碳纳米管/Lyocell纤维的研制及其应用初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Lyocell纤维是一种新型的纤维素纤维,其原料资源丰富,生产工艺简单先进,对环境污染小,符合低碳和可持续发展要求。因此,Lyocell纤维有望替代生产工艺严重污染环境的粘胶纤维。Lyocell纤维具有手感好、干强及湿强度均较高及吸湿透气性佳等诸多优良的性能,可广泛应用于服装领域;其经过改性研究,还有望开发成炭纤维原丝、轮胎帘子线用纤维、导电纤维、抗菌纤维等。因此,Lyocell纤维在工业、航天、军事、医疗等领域有着广泛的潜在的应用前景。
     迄今为止,国内外对Lyocell纤维进行改性的研究报道不多,其中,将碳纳米管添加至Lyocell中进行改性的研究更未见有报道。为此,本论文将采用多壁碳纳米管(MWNTs)添加剂对Lyocell纤维进行改性研究,探讨了MWNTs的化学纯化及表面功能化改性、改性MWNTs在N-甲基吗啉-N-氧化物(NMMO)水溶液中的分散稳定性及其对Lyocell纺丝原液流变性能、纺丝性能及纤维结构与性能的影响。在此基础上,以MWNTs/Lyocell纤维为原丝制备了MWNTs/Lyocell基炭纤维,并对其结构与性能进行了研究。除此之外,本论文还初步探讨了纳米级炭黑、单壁碳纳米管(SWNTs)添加剂对Lyocell纤维结构与性能的影响。
     本论文首先研究了MWNTs的化学纯化、表面功能化改性及其在NMMO水溶液中的分散稳定性。TEM、TGA、FTIR和Raman光谱等分析结果表明:通过硝酸纯化处理,提高了MWNTs的纯度,并在MWNTs表面引入了羧基和羟基等官能团,提高了MWNTs的表面活性。沉降试验及显微镜观察结果进一步表明:在上述纯化基础上利用适量的十二烷基苯磺酸钠对MWNTs再进行表面功能化改性可使MWNTs在NMMO水溶液及纤维素/NMMO·H2O溶液中的分散稳定性得到显著提高。
     本论文采用哈克流变仪、自制的无计量泵的气压式单孔纺丝装置及带有计量泵的多孔纺丝装置等研究了MWNTs添加量对Lyocell纺丝原液流变性能及纺丝性能的影响。研究结果表明:添加了MWNTs的纤维素/NMMO水溶液为切力变稀流体,且随着溶液中MWNTs添加量的增加,溶液体系中纤维素的表观相对分子质量、溶液粘度、粘流活化能、结构粘度指数及弹性先逐渐增大,当MWNTs含量增至1%时,它们均达到最大值,但随着MWNTs含量的进一步增加,这些参数反而又出现下降的趋势。另外,研究还发现,MWNTs含量对纤维素/NMMO·H2O纺丝原液均匀性和纺丝性能也有一定的影响。在本论文实验范围内,MWNTs含量控制在1%及以下时,溶液均匀性和纺丝性能较好。
     本论文在上述研究基础上,进一步采用强力仪、SEM、FESEM、WAXD、二维X光衍射、TGA及低电流高阻测量仪等对含MWNTs的Lyocell纤维的结构与性能进行了分析。结果发现:MWNTs的添加对Lyocell纤维的晶型结构及结晶度没有明显的影响,但使纤维的热稳定性有了一定程度的提高;适量的MWNTs可以均匀分散在Lyocell纤维基体中并可使其力学性能有效改善。其中,1%MWNTs含量的Lyocell纤维的初始模量和强度分别比未添加MWNTs的Lyocell纤维提高了41.9%和22.2%。另外,通过适当提高喷头拉伸比也可改善MWNTs/Lyocell纤维的力学性能;纤维中,MWNTs是基本沿纤维轴取向的,且沿纤维轴取向的程度随喷头拉伸比的增大而逐渐增大。此外,在保证可纺性的条件下,尽可能提高纤维中MWNTs的含量并设法减小纤维成型时所受的拉伸作用对提高该纤维的导电性能也是有利的。在本论文研究范围内,较低拉伸作用下制得的5%MWNTs/Lyocell纤维的体积电导率比纯Lyocell纤维的体积电导率提高了约5个数量级。
     本论文还进一步以含MWNTs的Lyocell纤维为原丝探索制备了MWNTs/ Lyocell基炭纤维,并与纯Lyocell基炭纤维进行了比较研究。结果发现:含适量MWNTs的Lyocell纤维同纯Lyocell纤维一样表面光滑,截面为圆形。但相比之下,含适量MWNTs的Lyocell纤维强度更高、结构更致密,更适合作为炭纤维原丝。对Lyocell原丝及MWNTs/Lyocell原丝在不同温度分段预氧化和碳化处理后,发现两种纤维的结晶度均随着处理温度的提高而逐渐减少。当经过250℃热处理后,两种纤维的晶区结构均遭到了比较严重的破坏,原有的纤维素Ⅱ晶型的单斜晶系已不复存在。进一步经碳化处理后,纤维的结晶结构已从原丝纤维素Ⅱ的单斜晶系转变为炭纤维的二维乱层石墨结构,且结晶度较低。但MWNTs/Lyocell原丝中的MWNTs在制备炭纤维的过程中一直保持着自身的结晶结构。研究还发现原丝的制备工艺及其粗细、原丝中MWNTs添加量等因素均对最终炭纤维的结构产生重要的影响。在本论文研究条件下,相对于纺丝工艺A而言,由纺丝工艺B制备的原丝直径更细更均匀,由其制得的炭纤维的表面普遍比较光洁,纤维中没有明显的孔洞缺陷。其中,由1%MWNTs/Lyocell原丝制备的炭纤维形态结构较光滑、孔洞缺陷数量少且尺寸较小,其强度和模量分别比纯Lyocell基炭纤维提高70%和116%。
     与此同时,本论文还初步探讨了纳米级炭黑、SWNTs添加剂对Lyocell结构与性能的影响,研究发现:虽然炭黑的添加不利于纤维力学性能的提高,但促进了纤维导电性能的改善,在一定的研究范围内,MWNTs/炭黑/Lyocell纤维的导电性相对于MWNTs/Lyocell纤维有了一定程度的提高;由于SWNTs比MWNTs具有更完善的结构和更优良的电学性能,当纤维中碳纳米管含量相同时,添加SWNTs的Lyocell纤维力学性能、体积电导率及热稳定性均普遍优于添加MWNTs的Lyocell纤维,而Lyocell纤维形态结构随SWNTs添加量的变化规律则与添加MWNTs时的情况相似。
Lyocell fiber is a new kind of regenerated cellulose fiber and is expected to replace the rayon fiber in the future due to its simple, advanced and environmentally friendly process. Lyocell fiber has lots of excellent properties such as high dry strength and wet strength, good hand-feeling and water-absorbing properties, and so on. Therefore, it is widely used in the textile field. It can expectedly be used as precursor of carbon fiber, tire cord, electrical conductive fiber and anti-bacterium fiber etc. after being modified and will have wide potential application prospects in such fields as industry, spaceflight and medical treatment etc..
     To the date, there are a few reports on modified Lyocell fiber and no work has been reported on Lyocell fiber modified with carbon nanotubes (CNTs). In this thesis, multiwalled carbon nanotubes (MWNTs) were used as an additive of Lyocell process. The purification and functionalization of MWNTs, as well as their dispersion stability in the NMMO aqueous solution were studied. Moreover, the effect of MWNTs on the rheological behaviors and spinnability of the spinning dope, the structure and properties of MWNTs/Lyocell composite fiber were also investigated. Based on these works, the MWNTs/Lyocell-based carbon fibers were prepared by using MWNTs/Lyocell composite fibers as the precursor. In addition, the effects of the other additives such as nano-scale carbon black and single-walled carbon nanotubes (SWNTs) on the structure and properties of Lyocell fiber were further studied.
     In this thesis, the purification and functionalization of MWNTs, and their dispersion stability in the NMMO aqueous solution were studied firstly. The results from TEM, TGA, FTIR and Raman showed that the purity of MWNTs was increased and the carboxylic and hydroxyl groups existed on the surface of MWNTs after being treated with the nitric acid. The results by sedimentation test and using microscope further showed the MWNTs modified with appropriate amount of sodium dodecylbenzene sulfonate (SDBS) could be dispersed uniformly in the NMMO aqueous solution and cellulose/NMMO·H2O solution.
     The effect of MWNTs on the rheological behavior and spinnability of the cellulose/NMMO·H2O solution were also studied by HAAKE rheometer and two types of spinning devices. The results showed that the cellulose/NMMO·H2O solution filled with MWNTs belongs to the typical shear thinning fluid. The apparent relative molecular weight of cellulose, viscosity, flow activation energy, structural viscosity index and elasticity of the solution were increased firstly with the addition of MWNTs and reached the highest value with 1% MWNTs, and then decreased with the further addition of MWNTs. In the range of our experiments, it was found that the uniformity and spinnability of cellulose/NMMO·H2O spinning dope were also affected by the MWNTs content, and the spinning process was run smoothly if the content of MWNTs was not higher than 1%.
     Based on the above works, the structures and properties of MWNTs/Lyocell composite fibers were further investigated by using tensile meter, SEM, FESEM, WAXD, TGA, two dimentional X-ray diffraction and low current-high resistance meter etc.. It was found that by the addition of MWNTs the crystal structure and crystallinity of Lyocell fiber were hardly affected, while its thermal stability was increased in some extent. An appropriate amount of MWNTs could be dispersed uniformly in the Lyocell matrix and that could improve the mechanical properties of the resultant composite fiber. Compared with the pure Lyocell fiber, the modulus and tenacity of the composite fiber containing 1% MWNTs were increased by 41.9% and 22.2%, respectively. Moreover, the mechanical properties of MWNTs/Lyocell composite fibers could be also improved by increasing the jet stretch ratio appropriately. In addition, MWNTs in the fiber almost aligned along the axis of the fiber and the orientation of MWNTs increased with the increasing jet stretch ratio. In our case it was found that more MWNTs content and lower jet stretch ratio could improve the electrical conductivity of the composite fiber. The volume conductivity of the 5% MWNTs/Lyocell composite fiber prepared under a weaker spinneret draft was 5 orders higher than that of pure Lyocell fiber.
     The MWNTs/Lyocell based carbon fiber was prepared by using the MWNTs/Lyocell composite fiber as precursor and compared with the pure Lyocell based carbon fiber. The results showed that both MWNTs/Lyocell composite fiber and pure Lyocell fiber had smooth surface and round cross-section. Compared with pure Lyocell fiber, the composite fiber with appropriate amount MWNTs was much more suitable for using as carbon fiber precursor due to its higher tenacity and more compact structure. The Lyocell fiber and MWNTs/Lyocell composite fiber were treated under different pre-oxidation and carbonization temperatures. It was found that the crystallinities of the two kinds of fibers were gradually decreased with the increasing of the treatment temperature. After being treated at 250℃, the crystal structures of MWNTs/Lyocell composite fiber and Lyocell fiber were seriously damaged and the monoclinic crystal system of their original celluloseⅡdisappeared. The monoclinic crystal system of cellulose II of precursor was converted to a two-dimensional turbostratic graphite structure of carbon fiber after carbonization but the crystal sturcture of MWNTs was always kept in the fiber during the treatment process. The resultant carbon fiber had low crystallinity. It was further fount that the structure of carbon fiber was affected by the spinning process of precursor, its fineness and the content of MWNTs in the precursor and so on. The diameter of precursor made from spinning process B was finer and more uniform than that from the spinning process A. Therefore, the surface of resultant carbon fiber was more smooth and no obvious hole flaw existed in the carbon fiber. Compared with Lyocell-based carbon fiber, the tenacity and modulus of 1% MWNTs/Lyocell-based carbon fiber were increased by 70% and 116%, respectively.
     At the same time, the effects of the other additives such as nano-scale carbon black and SWNTs on the structure and properties of Lyocell fiber were also investigated. It was found that by the addition of carbon black the mechanical properties of the composite fiber were decreased, but its conductivity was improved. Compared with the MWNTs/Lyocell composite fiber, the conductivity of MWNTs /carbon black/Lyocell composite fiber was improved in some extent. Furthermore, because SWNTs had more perfect structure and better electricity property than MWNTs, the mechanical properties, volume conductivity and thermal stability of SWNTs/Lyocell composite fiber were better than those of MWNTs/Lyocell composite fiber in the case of the same carbon nanotubes'content. In addition, the variation of the morphological structure of composite fibers with the addition of SWNTs was similar to that of the MWNTs/Lyocell composite fibers.
引文
1 简义辉.碳纳米管添加剂对Lyocell纤维结构与性能的影响.硕士学位论文.上海:东华大学,2006年,1-2
    2 付兰香.再生纤维素纤维的可持续发展方向.山东纺织科技,2000,(5):51-54
    3 贺福,杨永岗.攻坚碳纤维原丝瓶颈势在必行.化工新型材料,2001,29(1):3-6
    4 贺福,王茂章.碳纤维及其复合材料.1997年,北京:科学出版社,1-319
    5 Lovell D R. Carbon Fibres-Their Place in Modern Technology.1974%年, The Plastic Institute, London,283
    6 王曾辉,高晋生.碳素材料.1991年,上海:华东化工学院出版社,16
    7 赵培桐,王越飞,叶梅君.粘胶基碳纤维原丝的研制.产业用纺织品,1994,13(3):21-26
    8 Fitzer E, Heym M. Carbon fibers-the outlook. Chem. Ind.,1976,8(21): 663-676
    9 Harholdt K. Carbon fiber, past and future. Industrial Fabric Products Review, 2003,88(4):14-16
    10贺福,赵建国,王润娥.粘胶基碳纤维.化工新型材料,1999,27(1):3-10
    11 Konkin A. Production of Cellulose Based Carbon Materials.1985年, Elsevier Science Publishers, Berlin,283-285
    12 Barcon R. Carbon fiber from rayon precursor in chemistry and physics of carbon.1973年, Macel Dekker Press, New York,9
    13赵培桐,王越飞.粘胶基碳纤维原丝的工艺技术研究.国际纺织品动态,1995,(1):27-30
    14 O'Neil D J. Precursors for carbon and graphite fibers. Intern. J. Polymeric Mater.,1979,7(3&4):203-218
    15 U. S. Pat.3,322,489,1967
    16 Jap. Pat.2775/70,1970
    17彭顺金,邵惠丽,胡学超.新型碳纤维用原丝-高强高模Lyocell纤维纺丝工艺研究.合成纤维工业,2002,25(6):21-24
    18贺福,杨永岗.提高碳纤维强度的理论基础及其技术途径.高科技纤维与 应用,2001,26(2):7-10,32
    19吴琪琳,潘鼎,邵惠丽.Lyocell纤维与国产粘胶纤维的对比研究.高分子材料科学与工程,2001,17(4):78-81
    20魏孟媛,杨革生,田耀鑫等.热处理对轮胎帘子线用Lyocell纤维性能的影响.合成纤维工业,2008,31(5):18-21
    21程博闻,孙常宏.Lyocell纤维的现状及发展趋势.人造纤维,1999,(2):26-30
    22 Vorbach D, Taeger E.含碳纤维素纤维的性能.国际纺织导报,1998,(2):9-12
    23王兆明,邵惠丽,胡学超.抗菌Lyocell纤维的研制,东华大学学报,2003,29(1):71-76
    24 Vorbach D, Taeger E. Properties of carbon filled cellulose filaments. Chem. Fibers Int.,1998,48(2):120-122
    25 Meister F, Vorbach D, Michels C, et al. Lyocell products with built-in functional properties. Chem. Fibers Int.,1998,48(2):32-35
    26 Zhang H H, Guo L W, Shao H L, et al. Study on carbon black filled Lyocell fibers as the precursor of carbon fibers. J. Appl. Polym. Sci.,2006,99(1): 65-74
    27 Iijima S. Helical microtubules of graphitic carbon. Nature,1991,354:56-58
    28田红灯,王畅,王利光.锯齿型单壁与双壁碳纳米管电子学特性比较研究.黑龙江大学自然科学学报,2009,26(1):121-124,129
    29郭连权.碳纳米管的物性与应用.人工晶体学报,2002,31(2):164-168
    30孙晓刚,曾效舒,程国安.碳纳米管的特性及应用.中国粉体技术,2001,7(6):29-31
    31李霞.MWNTs/PBO复合纤维的合成及PBO聚会机制研究.博士学位论文.哈尔滨:哈尔滨工业大学,2006年,15-17
    32高永刚,施兴华,赵亚溥.碳纳米管的力学行为.机械强度,2001,23(4):402-412
    33杨帮朝,陈金菊,冯哲圣.碳纳米管的物性及应用.电子元件与材料,2003,22(5):44-46
    34 De Heer A W, Bacsa S W, Ugarte D, et al. Aligned carbon nanotubes films: production and optical and electronic properties. Science,1995,268(5212): 845-847
    35徐国永.碳纳米管/聚合物杂化材料的制备与微结构研究.博士学位论文.合肥:中国科技大学,2007年,16
    36 Wahed W, Kazunori K, Peter T A, et al. Experimental characterization of the role of hydrogen in CVD synthesis of MWCNTs. Carbon,2007,45(4):833 838
    37 Hsu W K, Terrones M, Hare J P, et al. Electrolytic formation of carbon nanostructures. Chem. Phys. Lett.,1996,262(1-2):161-166
    38邹红玲,杨延莲,武斌等.CVD法制备单壁碳纳米管的纯化与表征.物理化学学报,2002,18(5):409-413
    39李建婷,曹全喜,姚娇艳等.热酸氧化及镀镍对碳纳米管吸波性能的影响.功能材料与器件学报,2007,13(5):443-448
    40蔡瑛,严志宏,字敏等.碳纳米管的色谱纯化法.化学进展,2008,20(9):1392-1395
    41王青,戴剑锋,李维学等.碳纳米管的提纯及表征.兰州理工大学学报,2006,32(3):157-160
    42 Shelimov K, Esenaliev R, Rinzler A, et al. Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. Chem. Phys. Lett.,1998,282(5): 429-434
    43孙晓刚,曾效舒.空气氧化法提纯碳纳米管的研究.新型炭材料,2004,19(1):65-68
    44 Li G Y, Wang P M, Zhao X H. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon,2005,43(6):1239-1245
    45王敏炜,姚彦红,查少华等.重铬酸钾用于碳纳米管开口及表面处理的研究.南昌大学学报(工科版),2006,28(1):1-3,11
    46程瑞玲,王依民.超高相对分子质量聚乙烯/碳纳米管复合纤维的制备.合成纤维工业,2004,27(3):25-27
    47隋刚,梁吉,朱跃峰等.碳纳米管/天然橡胶复合材料的红外光谱和DSC分析.高技术通讯,2004,14(8):41-46
    48 Li F, Cheng H M, Xing Y T, et al. Purification of single-walled carbon nanotubes synthesized by the catalytic decomposition of hydrocarbons. Carbon, 2000,38(14):2041-2045
    49 Salvetat J P, Briggs G A D, Bonard J M, et al. Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett.,1999,82(5):944-947
    50 Lin Y, Zhou B, Shiral Fernando K A. Polymeric carbon nanocomposites form carbon nanotubes functionalized with matrix polymer. Macromolecules,2003, 36(19):7199-7204
    51 Yao Z L, Braidy N, Botton G A, et al. Polymer form surface of single-walled carbon nanotubes-preparation and characterization of nanocomposite. J. Am. Chem. Soc.,2003,125(51):16015-16024
    52 Chen Y, Haddon R C, Fang S, et al. Chemical attachment of organic functional groups to single-walled carbon nanotubes material. J. Mater. Res.,1998,13(9): 2429-2431
    53杨植,陈小华,刘云泉.碳纳米管的羟甲基化及其马来酸酐接枝研究.化学学报,2006,64(3):203-207
    54王平华,李凤妍,刘春华等.碳纳米管/聚氨酯纳米复合材料的制备及性能.高分子材料科学与工程,2008,24(12):184-187
    55 Dufresne A, Paillet M, Pataux J L, et al. Processing and characterization of carbon nanotube/poly(styrene-co-butyl acrylate) nanocomposites. J. Mater. Sci.,2002,37(18):3915-3923
    56 Star A, Stoddart J F, Steuerman D, et al. Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew. Chem. Int. Ed., 2001,40(9):1721-1725
    57 Ruan S L, Gao P, Yu T X. Ultra-strong gel-spun UHMWPE fibers reinforced using multiwalled carbon nanotubes. Polymer,2006,47(5):1604-1611
    58辜萍,王宇,李广海.碳纳米管的力学性能及碳纳米管复合材料研究.力学进展,2002,32(4):563-578
    59 Watts P C P, Hsu W K, Chen C Z, et al. A low resistance boron-doped carbon nanotube-polystyrene composite. J. Mater. Chem.,2001,11(10):2482-2488
    60王志苗,白世河,王学晨等.熔融共混法制备PA66/碳纳米管复合纤维的结构与性能.化工新型材料,2008,36(10):64-66
    61孙艳妮,张润鑫,冯莺等.氯化聚乙烯/碳纳米管复合材料的制备及其性能研究.材料工程,2006,增刊1:124-127,131
    62赵金安.溶液共混法制备聚苯乙烯/多壁碳纳米管复合导电材料.化学研究与应用,2007,19(2):224-226
    63陈利,瞿美臻,王贵欣等.溶液共混法制备碳纳米管/双酚A型聚碳酸酯复合物的研究.功能材料,2005,36(1):139-141
    64 Andrews R, Jacques D, Qian D L, et al. Multiwall Carbon Nanotubes: Synthesis and Application. Acc. Chem. Res.,2002,35(12):1008-1017
    65 Liu T X, Phang I Y, Shen L, et al. Morphology and mechanical properties of multiwalled carbon nanotubes reinforced Nylon-6 composites. Macromolecular, 2004,37(19):7214-7222
    66 Shaffer M S P, Windle A H. Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Advanced Materials,1999,11(8): 937-941
    67 Curran S, Davey A, Coleman J, et al. Evolution and evaluation of the polymer nanotube composite. Syn. Mater.,1999,103(1-3):2559-2562
    68 Cooper C A, Young R J, Halsall M. Investigation into the Deformation of Carbon Nanotubes and their Composites through the Use of Raman Spectroscopy. Composites:Part A,2001,32(3-4):401-411
    69董艳.聚丙烯腈/碳纳米管复合纤维的制备及性能研究.硕士学位论文.上海:东华大学,2007年,5-7
    70 Jia Z J, Wang Z Y, Xu C L, et al. Study on poly(methyl methacrylate)/carbon nanotube composites. Mater. Sci. Eng., A,1999,271(1-2):395-400
    71褚道葆,陈忠平,吴何珍等.碳纳米管/纳米TiO2---聚苯胺复合膜电极的制备及电化学性能.化工学报,2007,58(6):1568-1574
    72 Gong X H, Liu J, Ruskaran S, et al. Surfactant-assisted processing of carbon nanotube/polymer composites. Chem. Mater.,2000,12(4):1049-1052
    73 Andrews R, Jacques D, Rao A M, et al. Nanotube composite carbon fibers. Appl. Phys. Lett.,1999,75(9):1329-1331
    74冯青平,谢续明.多壁碳纳米管改性热固性酚醛树脂的研究.玻璃钢/复合材料,2007,(3):25-27
    75 Qian D, Dickey E C, Andrews R, et al. Load transfer and deformation mechanism in carbon nanotube-polystylene composites, Appl. Phys. Lett., 2000,76(20):2868-2870
    76 Lourie O, Wagner H D. Evidence of stress transfer and formation of fracture clusters in carbon nonotube-based composites. Compos. Sci. Technol.,1999, 59(6):975-977
    77 Wei C Y, Cho K, Srivastava D. Tensile strength of carbon nanotubes under realistic temperature and strain rate. Phys. Rev. B,2003,67(11):115407-115416
    78 Sternstein S S, Zhu A J. Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior. Macromolecules,2002, 35(19):7262-7263
    79 Ebbesen T W, Lezec H J, Hiura H, et al. Electrial conductivity of individual carbon nanotubes. Nature,1996,382(6586):54-56
    80 Saito R, Fujita M, Dresselhaus G, et al. Electronic structure and growth mechanism of carbon tubules. Mater. Sci. Eng., B,1993,19:185-191
    81 Dai H, Won E W, Lieber C M. Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science,1996,272(5261):523-526
    82 Langer L, Bayot V, Grivei E, et al. Quantum transport in a multiwalled carbon nanotube. Phys. Rev. Lett.,1996,76(3):479-482
    83 Sandler J K W, Kirk J E, Kinloch I A, et al. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer,2003,44(19):5893-5899
    84 Kymakis E, Amaratunga G A J. Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Appl. Phys. Lett.,2002,80(1):112-114
    85 Grimes C A, Mungle C, Kouzoudis D, et al. The 500 MHz-5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites. Chem. Phys. Lett.,2000,319(5-6):460-464
    86 Wang Z, Lu M, Li H L, et al. SWNTs-polystyrene composites preparations and electrical properties research. Mater. Chem. Phys.,2006,100(1):77-81
    87 Curran S A, Ajayan P M, Blau W J, et al. A composite from poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes:a novel material for molecular optoelectronics. Adv. Mater.,1998, 10(14):1091-1093
    88 Coleman J N, Dalton A B, Curran S A, et al. Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer. Adv. Mater.,2000,12(3):213-216
    89 Musa I, Baxendale M, Amaratunga G A J, et al. Properties of regioregular poly(3-octylthiophene)/multi-wall carbon nanotube composites. Synth. Met., 1999,102(1-3):1250-1250
    90 Sandler J, Shaffer M S P, Prasse T, et al. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer,1999,40(21):5967-5971
    91 Allaoui A, Bai S, Cheng H M, et al. Mechanical and electric properties of a MWNT/epoxy composite. Comp. Sci. Tech.,2002,62(15):1993-1998
    92 Kymakis E, Alexandou I, Amaratunga G A J. Single-walled carbon nanotube-polymer composites:electrical, optical and structural investigation. Synth. Met.,2002,127(1-3):59-62
    93 Wang Q, Dai J F, Li W X, et al. The effects of CNT alignment on electrical conductivity and mechanical properties of SWNT/epoxy nanocomposites. Comp. Sci. Tech.,2008,68(7-8):1644-1648
    94刘静,田春蓉,王建华.CNTs/硅橡胶纳米复合材料导电性能的研究.橡胶工业,2008,55(11):665-668
    95 Jin Z X, Sun X, Xu G Q, et al. Nonlinear optical properties of some polymer/multi-walled carbon nanotube composites. Chem. Phys. Lett.,2000, 318(6):505-510
    96 Ago H, Petritsch K, Shaffer M S P, et al. Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Adv. Mater.,1999,11(15): 1281-1285
    97 Carthy B M, Coleman J N, Czerw R, et al. Complex nano-assemblies of polymers and carbon nanotubes. Nanotechnology,2001,12(3):187-190
    98 Woo H S, Czerw R, Webster S, et al. Organic light emitting diodes fabricated with single wall carbon nanotubes dispersed in a hole conducting buffer:the role of carbon nanotubes in a hole conducting polymer. Synth. Met.,2001, 116(1-3):369-372
    99杨亚洲,佟金,马云海等.改性黄麻纤维和酚醛树脂复合材料的力学性能.吉林农业大学学报,2009,31(6):788-792
    100杨华.军用纺织材料中纤维材料起主导作用.精细化工原料及中间体,2008,(12):43-43
    101李享成,龚荣洲,何华辉等.磁性纤维吸收剂的国内外研究进展.兵器材料科学与工程,2008,31(5):86-91
    102 Wang Y P, Cheng R L, Liang L L, et al. Study on the preparation and characterization of ultra-high molecular weight polyethylene-carbon nanotubes composite fiber. Compos. Sci. Technol.,2005,65(5):793-797
    103洪炳墩,王彪,王华平等.碳纳米管/聚丙烯腈原液的制备及可纺性.功能高分子学报,2005,18(4):617-622
    104 Chen W, Tao X M, Xue P, et al. Enhanced mechanical properties and morphological characterizations of poly(vinyl alcohol)-carbon nanotube composite films. Appl. Surf. Sci.,2005,252(5):1404-1409
    105 Jacob C K, Robert L S. Polypropylene fibers reinforced with carbon nanotubes. J. Appl. Polym. Sci.,2002,86(8):2079-2084
    106 Sreekumar T V, Liu T, Min B G, et al. Polyacrylonitrile single-walled carbon nanotube composite fibers. Adv. Mater.,2004,16(1):58-61
    107李金焕,黄玉东,史瑞欣.CNTs/PBO复合材料的合成及性能.复合材料学报,2004,21(5):62-67
    108 Sandler J K W, Pegel S, Cadel M, et al. A comparative study of melt polymide-12 fibers reinforced with carbon nanotubes and nanofibers. Polymer, 2004,45(6):2001-2015
    109 Haggenmueller R, Gommans H H, Rinzler A G. Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem. Phys. Lett.,2000, 330(3-4):219-225
    110 Jin L, Bower C, Zhou O. Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl. Phys. Lett.,1998,73(9):1197-1199
    111杨军平,高绪珊,童俨.碳纳米管增强PA6纤维的性能.材料研究学报,2004,18(5):556-560
    112黄毅,李志飞,罗国华等.聚酯/碳纳米管导电纤维结构与性能的研究.合成纤维工业,2004,27(6):1-3
    113卢伟哲,李志,狄泽超,梁吉.碳纳米管/PP纤维的抗静电性能研究.合成纤维,2002,31(6):19-21
    114李宏伟,高绪珊,童俨.含碳纳米管的新型抗静电纤维的制备和性能.材料研究学报,2003,17(4):444-448
    115李辰砂,刘海涛,邱成军等.碳纳米管应用于聚合物抗静电纤维的研究.高技术通讯,2002,12(12):39-44
    116李辰砂,卢伟哲,梁吉等.碳纳米管化学镀镍及其对聚合物纤维的抗静电能力的提高.高技术通讯,2004,14(1):42-46
    117李辰砂,卢伟哲,梁吉等.碳纳米管对聚合物纤维抗静电能力的影响.哈尔滨工业大学学报,2004,36(4):433-436
    1 Iijima S. Helical microtubules of graphitic carbon. Nature,1991,354:56-58
    2 Ng S H, Wang J, Guo Z P, et al. Single wall carbon nanotube paper as anode for lithium-ion battery. Electrochim. Acta.2005,51(1):23-28
    3 Li Q Y, Li Z S, Lin L, et al. Facile synthesis of activated carbon/carbon nanotubes compound for supercapacitor application. Chem. Eng. J.,2010, 156(2):500-504
    4 Yumura M, Ohshima S, Uchida K, et al. Synthesis and purification of multi-walled carbon nanotubes for field emitter applications. Diamond Relat. Mater.,1999,8(2):785-791
    5 Santhanam K S V, Sangoi R, Fuller L. A chemical sensor for chloromethanes using a nanocomposite of multiwalled carbon nanotubes with poly(3-methylthiophene). Sens. Actuators, B,2005,106(2):766-771
    6 Esawi A M K, Farag M M. Carbon nanotube reinforced composites:Potential and current challenges. Materials & Design,2007,28(9):2394-2401
    7 Ma P C, Kim J K, B. Tang B Z. Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Compos. Sci. Technol., 2007,67(14):2965-2972
    8 王垚,吴席,魏飞等.碳纳米管团聚结构的电镜研究.电子显微学报,2002,21(4):422-428
    9 王栋,田辉,李建伟.超声震荡及化学试剂对碳纳米管分散性能的影响.科技情报开发与经济,2009,19(29):141-142
    10龙威,顾媛娟.碳纳米管的力学性能及聚合物/碳纳米管复合材料.材料导报,2002,16(12):52-54,57
    11 Hamon M A, Hu H, Bhowmik P, et al. Ester-functionalized soluble single-walled carbon nanotubes. Appl. Phys. A,2002,74(3):333-338
    12 Coleman K S, Bailey S R, Fogden S, et al. Functionalization of Single-Walled Carbon Nanotubes via the Bingel Reaction. J. Am. Chem. Soc.,2003,125(29): 8722-8723
    13 Bandyopadhyaya R, Nativ-Roth E, Regev O, et al. Stabilization of individual carbon nanotubes in aqueous solutions. Nano Lett.,2002,2(1):25-28
    14高濂,刘阳桥.碳纳米管的分散及表面改性.硅酸盐通报,2005,24(5):114 -119
    15邹红玲,杨延莲,武斌等.CVD法制备单壁碳纳米管的纯化与表征.物理化学学报,2002,18(5):409-413
    16王敏炜,姚彦红,查少华等.重铬酸钾用于碳纳米管开口及表面处理的研究.南昌大学学报(工科版),2006,28(1):1-3,11
    17龚晓钟,汤皎宁,李均钦.改性碳纳米管制备抗静电电阻膜的研究.合成化学,2006,14(4):342-345
    18 Wang Y P, Cheng R L, Liang L L, et al. Study on the preparation and characterization of ultra-high molecular weight polyethylene-carbonnanotubes composite fiber. Compos. Sci. Technol.,2005,65(5):793-797
    19王敏炜,彭年才,李凤仪.硝酸氧化法对碳纳米管进行纯化及开管的研究.江西科学,2004,20(4):203-206
    20万淼,黄新堂.钻/碳纳米管催化剂CVD法制备碳纳米管.材料科学与工程学报,2005,23(6):887-890
    21程继鹏,张孝彬,叶瑛等.多壁碳纳米管包裹Fe3C单晶纳米线的初步研究.无机化学学报,2003,19(11):1269-1272
    22 Sadeghian Z. Large-scale production of multi-walled carbon nanotubes by low-cost spray pyrolysis of hexane.新型碳材料,2009,24(1):33-38
    23丁顶.化学修饰制备高度水溶性碳纳米管.硕士学位论文.北京:北京化工大学,2007年,35-36
    24成会明.碳纳米管的制备、结构、物性及应用.2002年,化学工业出版社,北京.152-169
    25 Li W Z, Zhang H, Wang C Y, et al. Raman characterization of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor. Appl. Phys. Lett.,1997,70(20):2684-2686
    26 Duesbegr G S, Blau W J, Byrne H J, et al. Experimental observation of individual single-wall nanotube species by Raman microscopy. Chem. Phys. Lett.,1999,310(1-2):8-14
    27 Zhao X, Ando Y, Qin L C, et al. Characteristic Raman spectra of multiwalled carbon nanotubes. Physica B,2002,323(1-4):265-266
    28 Lafi L, Cossement D, Chahine R. Raman spectroscopy and nitrogen vapour adsorption for the study of structural changes during purification of single-wall carbon nanotubes. Carbon,2005,43(7):1347-1357
    29 Ouyang Y, Cong L M, Chen L, et al. Raman study on single-walled carbon nanotubes and multi-walled carbon nanotubes with different laser excitation energies. Physica E:Low-dimensional Systems and Nanostructures,2008, 40(7):2386-2389
    30李凡庆,左健,陆斌,陈志文.碳纳米管的拉曼散射.光谱学与光谱分析,1997,17(6):7-9
    31 Kang D, Hakamatsuka M, Kojima K, et al. Influence of heating and laser irradiation on the Raman D band in single-wall carbon nanotubes. Diamond Relat. Mater.,2010,19(5-6):578-580
    32 Pimenta M A, Marucci A, Brown S D M, et al. Resonant Raman effect in single-wall carbon nanotubes. J. Mater. Res.,1998,13(9):2396-2404
    33 Zhao X, Ando Y, Qin L C, et al. Characteristic Raman spectra of multiwalled carbon nanotubes. Physica B,2002,323(1-4):265-266
    34 Rao A M, Richter E, Bandow S, et al. Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science,1997,275(5297): 187-191
    35 Strong K L, Anderson D P, Lafdi K, et al. Purification process for single-wall carbon nanotubes. Carbon,2003,41(14):1477-1488
    36 Jia Z J, Wang Z Y, Xu X L, et al. Study on poly(methyl methacrylate)/carbon nanotube composites. Mater. Sci. Eng., A,1999,271(1-2):395-400
    37 Chapelle M, Lefrant S, Journet C, et al. Raman studies on single walled carbon nanotubes produced by the electric arc technique. Carbon,1998,36(5-6): 705-708
    38汪兆平,韩和相,李国华.碳纳米管的拉曼散射研究.光散射学报,1999,11(1):28-35
    39陈为.碳纳米管的纯化及其作高分散金属催化剂载体的研究.硕士学位论文.武汉:华中师范大学,2003年,22-23
    40 Liu M H, Yang Y L, Zhu T, et al. Chemical modification of single-walled carbon nanotubes with peroxytrifluoroacetic acid. Carbon,2005,43(7):1470-1478
    41 Lu C, Chiu H. Chemical modification of multiwalled carbon nanotubes for sorption of Zn2+ from aqueous solution. Chem. Eng. J.,2008,139(3):462-468
    42吴小利,岳涛,陆荣荣等.碳纳米管的表面修饰及FTIR, Raman和XPS光谱表征.光谱学与光谱分析,2005,25(10):1 595-1598
    43贾志杰.碳纳米管/高分子复合材料的研究.博士学位论文.北京:清华大学,1999年
    44姚承照,宋怀河,冯志海.碳纳米管表面硝酸氧化改性研究.宇航材料工艺,2008,38(2):34-38
    45 Zhang J, Gao L. Dispersion of multiwall carbon nanotubes by sodium dodecyl sulfate for preparation of modified electrodes toward detecting hydrogen peroxide. Mater. Lett.,2007,61(17):3571-3574
    46 Bystrzejewski M, Huczko A, Lange H, et al. Dispersion and diameter separation of multi-wall carbon nanotubes in aqueous solutions. J. Colloid Interface Sci.,2010,345(2):138-142
    47 Jiang L Q, Gao L, Sun J. Production of aqueous colloidal dispersions of carbon nanotubes. J. Colloid Interface Sci.,2003,260(1):89-94
    48袁婕,刘宝春,杨志伟.表面活性剂分散碳纳米管的进展.化工时刊,2007,21(10):55-58
    49罗健林,段忠东.表面活性剂对碳纳米管在水性体系中分散效果的影响.精细化工,2008,25(8):733-738
    50 Chen Q, Saltiel C, Manickavasagam S, et al. Aggregation behavior of single-walled carbon nanotubes in dilute aqueous suspension. J. Colloid Interface Sci.,2004,280(1):91-97
    51 Zhang X, Zhang J, Wang R, et al. Surfactant directed polypyrrole/CNTs nanocables:synthesis, characterization, and enhanced electrical properties. Chem. Phys. Chem.,2004,5(7):998-1002
    52 Gong X Y, Liu J, Baskaran S, et al. Surfactant-assisted processing of carbon nanotube/polymer. Chem. Mater.,2000,12(4):1049-1052
    53王群芳,曾志坚,李瑜.红外差谱技术用于汽车洗涤剂中表面活性剂的分析鉴定.广东化工,2006,33(4):89-90,88
    54 Cao H Q, Zhu M F, Li Y G. Decoration of carbon nanotubes with iron oxide. J. Solid State Chem.,2006,179(4):1208-1213
    55 Hwang G L, Hwang K C. Carbon nanotube reinforced ceramics. J. Mater. Chem.,2001,11(6):1722-1725
    56罗天勇,李辰砂,梁彤祥等.碳纳米管承载氧化锆纳米粒子的研究.稀有金属材料与工程,.2004,33(8):885-888
    57 Pegel S, Potschke P, Petzold G, et al. Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts. Polymer, 2008,49(4):974-984
    58 Ma P C, Mo S Y, Tang B Z, et al. Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites. Carbon,2010,48(6):1824-1834
    59 Shao L H, Luo R Y, Bai S L, et al. Prediction of effective moduli of carbon nanotube-reinforced composites with waviness and debonding. Compos. Struct.,2009,87(3):274-281
    1 Abdel-Goad M, Potschke P. Rheological characterization of melt processed polycarbonate-multiwalled carbon nanotube composites. Journal of Non-Newtonian Fluid Mechanics,2005,128(1):2-6
    2 Bangarusampath D S, Ruckdaschel H, Altstadt V, et al. Rheology and properties of melt-processed poly(ether ether ketone)/multi-wall carbon nanotube composites. Polymer,2009,50(24):5803-5811
    3 Hu G J, Zhao C G, Zhang S M, et al. Low percolation thresholds of electrical conductivity and rheology in poly(ethylene terephthalate) through the networks of multi-walled carbon nanotubes. Polymer,2006,47(1):480-488
    4 Wang M, Wang W Z, Liu T X, et al. Melt rheological properties of nylon 6/multi-walled carbon nanotube composites. Compos. Sci. Technol.,2008, 68(12):2498-2502
    5 Lebel L L, Aissa B, Khakani M A E, et al. Preparation and mechanical characterization of laser ablated single-walled carbon-nanotubes/polyurethane nanocomposite microbeams. Compos. Sci. Technol.,2010,70(3):518-524
    6 杨革生,冯坤,邵惠丽等.竹纤维素/NMMO·H20溶液流变性能的研究.纤 维素科学与技术,20008,16(3):54-59
    7 张慧慧,邵惠丽,胡学超.从流变数据预测纤维素的多分散指数Mz/Mw.东华大学学报(自然科学版):2005,31(6):124-128
    8 张慧慧,张松洁,邵惠丽等.流变学方法预测纤维素相对分子质量分布的可行性验证.东华大学学报(自科版),2004,30(5):82-86,110
    9 郭利伟,张慧慧,邵惠丽等.纳米炭黑添加剂对纤维素/NMMO纺丝原液流变行为及其纤维结构性能的影响.合成纤维,2005,34(5):7-11
    10巴勒斯H A,赫时顿J H,瓦尔特斯K著.吴大诚等译.流变学导论.1992年,中国石化出版社,北京,1-194
    11顾广新,胡塞珠,邵惠丽等.纤维素溶液的动态流变学.东华大学学报(自科版),2001,27(4):12-16
    12秦显营,杨常玲,王鹏等.尿素增溶纤维素氨基甲酸酯的可纺性研究.合成纤维工业,2007,30(6):37-39,42
    13董纪震,罗鸿烈,王庆瑞等.合成纤维生产工艺学(上).1993年,第二版.纺织工业出版社,北京,93-160
    14郭清华.离子液体法纤维素纤维的研制.硕士学位论文.上海:东华大学,2009年,53-60
    15 Cox W P, Merz E H. Correlation of dynamic and steady flow viscosities. J. Polymer Sci.,1958,28(118):619-622
    16彭顺金,邵惠丽,胡学超.氯化铵改性Lyocell纤维的研究--- (Ⅰ)NH4Cl存下纤维素/NMMO·H2O纺丝溶液的流变学性质.高分子材料科学与工程,2005,21(5):98-101
    17 Petrovan S, Collier J R, Negulescu I I. Rheology of cellulosic N-methylmorpholine oxide monohydrate solutions of different degrees of polymerization. J. Appl. Polym. Sci.,2001,79(3):396-405
    18王进.聚合物加工复杂流动的实验和数值模拟.硕士学位论文.北京:中国科学院化学研究所,1998年
    19 Michels C, Meister F. Beitrag zur Charakterisierung der Zellstoffeignung fur Lose- und Derivatisierungsprozesse= On the suitability of cellulose pulp for dissolving and derivation processes. Das Papier,1997,51(4):161-165
    1 Coleman J N, Khan U, Gun'ko Y K. Mechanical reinforcement of polymers using carbon nanotubes. Adv. Mate.,2006,18(6):689-706
    2 Spitalsky Z, Tasis D, Papagelis K, et al. Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci., 2010,35(3):357-401
    3 Jin Z X, Huang L, Goh S H, et al. Characterization and nonlinear optical properties of a poly(acrylic acid)-surfactant-multi-walled carbon nanotube complex. Chem. Phys. Lett.,2000,332(5-6):461-466
    4 Bauhofer W, Kovacs J Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol.,2009,69(10): 1486-1498
    5 Woo H S, Czerw R, Webster S, et al. Organic light emitting diodes fabricated with single wall carbon nanotubes dispersed in a hole conducting buffer:the role of carbon nanotubes in a hole conducting polymer. Synth. Met.,2001, 116(1-3):369-372
    6 何春菊,王庆瑞.中国Lyocell纤维展望.纤维素科学与技术,1999,7(1):59-65
    7 Kimura T, Ago H, Tobita M, et al. Polymer composites of carbon nanotubes aligned by a magnetic field. Adv. Mater.,2002,14(19):1380-1383
    8 Jin L, Bower C, Zhou O. Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl. Phys. Lett.,1998,73(9):1197-1199
    9 Haggenmueller R, Gommans H, Rinzler A, et al. Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem. Phys. Lett.,2000, 330(3-4):219-225
    10王树荣,刘倩,骆仲泱等.基于热重红外联用分析的纤维素热裂解机理研究.浙江大学学报(工学版),2006,40(7):1154-1158
    11 Watts P C P, Fearon P K, Hsu W K, et al. Carbon nanotubes as polymer antioxidants. J. Mater. Chem.,2003,13:491-495
    12 Shaffer M, Windle A. Fabrication and characterization of Carbon Nanotube /Poly(vinyl alcohol) Composites. Adv. Mater.,1999,11(11):937-941
    13 Byrne M T, Gun'ko Y K. Recent advances in research on carbon nanotube-polymer composites. Adv. Mater.,2010,22(15):1672-1688
    14 Frankland S J V, Harik V M. Analysis of carbon nanotube pull-out from a polymer matrix. Surf. Sci.,2003,525(1-3):103-108
    15倪良松,陈华鑫,胡长顺,卢因志.纤维沥青混合料增强作用机理分析.合肥工业大学学报(自科版),2003,26(5):1033-1037
    16赵萍.CF/CNTs增强磷酸钙骨水泥复合材料及其生物相容性评价.博士学位论文.山东:山东大学,2005年,93-97
    17 McCrum N G, Buckley C P, Bucknall C B. Principles of polymer engineering. 1988年,Oxford University Press, New York.1-391
    18杜善义,王彪.复合材料细观力学.1998年,科学出版社,北京.118-157
    19 Ruan S L, Gao P, Yu T X. Ultra-strong gel-spun UHMWPE fibers reinforced using multiwalled carbon nanotubes. Polymer,2006,47(5):1604-1611
    20 Yu M F, Lourie O, Dyer M J, et al. Carbon nanotubes under tensile load. Science,2000,287(5453):637-640
    21蔡碧华.抗静电塑料的应用和展望.高分子材料科学与工程,1987,(6):8-16
    22杨波,陈光顺,李姜等.多壁碳纳米管增强炭黑/聚丙烯导电复合材料导电行为.复合材料学报,2009,26(4):41-46
    23张柏生,陈小凤.填料的形状对导电性复合材料性能的影响.现代塑料加工应用,1993,(6):21-24
    24张柏生,陈小凤.助剂和工艺条件对导电性复合材料性能的影响及其分析.塑料工业,1994,(3):34-37
    25雀部博之.曹镰,叶成,朱道本译.导电高分子材料(日).1989年,科学出版社,北京.26-386
    26闻荻江.复合材料原理.1998年,武汉工业大学出版社,武汉.184-186
    27 Nan C W. Physics of inhomogeneous inorganic materials. Prog.Maetr. Sci., 1993,37(1):1-116
    28 Stauffer D, Aharony A. Introduction to Percolation Theory.1991年,第二版. Taylor and Francis, London.1-171
    29 Karasek L, Meissner B, Asai S. Percolation concept:polymer-filler gel formation, electrical conductivity and dynamic electrical properties of carbon-black-filled rubbers. Polym. J.,1996,28(2):121-126
    30 Du F M, Scogna R C, Zhou W. Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules,2004,37(24):9048-9055
    31 Potschke P, Brunig H, Janke A, et al. Orientation of multiwalled carbon nanotubes in composites with polycarbonate by melt spinning. Polymer,2005, 46(23):10355-10363
    1 何春菊,王庆瑞.中国发展Lyocell纤维展望.纤维素科学与技术,1999,7(1):59-65
    2 吴广峰,赵书经.原丝性能对碳纤维强度影响的灰色关联分析.纺织高校基础科学学报,1997,10(2):149-152
    3 Konkin A A. Production of Cellulose Based Carbon Materials.1985年, Elsevier Science Publisher, Berlin, Germany
    4 彭顺金.高性能Lyocell纤维及其用于碳纤维原丝的研究.博士学位论文.上海:东华大学,2003年,115-131
    5 Zhang H H, Guo L W, Shao H L, et al. Nano-carbon black filled Lyocell fiber as a precursor for carbon fiber. J. Appl. Polym. Sci.,2006,99(1):65-74
    6 Byrne M T, Gun'ko Y K. Recent Advances in Research on Carbon Nanotube-Polymer Composites. Adv. Mater.,2010,22(15):1672-1688
    7 Yang M C, Yu D G..Influence of activation temperature on the properties of polyacrylonitrile based activated hollow carbon fiber. J. Appl. Poylm. Sci., 1998,68(8):1331-1336
    8 王依民,杨序纲,陈惠芳.粘胶基碳纤维原丝结构对碳丝性质的影响-原丝形态结构的影响.中国纺织大学学报,1 996,22(6):32-37
    9 刘海玉,朱岿立,潘鼎.缺陷对粘胶基炭纤维强度的影响及补强处理方法.合成纤维工业,2000,23(2):46-49
    10印友法.石墨材料孔隙率对力学性能的影响.炭素技术,1991,(2):1-5
    11李延根,黄祖飞,王春忠.二次拉伸温度对PAN原丝中微孔洞形貌变化的影响.吉林大学学报(理学版),2009,47(5):1054-1056
    12李新莲,温月芳,杨永岗等.影响粘胶基碳纤维收率和性能的因素研究.高科技纤维与应用,2004,29(2):33-38,45
    13 Mavinkurve A, Visser S, Pennings A J. An initial evaluation of poly (vinylacetylene) as a carbon fiber precursor. Carbon,1995,33(6):757-761
    14 Gurudatt K, Tripathi V S. Studies on changes in morphology during carbonization and activation of pretreated viscose rayon fabrics. Carbon,1998, 36(9):1371-1377
    15张慧慧.碳纤维用Lyocell原丝力学性能改进的研究.博士学位论文.上海:东华大学,2004年,108-109
    16吴琪琳,潘鼎.X-ray衍射法研究粘胶纤维在热处理过程中晶区结构的变化.中国纺织大学学报,1998,24(6):92-94
    17吴琪琳,龚静华,张志海等.催化处理Lyocell纤维在热解过程中的结构与性能变化.新型炭材料,2007,22(1):47-52
    18吴琪琳,潘鼎.粘胶基碳纤维孔洞形成过程的研究.材料导报,2001,15(8):62-63,69
    19岳中仁,李仍元,王平华等.碳纤维直径对结构和性能的影响.合成纤维工业,1991,14(3):29-32
    20刘国昌,徐淑琼.聚丙烯睛基碳纤维及其应用.机械制造与自动化,2004,33(4):41-43
    21张莹,赵炯心,潘鼎.碳纤维的性能缺陷及改进方法.化工新型材料,2003,31(8):25-27
    22葛曷一,柳华实,陈娟.PAN原丝至碳纤维缺陷的形成与遗传性.合成纤维,2009,38(2):21-25
    23张慧慧,郭利伟,邵惠丽等.炭黑填充Lyocell纤维的制备及其用于炭纤维原丝的研究初探.新型炭材料,2004,19(3):172-178
    24马谦中,梁坚,贺福.XRD和SAXS法对聚丙烯腈活性碳纤维结构的研究.理学X射线衍射仪用户协会论文选集,1991,(2):72-76
    25陈宇晗,吴琪琳,潘鼎.补强前后粘胶基炭纤维纤维中的分形.炭素.2006,(3):34-37
    26 Chen Y H, Wu Q L, Pan N, et al. Rayon-based activated carbon fibers treated with both alkali metal salt and Lewis acid. Microporous Mesoporous Mater., 2008,109(1-3):138-146
    27辛厚文.分形理论及其应用.1993年,中国科学技术大学出版社,合肥.265-320
    28吴琪琳,潘鼎.不同线密度粘胶原丝及其碳纤维的结果性能对比.合成纤维工业,2003,36(5):1-4
    29陈宇晗,吴琪琳,潘鼎.不同纤维素原丝及其制备的炭纤维的分形比较.炭素,2006,(3):19-23
    30 Chen W, Tao X M, Liu Y Y. Carbon nanotube-reinforced polyurethane composite fibers. Compos. Sci. Technol.,2006,66(15):3029-3034
    31 Dervishi E, Li Z R, Watanabe F, et al. High-aspect ratio and horizontally oriented carbon nanotubes synthesized by RF-cCVD. Diamond Relat. Mater., 2010,19(1):67-72
    32刘金章,闫鹏勋.多壁碳纳米管表面生长单晶-纳米管由弯变直.功能材料,2004,增刊35:2878-2880
    1. 孙福,钱建华,凌荣根.炭黑复合导电聚酯纤维的研制.纺织学报,2010,31(1):1-4
    2. 向奇志,姚丽丽.炭黑/高密度聚乙烯导电纤维纺丝工艺探索.合成纤维,2008,37(6):40-42.
    3. 郭振福,高绪珊,童俨.一种离子导电PET纤维的制备.高分子学报,2010,(3):334-339
    4.潘胜强,刘玲,黄争鸣.MWNTs/PU复合超细纤维的热性能及导电性能.复合材料学报,2009,26(2):79-84
    5. 张世国,王进美.导电纤维的加工方法及其应用.纺织科技进展,2009,(1):32-34
    6. Zou Y B, Feng Y C, Wang L, et al. Processing and properties of MWNT/HDPE composites. Carbon,2004,42(2):271-277
    7. Ma P C, Liu M Y, Zhang H, et al. Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black. Applied materials & interfaces,2009,1(5):1090-1096
    8. 欧阳雨,方炎.不同激发波长下单壁碳纳米管与多壁碳纳米管的拉曼光谱比较.光散射学报,2003,15(3):139-142
    9. 陈展虹.碳纳米管结构概述.福建教育学院学报,2003,4(10):76-83
    10.金欣,肖长发,贾广霞等.炭黑填充PET/PE共混物导电性能的研究.塑料工业,2005,33(8):39-41
    11.段玉平,刘顺华,胡雅琴等.炭黑/ABS高密度复合体的电性能与电磁特性.功能材料,2006,37(1):36-39
    12.王勇,黄锐.炭黑预处理对炭黑/HDPE导电复合材料性能的影响.中国塑料,2002,16(10):41-45
    13.黄鹏波,杜仕国,闫军等.偶联剂对炭黑导电涂料导电性能的影响.化工新型材料,2005,33(1):49-51
    14.罗延龄.炭黑粒子偶联处理的HDPE复合材料PTC性能研究.炭素,2001,(3):16-22
    15.刘新海,赵莹,刘智等.改性纳米炭黑/聚氨酯复合物的制备及表征.高等学校化学学报,2008,29(10):2096-2100
    16.孙福,张国庆,孙艳秋.导电炭黑/聚酯复合材料的性能.纺织学报,2008,29(10):9-16
    17. Shaffer M S P, Windle A. Fabrication and characterization of carbon nanotube/ poly(vinyl alcohol) composites. Adv. Mater.,1999,11(11):937-941
    18. Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics:Elasticity, strength, and toughness of nanorods and nanotubers. Science,1997,277(5334): 1971-1975
    19. Yu M F, Lourie O, Dyer M J, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science,2000,287(5453): 637-640
    20.唐娜斯.碳纳米管和硼氮纳米管的光电性质.硕士学位论文.湘潭:湘潭大学,2005年,35-41
    21.朱宏伟,吴德海,徐才录.碳纳米管.2005年,机械工业出版社,北京.58-59
    22.成会明.碳纳米管的制备、结构、物性及应用.2002年,化学工业出版社,北京.241-283

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700