Hu, M. Zhu, and J. H. Chu, Appl. Phys. Lett.98,091913-091913 (2011).
    [65]方荣川,固体光谱学(中国科技大学出版社,2001年)。
    [66]张金中,华东师范大学本科毕业论文,2008年。
    [67]沈学础,半导体光谱和光学性质(科学出版社,2002年)。
    [1]H. N. Lee, D. Hesse, N. Zakharov, and U. Gosele, Science 296,2006-2009 (2002).
    [2]K. Liang, Y. J. Qi, and C. J. Lu, J. Raman Spectrosc.40,2088-2091 (2009).
    [3]Z. Shen, J. Liu, J. Grins, M. Nygren, P. Wang, Y. Kan, H. Yan, and U. Sutter, Adv. Mater.17,676-680 (2005).
    [4]X. F. Ruan, Y. X. Li, X. S. Wang, and X. Yao, Ferroelectrics 404,119-126 (2010).
    [5]R. Machado, M. G. Stachiotti, R. L. Migoni, and A. H. Tera, Phys. Rev. B 70, 214112(2004).
    [6]M.-W. Chu, M.-T. Caldes, L. Brohan, M. Ganne, Marie, O. Joubert, and Y. Piffard, Chem. Mater.16,31-42 (2004).
    [7]J. Li, X. Wen, Y. Wu, and J. Yu, Integr. Ferroelectr.124,170-177 (2011).
    [8]W. Cai, X. M. Lu, H. F. Bo, Y. Kan, Y. Y. Weng, L. Zhang, X. B. Wu, F. Z. Huang, L. M. Eng, J. S. Zhu, and F. Yan, J. Appl. Phys.110,052004 (2011)..
    [9]D. Zhou, H. S. Gu, Y. M. Hu, Z. L. Qian, Z. L. Hu, K. Yang, Y. N. Zou, Z. Wang, Y. Wang, J. G. Guan, and W. P. Chen, J. Appl. Phys.107,094105 (2010).
    [10]G. B. Kumar, and S. Buddhudu, Ceram. Int.36,1857-1861 (2010).
    [11]W. F. Yao, X. H. Xu, H. Wang, J. T. Zhou, X. N. Yang, Y. Zhang, S. X. Shang, and B. B. Huang, Appl. Catal. B Environ.52,109-116 (2004).
    [12]Z. G. Hu, Y. W. Li, F. Y. Yue, Z. Q. Zhu, and J. H. Chu, Appl. Phys. Lett.91, 221903 (2007).
    [13]J. Z. Zhang, X. G. Chen, K. Jiang, Y. D. Shen, Y. W. Li, Z. G. Hu, and J. H. Chu, Dalton Trans.40,7967-7975 (2011).
    [14]K.-H. Xue, C. A. Paz de Araujo, and J. Celinska, J. Appl. Phys.107,104123 (2010).
    [15]J. Miiller, J. Nowoczin, and H. Schmitt, Thin Solid Films 496,364-370 (2006).
    [16]H. Irie, M. Miyayama, and T. Kudo, J. Appl. Phys.90,4089-4094 (2001).
    [17]A. D. Rae, J. G. Thompson, R. L. Withers, and A. C. Willis, Acta Cryst. B 46, 474-487 (1990).
    [18]A. Shrinagar, A. Garg, R. Prasad, and S. Auluck, Acta Cryst. A 64,368-375 (2008).
    [19]J. M. Perez-Mato, P. Blaha, K. Schwarz, M. Aroyo, D. Orobengoa, I. Etxebarria, and A. Garcia, Phys. Rev. B 77,184104 (2008).
    [20]H. Idink, V. Srikanth, W. B. White, and E. C. Subbarao, J. Appl. Phys.76, 1819-1823(1994).
    [21]P. R. Graves, G. Hua, S. Myhra, and J. G. Thompson, J. Solid State Chem.114, 112-122(1995).
    [22]M. K. Jeon, Y.-I. Kim, S.-H. Nahm, and S. I. Woo, J. Phys. D:Appl. Phys.39, 5080-5085 (2006).
    [23]C. Y. Yau, R. Palan, K. Tran, and R. C. Buchanan, Appl. Phys. Lett.86,032907 (2005).
    [24]Y. Shimakawa, Y. Kubo, Y. Tauchi, H. Asano, T. Kamiyama, F. Izumi, and Z. Hiroi, Appl. Phys. Lett.79,2791-2793 (2001).
    [25]A. Bera, T. Ghosh, and D. Basak, ACS Appl. Mater. Interfaces 2,2898-2903 (2010).
    [26]G. S. Armatas, and M. G. Kanatzidis, Nano Lett.10,3330-3336 (2010).
    [27]W. Wei, Y. Dai, and B. Huang, J. Phys. Chem. C113,5658-5663 (2009).
    [28]A. Roldan, M. Boronat, A. Corma, and F. Illas, J. Phys. Chem. C 114,6511-6517 (2010).
    [29]M. S. Gudiksen, J. Wang, and C. M. Lieber, J. Phys. Chem. B 106,4036-4039 (2002).
    [30]M. Fox, Optical Properties of Solids First ed. (Oxford University Press 2001).
    [31]X. Wu, T. Ming, X. Wang, P. N. Wang, J. F. Wang, and J. Y. Chen, ACS Nano 4, 113-120(2010).
    [32]Z. Yue, C. H. Woo, and W. Biao, J. Phys.:Condens. Matter 20,135216 (2008).
    [33]D. J. Singh, S. S. A. Seo, and H. N. Lee, Phys. Rev. B 82,180103 (2010).
    [34]W. Z. Shen, L. F. Jiang, H. F. Yang, F. Y. Meng, H. Ogawa, and Q. X. Guo, Appl. Phys. Lett.80,2063-2065 (2002).
    [35]W. Z. Shen, H. F. Yang, L. F. Jiang, K. Wang, G. Yu, H. Z. Wu, and P. J. McCann, J. Appl. Phys.91,192-198 (2002).
    [36]S. Y. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C. H. Yang, M. D. Rossell, P. Yu, Y. H. Chu, J. F. Scott, J. W. Ager, L. W. Martin, and R. Ramesh, Nat. Nanotechnol.5,143-147 (2010).
    [37]G. He, L. D. Zhang, G. H. Li, M. Liu, and X. J. Wang, J. Phys. D:Appl. Phys.41, 045304 (2008).
    [38]S. Bouarab, A. Vega, and M. A. Khan, Phys. Rev. B 54,11271-11275 (1996).
    [39]A. D. Becke, and E. R. Johnson, J. Chem. Phys.124,221101 (2006).
    [40]F. Tran, and P. Blaha, Phys. Rev. Lett.102,226401 (2009).
    [41]M.-Q. Cai, Z. Yin, M.-S. Zhang, and Y.-Z. Li, Chem. Phys. Lett.401,405-409 (2005).
    [42]J. Z. Zhang, X. G. Chen, K. Jiang, Y. D. Shen, Y. W. Li, Z. G. Hu, and J. H. Chu, Dalton Trans.40,7967-7975 (2011).
    [43]J. Z. Zhang, M. J. Han, Y. W. Li, Z. G. Hu, and J. H. Chu, Appl. Phys. Lett.101, 081903(2012).
    [44]T. Shimada, X. Wang, Y. Kondo, and T. Kitamura, Phys. Rev. Lett.108,067601 (2012).
    [45]L. Shi, C. J. Pei, Y. M. Xu, and Q. Li, J. Am. Chem. Soc.133,10328-10331 (2011).
    [46]M. K. Jeon, Y.-I. Kim, S.-H. Nahm, and S. I. Woo, J. Phys. D:Appl. Phys.39, 5080-5085 (2006).
    [47]J. Neugebauer, M. Reiher, C. Kind, and B. A. Hess, J. Comput. Chem.23, 895-910(2002).
    [48]A. Campion, and P. Kambhampati, Chem. Soc. Rev.27,241-250 (1998).
    [49]E. H. Witlicki, C. Johnsen, S. W. Hansen, D. W. Silverstein, V. J. Bottomley, J. O. Jeppesen, E. W. Wong, L. Jensen, and A. H. Flood, J. Am. Chem. Soc.133, 7288-7291 (2011).
    [50]Y. B. Zheng, J. L. Payton, C.-H. Chung, R. Liu, S. Cheunkar, B. K. Pathem, Y. Yang, L. Jensen, and P. S. Weiss, Nano Lett.11,3447-3452 (2011).
    [51]G. S. Hong, S. M. Tabakman, K. Welsher, H. L. Wang, X. R. Wang, and H. J. Dai, J. Am. Chem. Soc.132,15920-15923 (2010).
    [52]H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh, Science 303,661-663 (2004).
    [1]M. Bibes, and A. Barthelemy, Nat. Mater.7,425-426 (2008).
    [2]J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig and R. Ramesh, Science 299,1719-1722 (2003).
    [3]M. Ramazanoglu, M. Laver, W. Ratcliff II, S. M. Watson, W. C. Chen, A. Jackson, K. Kothapalli, S. Lee, S. W. Cheong and V. Kiryukhin, Phys. Rev. Lett. 107,207206 (2011).
    [4]R. Haumont, J. Kreisel, P. Bouvier, and F. Hippert, Phys. Rev. B 73,132101 (2006).
    [5]L. Bi, A. R. Taussig, H.-S. Kim, L. Wang, G. F. Dionne, D. Bono, K. Persson, G. Ceder, and C. A. Ross, Phys. Rev. B 78,104106 (2008).
    [6]P. Rovillain, R. de Sousa, Y. Gallais, A. Sacuto, M. A. Measson, D. Colson, A. Forget, M. Bibes, A. Barthelemy and M. Cazayous, Nat. Mater.9,975-979 (2010).
    [7]S. Y. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C. H. Yang, M. D. Rossell, P. Yu, Y. H. Chu, J. F. Scott, J. W. Ager, L. W. Martin, and R. Ramesh, Nat. Nanotechnol.5,143-147 (2010).
    [8]H. Huang, Nature Photonics 4,134-135 (2010).
    [9]M. Alexe, and D. Hesse, Nat. Commun.2,256 (2011).
    [10]X. Qi, J. Dho, R. Tomov, M. G. Blamire, and J. L. MacManus-Driscoll, Appl. Phys. Lett.86,062903 (2005).
    [11]J. Xu, Z. Jia, N. Zhang, and T. Ren, J. Appl. Phys. 111,074101-074109 (2012).
    [12]H. Naganuma, Y. Inoue, and S. Okamura, Integr. Ferroelectr.95,242-247 (2007).
    [13]D. Kan, L. Palova, V. Anbusathaiah, C. J. Cheng, S. Fujino, V. Nagarajan, K. M. Rabe and I. Takeuchi, Adv. Funct. Mater.20,1108-1115 (2010).
    [14]C. H. Yang, J. Seidel, S. Y. Kim, P. B. Rossen, P. Yu, M. Gajek, Y. H. Chu, L. W. Martin, M. B. Holcomb, Q. He, P. Maksymovych, N. Balke, S. V. Kalinin, A. P. Baddorf, S. R. Basu, M. L. Scullin and R. Ramesh, Nat. Mater.8,485-493 (2009).
    [15]F. Gao, X. Y. Chen, K. B. Yin, S. Dong, Z. F. Ren, F. Yuan, T. Yu, Z. G. Zou, and J. M. Liu, Adv. Mater.19,2889-2892 (2007).
    [16]A. R. Venkateswarlu, G. D. Varma, and R. Nath, AIP Adv.1,042140 (2011).
    [17]S. R. Basu, L. W. Martin, Y. H. Chu, M. Gajek, R. Ramesh, R. C. Rai, X. Xu, and J. L. Musfeldt, Appl. Phys. Lett.92,091905 (2008).
    [18]G. Catalan and J. F. Scott, Adv. Mater.21,2463-2485 (2009).
    [19]J.-H. Lee, M.-A. Oak, H. J. Choi, J. Y. Son and H. M. Jang, J. Mater. Chem.22, 1667-1672 (2012).
    [20]K. Kalantari, I. Sterianou, S. Karimi, M. C. Ferrarelli, S. Miao, D. C. Sinclair and I. M. Reaney, Adv. Funct. Mater.21,3737-3743 (2011).
    [21]C. Ederer and N. A. Spaldin, Phys. Rev. B 71,224103 (2005).
    [22]F. Yan, M.-O. Lai, L. Lu and T.-J. Zhu, J. Phys. Chem. C 114,6994-6998 (2010).
    [23]D. D. Fong, G. B. Stephenson, S. K. Streiffer, J. A. Eastman, O. Auciello, P. H. Fuoss and C. Thompson, Science 304,1650-1653 (2004).
    [24]O. Auciello, J. F. Scott and R. Ramesh, Phys. Today 51,22-27 (1998).
    [25]A. Q. Jiang, C. Wang, K. J. Jin, X. B. Liu, J. F. Scott, C. S. Hwang, T. A. Tang, H. B. Lu and G. Z. Yang, Adv. Mater.23,1277-1281 (2011).
    [26]X. Wang, G. Hu, L. Cheng, C. Yang and W. Wu, Appl. Phys. Lett.99,262901 (2011).
    [27]S. Y. Wang, X. Qiu, J. Gao, Y. Feng, W. N. Su, J. X. Zheng, D. S. Yu and D. J. Li, Appl. Phys. Lett.98,152902 (2011).
    [28]H. Ishiwara, Current Appl. Phys.12,603-611 (2012).
    [29]N. A. Hill, J. Phys. Chem. B 104,6694-6709 (2000).
    [30]A. Filippetti and N. A. Hill, Phys. Rev. B 65,195120 (2002).
    [31]Y. B. Chen, M. B. Katz, X. Q. Pan, R. R. Das, D. M. Kim, S. H. Baek, and C. B. Eom, Appl. Phys. Lett.90,072907 (2007).
    [32]K.-G. Yang, S.-H. Yang, and Y.-L. Zhang, Ferroelectrics 410,63-68 (2010).
    [33]Z. Cheng, X. Wang, S. Dou, H. Kimura, and K. Ozawa, Phys. Rev. B 77, 092101 (2008).
    [34]J. Z. Zhang, Y. D. Shen, Y. W. Li, Z. G. Hu, and J. H. Chu, J. Phys. Chem. C 114,15157-15164(2010).
    [35]C. M. Raghavan, D. Do, J. W. Kim, W.-J. Kim, and S. S. Kim, J. Am. Ceram. Soc.95,1933-1938(2012).
    [36]P. Chen, X. Xu, C. Koenigsmann, A. C. Santulli, S. S. Wong and J. L. Musfeldt, Nano Lett.10,4526-4532 (2010).
    [37]P. Hermet, M. Goffinet, J. Kreisel and P. Ghosez, Phys. Rev. B 75,220102 (2007).
    [38]J. Hlinka, J. Pokorny, S. Karimi, and I. M. Reaney, Phys. Rev. B 83,020101 (2011).
    [39]R. P. S. M. Lobo, R. L. Moreira, D. Lebeugle and D. Colson, Phys. Rev. B 76, 172105 (2007).
    [40]李亚巍,华东师范大学博士后研究工作报告,2009年.
    [41]J. G. Wu, J. Wang, D. Q. Xiao and J. G. Zhu, AIP Adv.1,022138-022110 (2011).
    [42]M. Kuik, G.-J. A. H. Wetzelaer, J. G. Ladde, H. T. Nicolai, J. Wildeman, J. Sweelssen and P. W. M. Blom, Adv. Funct. Mater.21,4502-4509 (2011).
    [43]J. G. Simmons, Phys. Rev.155,657-660 (1967).
    [44]M.-S. Wang, Q. Chen and L.-M. Peng, Small 4,1907-1912 (2008).
    [45]A. A. Al-Tabbakh, M. A. More, D. S. Joag, I. S. Mulla and V. K. Pillai, ACS Nano 4,5585-5590 (2010).
    [46]G. W. Pabst, L. W. Martin, Y.-H. Chu and R. Ramesh, Appl. Phys. Lett.90, 072902-072903 (2007).
    [47]D. Do, J. W. Kim, and S. S. Kim, J. Am. Ceram. Soc.94,2792-2795 (2011).
    [48]G. Kartopu, A. Lahmar, S. Habouti, C. L. Solterbeck, B. Elouadi, and M. Es-Souni,Appl. Phys. Lett.92,151910 (2008).
    [49]J. Xu, Z. Jia, N. Zhang, and T. Ren, J. Appl. Phys. 111,074101 (2012).
    [50]S. M. Sze, and K. K. Ng, Physics of Semiconductor Devices. (NewJersey:Wiley, 2007).
    [51]J.-H. Jean, C.-R. Chang, R.-L. Chang, and T.-H. Kuan, Mater. Chem. Phys.40, 50-55 (1995).
    [1]A. Fujishima, and K. Honda, Nature 238,37-38 (1972).
    [2]G. Pfaff, and P. Reynders, Chem. Rev.99,1963-1982 (1999).
    [3]M. Gratzel, Nature 414,338-344 (2001).
    [4]A. L. Linsebigler, G. Lu, and J. T. Yates, Chem. Rev.95,735-758 (1995).
    [5]K. M. Glassford, and J. R. Chelikowsky, Phys. Rev. B 45,3874-3877 (1992).
    [6]B. O'Regan, and M. Gratzel, Nature 353,737-740 (1991).
    [7]A. Hagfeldt, and M. Graetzel, Chem. Rev.95,49-68 (1995).
    [8]B. T. Holland, C. F. Blanford, and A. Stein, Science 281,538-540 (1998).
    [9]X. Chen, and S. S. Mao, Chem. Rev.107,2891-2959 (2007).
    [10]郝爱民,吉林大学博士论文,2007。
    [11]蔡清元,复旦大学博士论文,2011。
    [12]F. A. Grant, Rev. Mod. Phys.31,646-674 (1959).
    [13]A. Sclafani, L. Palmisano, and M. Schiavello, J. Phys. Chem.94,829-832 (1990).
    [14]M. V. Rao, K. Rajeshwar, V. R. P. Verneker, and J. Du Bow, J. Phys. Chem.84, 1987-1991 (1980).
    [15]G. V. Samsonov, The Oxide Handbook. (IFI/Plenum Press, New York,1982).
    [16]Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S.-y. Koshihara, and H. Koinuma, Science 291, 854-856 (2001).
    [17]S. Zhou, E. Cizmar, K. Potzger, M. Krause, G. Talut, M. Helm, J. Fassbender, S. A. Zvyagin, J. Wosnitza, and H. Schmidt, Phys. Rev. B 79,113201 (2009).
    [18]L. Sangaletti, M. C. Mozzati, P. Galinetto, C. B. Azzoni, A. Speghini, M. Bettinelli, and G. Calestani, J. Phys.:Condens. Matter 18,7643 (2006).
    [19]K. Yamaura, X. H. Wang, J. G. Li, T. Ishigaki, and E. Takayama-Muromachi, Mater. Res. Bull.41,2080-2087 (2006).
    [20]W. Choi, A. Termin, and M. R. Hoffmann, J. Phys. Chem.98,13669-13679 (1994).
    [21]C. Lee, P. Ghosez, and X. Gonze, Phys. Rev. B 50,13379 (1994).
    [22]D. Bersani, P. P. Lottici, and X.-Z. Ding, Appl. Phys. Lett.72,73-75 (1998).
    [23]V. Swamy, B. C. Muddle, and Q. Dai, Appl. Phys. Lett.89,163118 (2006).
    [24]Z. G. Hu, W. W. Li, J. D. Wu, J. Sun, Q. W. Shu, X. X. Zhong, Z. Q. Zhu, and J. H. Chu, Appl. Phys. Lett.93,181910 (2008).
    [25]J. Zhang, M. Li, Z. Feng, J. Chen, and C. Li, J. Phys. Chem. B 110,927-935 (2006).
    [26]T. Nomoto, A. Sasahara, and H. Onishi, J. Chem. Phys.131,084703 (2009).
    [27]J. C. Parker, and R. W. Siegel, Appl. Phys. Lett.57,943-945 (1990).
    [28]V. Swamy, Phys. Rev. B77,195414 (2008).
    [29]K. Hattori, Phys. Rev. B 75,205302 (2007).
    [30]D. E. Aspnes, J. B. Theeten, and F. Hottier, Phys. Rev. B 20,3292 (1979).
    [31]方荣川,固体光谱学(中国科技大学出版社,2001年)。
    [32]J. G. E. Jellison, L. A. Boatner, J. D. Budai, B. S. Jeong, and D. P. Norton, J. Appl. Phys.93,9537-9541 (2003).
    [33]K. J. Lee, T. D. Kang, H. S. Lee, H. Lee, M. J. Cho, S. H. Lee, and D. H. Choi, J. Appl. Phys.91,083543 (2005).
    [34]A. R. Forouhi, and I. Bloomer, Phys. Rev. B 38,1865 (1988).
    [35]A. R. Forouhi, and I. Bloomer, Phys. Rev. B 34,7018 (1986).
    [36]S. Adachi, Phys. Rev. B 35,7454 (1987).
    [37]S. Adachi, Phys. Rev. B 41,3504 (1990).
    [38]P. D. Mitev, K. Hermansson, B. Montanari, and K. Refson, Phys. Rev. B 81, 134303 (2010).
    [39]L. Chiodo, J. M. Garcia-Lastra, A. Iacomino, S. Ossicini, J. Zhao, H. Petek, and A. Rubio, Phys. Rev. B 82,045207 (2010).
    [40]M. Mikami, S. Nakamura, O. Kitao, and H. Arakawa, Phys. Rev. B 66,155213 (2002).
    [41]C.-C. Wang, K.-W. Wang, and T.-P. Perng, Appl. Phys. Lett.96,143102 (2010).
    [42]Y. B. Jiang, W. B. Mi, E. Y. Jiang, and H. L. Bai, J. Vac. Sci. Technol., A 27, 1172-1177(2009).
    [43]M. Giarola, A. Sanson, F. Monti, G. Mariotto, M. Bettinelli, A. Speghini, and G. Salviulo, Phys. Rev. B 81,174305 (2010).
    [44]M. Xing, Y. Wu, J. Zhang, and F. Chen, Nanoscale 2,1233-1239 (2010).
    [45]杨德仁,半导体材料测试与分析(科学出版社,2010年)。
    [46]K. Nagaveni, M. S. Hegde, and G. Madras, J. Phys. Chem. B 108,20204-20212 (2004).
    [47]A. Roldan, M. Boronat, A. Corma, and F. Illas, J. Phys. Chem. C 114,6511-6517 (2010).
    [48]N. D. Abazovic, M. I. Comor, M. D. Dramicanin, D. J. Jovanovic, S. P. Ahrenkiel, and J. M. Nedeljkovic, J. Phys. Chem. B 110,25366-25370 (2006).
    [49]H. Tang, H. Berger, P. E. Schmid, and F. Levy, Solid State Commun.92,267-271 (1994).
    [50]W. F. Zhang, M. S. Zhang, Z. Yin, and Q. Chen, Appl. Phys. B:Lasers Opt.70, 261-265 (2000).
    [51]Z. Xu, H. He, L. Sun, Y. Jin, B. Zhao, and Z. Ye, J. Appl. Phys.107,053524 (2010).
    [52]M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, J. Appl. Phys.86,3721-3728 (1999).
    [53]S. B. Ogale,Adv. Mater.22,3125-3155 (2010).
    [54]L. Cavigli, F. Bogani, A. Vinattieri, V. Faso, and G. Baldi, J. Appl. Phys.106, 053516(2009).
    [55]M. Fox, Optical Properties of Solids First ed. (Oxford University Press 2001).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700