木质素降解复合菌群强化处理草浆造纸黑液研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:草类碱法制浆工艺产生的黑液,是一类难以处理的有机废水,含有大量的木质素,具有高COD浓度、高碱性、高色度及难降解等特点,一直以来都是国内外水处理研究的难点。
     本文针对国内外目前存在的草浆碱法造纸黑液处理技术瓶颈,利用从三国时期吴国竹简浸泡液中分离筛选出能有效降解造纸黑液的4株菌株;在对4株菌株黑液降解特性研究的基础上,系统研究了复合菌强化SBR反应器处理造纸黑液的核心工艺;基于芦苇浆造纸所产生的浓缩黑液的特点,提出碱析法-生物强化处理-生物微酸化-Fenton法深度处理的工艺流程,同时研究了生物强化处理作用下黑液木质素降解的机理。旨在从资源化和生物处理的角度为草浆造纸黑液治理提供新的处理技术和工艺。
     本文主要研究结果如下:
     (1)基于造纸黑液高pH和高COD浓度的特点,提出了碱析法预处理新思路。通过单因素和正交实验确定了预处理最佳条件:初始黑液pH为13、COD为78000mg/l、Ca2+投加量为4.5g/1,处理后黑液COD、木质素和色度的去除率分别为71.62%、83.21%、94.26%,黑液pH降低至11左右,COD降低至22300mg/1左右,同时析出可以回收利用的木质素,有利于后续生物法处理,克服了常规絮凝法或酸析法需要调节pH及容易造成二次污染等缺点。
     (2)从吴国竹简浸泡液中分离筛选出能在复杂造纸黑液环境中生长的3株细菌Pandoraea sp.B-6、Cupriavidus sp. B-8、Comamonas sp. B-9和1株霉菌Aspergillus sp. F-1。对4株菌株降解造纸黑液特性研究表明:各菌株均能在不外加碳氮源和微量营养元素的条件下对造纸黑液直接进行降解,降解条件为pH10~11, COD初始负荷为23000mg/1左右,生长温度为30-35。C,各菌株在高碱性条件下表现出很强的pH调节能力,黑液COD、木质素和色度去除率最高分别达到58.2%、46.7%、62.4%,并能分泌木质纤维素酶活,体现了菌株对高浓度造纸黑液的耐受性。
     (3)研究了生物强化处理草浆造纸黑液新工艺,采用生物强化处理与活性污泥法相结合,对木质素降解复合菌群进行了优化研究。在黑液初始COD为23000mg/1左右,pH为10,温度30℃,MLSS为4.5g/1,无外加碳氮源条件下,黑液COD、木质素和色度去除率最高可达到62.7%、48.1%、66.4%,高于单一菌株处理情况,说明了复合菌群组合强化活性污泥处理造纸黑液具有一定的协同作用。对生物强化处理与普通活性污泥法连续处理造纸黑液能力进行了比较研究,生物强化系统比普通活性污泥系统平均COD去除率高20%左右,平均木质素去除率高21%左右,色度去除率高22%左右,且反应启动时间大大缩短。生物强化系统进水COD从9000mg/1增加到24000mg/l,COD去除率仍然保持在50%,表明投加木质素降解复合菌群的生物强化系统耐冲击能力强。
     (4)采用傅里叶红外光谱、紫外光谱和气质联用等研究手段揭示了黑液中木质素的生物降解机理。可以初步认为在生物强化作用下,微生物首先直接利用黑液中的易降解的碳水化合物进行生长,并分泌一定的木质素纤维素酶活,促进木质素苯环之间的连接键的断裂,譬如Cα-Cβ断裂和p-0-4断裂,以及联苯之间的键的断裂,形成一系列的木质素单体结构,同时木质素单体逐渐脱除苯环上的甲氧基,由Lac和MnP进一步催化形成醌、苯氧自由基,并出现大量的羰基,且双键数量有所增加,甚至可以由LiP氧化生成开环产物,进入三羧酸循环。
     (5)采取碱析法-SBR生物强化-生物微酸化-Fenton法深度处理组合工艺对造纸黑液进行了连续处理,在15个运行周期中,造纸黑液初始pH13,COD约为78550mg/l左右,经组合工艺处理后,黑液COD、木质素和色度去除率分别达到98.5%、95.8%、99.8%。组合工艺实际应用到造纸黑液的处理是可行的。
Abstract:In China, most pulping and paper industry takes the non-wood as material and large volumes of dark black liquor (BL) are generated as byproduct or waste. The BL contains high concentrations of lignocellulosic materials, phenolics, fatty acids and resinous compounds. The presence of the these compounds imparts extreme properties such as high pH (10-13) and high COD values (100000-250000mg/1) to the wastewater, making it one of the most difficult materials to handle in the world environmental protection.
     Based on the study of the four strains which were isolated from eroded bamboo slips (ancient writing tablets) for their ability of biodegrading BL, the bioaugmentation system in sequencing batch reactor (SBR) as corn treatment technology was systematically studied. According to the characteristics of BL, a novel integrated process is proposed:alkaline separating→bioaugmentation→microbiological acid-ification→Fenton process. The mechanism of bioaugmentation on degrading lignin was also studied. The study focuses on comprehensive utilization and bioprocess of BL and provides a theoretical and new technology support.
     The main results are as follows:
     According to the extreme properties of BL, a new pre-process on treatment of BL, alkali separating process is presented to remove lignin under high alkaline environment by adding Ca2+. Single-factor experiments combined with orthogonal experiment were carried out to determine the optimal conditions for removing COD concentration and lignin conten in BL. Under the following optimal conditions:pH was13, the dosage of Ca+was4.5g/l, the reaction temperature was60℃, the COD concentration was78000mg/l, the removal rate of COD, lignin and color achieved to71.62%,83.21%and94.26%, respectively, meanwhile the pH of BL decreased to about11, the COD concentration decreased to about22300mg/l and massive deposited lignin was produced, which is benefit to the subsequent biological treatment. The pre-processing is helpful to conquer the disadvantages of conventional flocculation methods or acidification which needs large amount of flocculent or acid consumption and facilitates secondary pollution.
     Three bacteria named Pandoraea sp. B-6, Cupriavidus sp. B-8, Comamonas sp. B-9and a fungus named Aspergillus sp. F-1were screened from the seven strains, which grew well on the culture contained BL. The optimal conditions in biotreatment of BL are as follows:initial pH was between10~11, COD was under22000mg/l, temperature was between30~35℃. Under the given conditions, the strains showed the strong abilities of pH adjustment and could secrete alkaline lingocellulolytic enzymes. The highest COD, color and lignin removal were about58.2%,62.4%,46.7%, respectively. The results showed the strains were well tolerated on the high alkaline environment. The results also showed adding other carbon, nitrogen sources and nutritional elements had no positive effects on biotreatment, which is much convenient in practical application.
     Detailed study was carried out on the bioaugmented activated sludge treatment of BL with multiple lignin-degrading microorganisms. The results showed that the best removal effeciency occured when the concentration of activate sludge was3.5g/l, initial pH was10, the COD concentration was about23000mg/l, the reaction temperature was30℃and the ratio of Pandoraea B-6, Comamonas B-9and Aspergillus F-1was2:1:2. The highest COD, color and lignin removal were about62.7%,66.4%,48.1%, respectively. The results illustrated that biaugmentation of multiple lignin-degrading microorganisms with activated sludge improved the treatment efficiency. In batch experiments, the bioagu-mentation system was investigated and the activated sludge process served as a control. The biaugmentation system was found to yield better COD, lignin and color removal efficiency over20%,21%,22%than those of the activated sludge process as a result of addition of the mixed special microorganisms. The reaction time was also shortened. When COD increased from9000mg/l to24000mg/l, COD removal efficiency could keep above50%in the biaugmentaiton system, which showed the biaugmentation system has a good shock load tolerance.
     The mechanism of lignin degradation in BL during bioaugmentaiton system treatment was also investgated by using Fourier transform infrared spectroscopy, UV spectroscopy and GC-MS method, etc. A preliminary analysis was made of the degradation mechanism as follows:the microorganisms directly utilized the carbon and nitrogen nutrient sources in BL for growth, then secreted lignocellulolytic enzymes and promoted the breakdown the benzene ring linkages. Meanwhile, lignin trimer and dimmers such as Cα-Cβ, β-O-4and β-β bond were gradually disappeared, demethoxylation and dehydroxylation reaction happened. Low-molecular-mass compounds such as aromatic aldehydes, aromatic acids and aromatic ketones were detected. Lignin monomers were gradually separated from the benzene ring, the quinone, benzene oxygen free radicals were formed by Lac and MnP secretion, and a large number of carbonyl group were produced as well as some double bonds, and even ring-opening products were formed into tricarboxylic acid cycle by LiP oxidation.
     On the basis of the previous experiments, the integrated processes were proposed. After15cycles'continuous operation, the BL was proved to be treated effectively. The initial conditions of treated BL were as follows:initial pH13.0, COD about78500mg/l. Under optimal conditions, the ultimate COD, color and lignin removal rate were98.5%,99.8%,95.8%, respectively.
     The study establishes the basis of the application of biaugmentation with multiple lignin-degrading microorganisms and provides a new possible method in BL treatment process, which also improves the disadvantages of BL process by multiple physicochemical methods.
引文
[1]中国造纸协会.中国造纸工业2009年度报告[J].中华纸业,2010,31(11):11.
    [2]赵静.芦苇浆造纸黑液三维电极法处理新工艺研究[D].长沙:中南大学,2011.
    [3]中华人民共和国国家统计局.各行业工业废水排放及处理情况(2011年)http://www.stats.gov.cn/tjsj/qtsj/hjtjzl/hjtjsj2011/t20130314_402880144.htm, 2012-05-13
    [4]熊征.褐腐真菌生物酸析资源化处理造纸蒸煮黑液研究[D].武汉:华中科技大学,2009.
    [5]国家发改委.2007我国造纸工业现状及主要问题[J].2007-11-05
    [6]劳嘉葆.造纸工业污染控制与环境保护[M].北京:中国轻工业出版社,2000.
    [7]张珂,周思毅.造纸工业蒸煮废液的综合利用与污染防治技术[M].北京:中国轻工业出版社,1992.
    [8]刘勃,蒋文强,孟丽艳,等.“新酸析木素工艺”处理草浆制浆黑液的研究[J].湖南造纸,2006,3:6-8.
    [9]武书彬.造纸工业水污染控制与治理技术[M].北京:化学工业出版社环境科学与工程出版中心,2001,62-72.
    [10]杜仰民.造纸工业废水治理进展与评述[J].工业水处理,1997,17(3):1-5.
    [11]Zhang Q, Chuang K T. Alumina-supported noble metal catalysts for destructive oxidation of organic pollutants in effluent from a softwood kraft pulp mill[J]. Industrial & engineering chemistry research,1998,37(8):3343-3349.
    [12]福建林学院.木材制浆工艺学[M].北京:中国林业出版社,1986.
    [13]Gullichsen J. Chemical engineering principles of fiber line operations[J]. Papermaking Science and Technology, Book A,2000,6:244-327..
    [14]Lacorte S, Latorre A, Barcelo D, et al. Organic compounds in paper-mill process waters and effluents [J]. TrAC trends in analytical chemistry,2003,22(10): 725-737.
    [15]马承愚,彭英利.高浓度难降解有机废水的治理与控制[M].北京:化学工业出版社,2007.
    [16]刘晓坤,张曦乔.造纸黑液的回收与综合利用[J].环境研究与监测,2008,21(3):43-45.
    [17]马晓伟,代斌,杨兴华.酸析法提取芦苇纸浆黑液中的木质素[J].化工技术与开发,2007,36(8):44-46.
    [18]淡勇,薛向东.造纸黑液中碱木质素的析出探讨[J].西北大学学报:自然科学版,2004,34(3):311-313.
    [19]钟飞.草浆黑液膜辅助电解处理的试验性研究[D].南京:南京航空航天大学,2002.
    [20]周思毅,罗毅.我国小草浆厂污染治理技术分析和评价[J].环境科学研究,1999,12(5):24-26.
    [21]徐常新,陈毅坚.造纸黑液的酸析处理[J].玉溪师范学院学报,2001,17(3):72-73.
    [22]唐新德.酸化法提取木素在造纸黑液治理中的应用探析[J].环境工程,1996,14(2):12-15.
    [23]戴友芝.碱法草浆黑液酸析回收木质素[J].环境科学与技术,1995,68(1):40-42.
    [24]宋云.二氧化硫处理草浆黑液的特性研究[J].环境保护,1998,3:16-17.
    [25]罗学刚.高纯木质素提取与热塑改性[M].北京:化学工业出版社,2008.
    [26]葛建团,徐敏,王三反.采用氯化钙预处理碱法麦草浆黑液的研究[J].工业水处理,2003,23(6):37-39.
    [27]王三反,张国俊,薛向东,等.木质素及造纸黑液的碱析法处理机理[J].中国给水排水,2002,18(6):51-53.
    [28]张盼月,王继徽,江鸿,等.活性硅酸混凝剂PFASSC处理造纸废水[J].污染防治技术,1997,10(3):151-154.
    [29]曾惠文,夏远安.絮凝技术在废水处理中的应用[J].环境科学与技术,1989,44(1):23-25.
    [30]天津化工研究院208组.新型絮凝剂在造纸和炼钢废水中的应用[J].工业水处理,1986,6(6):40-42.
    [31]Ganjidoust H, Tatsumi K, Yamagishi T, et al. Effect of synthetic and natural coagulant on lignin removal from pulp and paper wastewater[J]. Water science and technology,1997,35(2):291-296.
    [32]Huang G, Shi J X, Langrish T A. A new pulping process for wheat straw to reduce problems with the discharge of black liquor[J]. Bioresource technology, 2007,98(15):2829-2835.
    [33]潘碌亭,肖锦.液膜法处理造纸黑液的膜配方和电破乳的研究[J].膜科学与技术,2000,20(6):13-15.
    [34]汪永辉,蒋志贤.超滤法从造纸黑液中提取木质素制备活性炭[J].上海环境科学,1994,13(2):10-13.
    [35]张素坤,马子川.新生二氧化锰吸附法处理造纸黑液[J].河北师范大学学报:自然科学版,2002,26(2):165-166.
    [36]张秀成.麦草制浆黑液木素及无机物分离方法研究[J].哈尔滨:东北林业大学,2003.
    [37]Chamarro E, Marco A, Esplugas S. Use of Fenton reagent to improve organic chemical biodegradability [J]. Water research,2001,35(4):1047-1051.
    [38]姜波,杨丽,邱燕,等.铁炭微电解/Fenton试剂法在炼油厂脱硫废碱液预处理中的应用[J].辽宁师范大学学报:自然科学版,2006,29(1):77-79.
    [39]Tambosi J L, Di Domenico M, Schirmer W N, et al. Treatment of paper and pulp wastewater and removal of odorous compounds by a Fenton-like process at the pilot scale[J]. Journal of chemical technology and biotechnology,2006,81(8): 1426-1432.
    [40]张晓昱,陈建伟,王宏勋,等.UV-Fenton法促进白腐菌处理草浆造纸蒸煮黑液[J].应用与环境生物学报,2003,9(2):186-188.
    [41]Comninellis C, Pulgarin C. Electrochemical oxidation of phenol for wastewater treatment using SnO2 anodes[J]. Journal of applied electrochemistry,,1993,23(2): 108-112.
    [42]Brillas E, Calpe J C, Casado J. Mineralization of 2,4-D by advanced electrochemical oxidation processes[J]. Water research,2000,34(8):2253-2262.
    [43]Pokhrel D, Viraraghavan T. Treatment of pulp and paper mill wastewater--a review[J]. The science of the total environment,2004,333(1-3):37-58.
    [44]幸福堂,刘成焱,刘红.电凝聚法处理造纸中段废水的研究[J].工业水处理,2005,25(4):40-43.
    [45]Ugurlu M, Gurses A, Dogar, et al. The removal of lignin and phenol from paper mill effluents by electrocoagulation[J]. Journal of environmental management, 2008,87(3):420-428.
    [46]朱亦仁,李爱梅,鲁玲,等.纳米Fe2O3/Fe3O4光催化法处理造纸废水的研究[J].太阳能学报,2007,28(10):1125-1129.
    [47]潘凛溥,陈国喜.SBR法处理造纸废水研究[J].环境科学与技术,1998,2(5):20-21.
    [48]Vidal G, Videla S, Diez M. Molecular weight distribution of Pinus radiata kraft mill wastewater treated by anaerobic digestion[J]. Bioresource technology,2001, 77(2):183-191.
    [49]Grover R, Marwaha S, Kennedy J. Studies on the use of an anaerobic baffled reactor for the continuous anaerobic digestion of pulp and paper mill black liquors [J]. Process biochemistry,1999,34(6):653-657.
    [50]唐新德,岳华清.造纸废水综合治理技术的应用研究[J].环境工程,2001,19(3):62-63.
    [51]Sumathi S, Phatak V. Fungal treatment of bagasse based pulp and paper mill wastes [J]. Environmental technology,1999,20(1):93-98.
    [52]Malaviya P, Rathore V. Bioremediation of pulp and paper mill effluent by a novel fungal consortium isolated from polluted soil[J]. Bioresource technology,2007, 98(18):3647-3651.
    [53]Font X, Caminal G, Gabarrell X, et al. Black liquor detoxification by laccase of Trametes versicolor pellets[J]. Journal of chemical technology and biotechnology, 2003,78(5):548-554.
    [54]Srivastava S, Shrivastava A, Jain N. Degradation of black liquor, a pulp mill effluent by bacterial strain Pseudomonas putida[J].Indian journal of experimental biology,1995,33:962-966.
    [55]Gupta V K, Minocha A K, Jain N. Batch and continuous studies on treatment of pulp mill wastewater by Aeromonas formicans[J] Journal of chemical technology and biotechnology,2001,76(6):547-552.
    [56]郁红艳,曾光明,牛承岗,等.细菌降解木质素的研究进展[J].环境科学与技术,2005,28(2):1 04-106.
    [57]陈敏,陈中豪.选育高效降解木质素优势混合菌的研究[J].中国造纸,1998,17(5):40-45.
    [58]台明青,李志杰.麦草碱法制浆黑液的资源化治理工程[J].环境保护,1997,7:9-11.
    [59]杨卫春,尤翔宇,王云燕,等.芦苇浆造纸黑液资源化处理新工艺[J].中国有色金属学报,2012,22(7):2109-2115.
    [60]王廷平.造纸黑液的资源化研究[D].西安:陕西科技大学,2007.
    [61]Vikman M, Karjomaa S, Kapanen A, et al. The influence of lignin content and temperature on the biodegradation of lignocellulose in composting conditions [J]. Applied microbiology and biotechnology,2002,59(4):591-598.
    [62]Pandey K, Pitman A. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi [J]. International biodeterioration & biodegradation,2003,52(3):151-160.
    [63]Belinky P A, Goldberg D, Krinfeld B, et al. Manganese-containing superoxide dismutase from the white-rot fungus Phanerochaete chrysosporium:its function, expression and gene structure[J]. Enzyme and microbial technology,2002,31(6): 754-764.
    [64]毕鑫,路福平.白腐菌木素过氧化物酶发酵条件及其酶液对稻草降解的研究[J].纤维素科学与技术,2002,10(4):41-48.
    [65]Zheng Z, Obbard J P. Removal of surfactant solubilized polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium in a rotating biological contactor reactor [J]. Journal of biotechnology,2002,96(3):241-249.
    [66]王宏勋,杜甫佑,张晓昱.白腐菌选择性降解秸秆木质纤维素研究[J].华中科技大学学报(自然科学版),2006,34(2):97-100..
    [67]Leonowicz A, Matuszewska A, Luterek J, et al. Biodegradation of lignin by white rot fungi [J]. Fungal genetics and biology,1999,27(2):175-185.
    [68]M Shimada H K, T Higuchi. Evidence for the formation of methoxyl groups of ferulic and sinapic acids in Bambusa by the same O-methyltransferase[J]. Phytochemistry,1973,12(12):2873-2874.
    [69]Erickson M, Larsson S, Miksche G E. Gaschromatographische Analyse von Ligninoxydationsprodukten. Ⅷ. Zur Struktur des Lignins der Fichte[J]. Acta chem scand,1973,27(3):903-914.
    [70]Watanabe T, Koshijima T. Evidence for an ester linkage between lignin and glucuronic acid in lignin-carbohydrate complexes by DDQ-oxidation[J]. Agricultural and biological chemistry,1988,52(11):2953-2955.
    [71]Jeffries T W. Biodegradation of lignin-carbohydrate complexes[J]. Bio-degradation,1990,1(2):163-176.
    [72]Imamura T, Watanabe T, Kuwahara M, et al. Ester linkages between lignin and glucuronic acid in lignin-carbohydrate complexes from Fagus crenata[J]. Phytochemistry,1994,37(4):1165-1173.
    [73]赵丽红.糙皮侧耳(Pleurotus ostreatus)降解棉浆黑液木质素的研究[D].大连:大连理工大学,2008.
    [74]Tuomela M, Vikman M, Hatakka A, et al. Biodegradation of lignin in a compost environment:a review [J]. Bioresource technology,2000,72(2):169-183.
    [75]李亚澜.纤维素高效降解菌的分离鉴定及固态发酵条件研究[D].成都:西南交通大学,2005.
    [76]Percival Zhang Y-H, Himmel M E, Mielenz J R. Outlook for cellulase improvement:screening and selection strategies [J]. Biotechnology advances, 2006,24(5):452-481.
    [77]韩韫,蔡俊鹏.产纤维素酶海洋菌株的筛选及鉴定[J].现代食品科技,2005,21(3):36-38.
    [78]Kaur J, Chadha B S, Kumar B A, et al. Purification and characterization of two endoglucanases from Melanocarpus sp. MTCC 3922 and Scytalidium themophilum MTCC 4520 [J]. Bioresource technology,2007,98(1):74-81.
    [79]Qu Y, Zhao X, Gao P, et al. Cellulase production from spent sulfite liquor and paper-mill waste fiber[J]. Applied biochemistry and biotechnology,1991,28: 363-368.
    [80]郭大城,席宇,朱大恒.一株碱性纤维素降解菌的分离与分子鉴定[J].科技信息学术研究,2008,26:99-100.
    [81]Yang C, Wang Z, Li Y, et al.. Metabolic versatility of halotolerant and alkaliphilic strains of Halomonas isolated from alkaline black liquor[J]. Bioresource technology,2010,101(17):6778-6784.
    [82]Kuwahara M, Glenn J K, Morgan M A, et al. Separation and characterization of two extracelluar H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium [J]. Febs Letters,1984,169(2):247-250.
    [83]Kantelinen A, Hatakka A, Viikari L. Production of lignin peroxidase and laccase by Phlebia radiata[J]. Applied microbiology and biotechnology,1989,31(3): 234-239.
    [84]霍弗里希特.生物高分子:木质素,腐殖质和煤[M].郭圣荣.译.北京:化学工业出版社,2004,156-157.
    [85]李慧蓉.白腐真菌生物学和生物技术[M].北京:化学工业出版社,2005.
    [86]Kersten P J, Tien M, Kalyanaraman B, et al. The ligninase of Phanerochaete chrysosporium generates cation radicals from methoxybenzenes[J]. Journal of biological chemistry,1985,260(5):2609-2612.
    [87]Hammel K E, Tien M, Kalyanaraman B, et al. Mechanism of oxidative C alpha-C beta cleavage of a lignin model dimer by Phanerochaete chrysosporium ligninase. Stoichiometry and involvement of free radicals[J]. Journal of biological chemistry,1985,260(14):8348-8353.
    [88]Kirk T K, Farrell R L. Enzymatic" combustion":the microbial degradation of lignin [J]. Annual reviews in microbiology,1987,41(1):465-501.
    [89]Kishi K, Wariishi H, Marquez L, et al. Mechanism of manganese peroxidase compound Ⅱ reduction. Effect of organic acid chelators and pH[J]. Biochemistry, 1994,33(29):8694-8701.
    [90]景志远,李吕木.锰过氧化物酶研究进展[J].饲料博览,2009,11:8-12.
    [91]张建军,罗勤慧.木质素酶及其化学模拟的研究进展[J].化学通报,2001,64(8):470-477.
    [92]Hammel K E. Extracellular free radical biochemistry of ligninolytic fungi[J]. New journal of chemistry,1996,20(2):195-198.
    [93]Riva S. Laccases:blue enzymes for green chemistry [J]. Trends in biotechnology, 2006,24(5):219-226.
    [94]范寰,梁军峰,赵润,等.白腐真菌在木质素微生物降解中的作用[J].天津农业科学,2009,15(5):19-22.
    [95]林云琴,周少奇.白腐菌降解纤维素和木质素的研究进展[J].环境技术,2003,4:29-33.
    [96]Ten Have R, Teunissen P J. Oxidative mechanisms involved in lignin degradation by white-rot fungi [J]. Chemical reviews-columbus,2001,101(11):3397-3414.
    [97]Ruiz-Duenas F J, Martinez T. Microbial degradation of lignin:how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this [J]. Microbial biotechnology,2009,2(2):164-177.
    [98]Jokela J, Pellinen J, Salkinoja-Salonen M. Initial steps in the pathway for bacterial degradation of two tetrameric lignin model compounds [J]. Applied and environmental microbiology,1987,53(11):2642-2649.
    [99]余兴莲,王丽,徐伟民.纤维素酶降解纤维素机理的研究进展[J].宁波大学学报(理工版),2007,20(1):78-82.
    [100]Ander P, Mishra C, Farrell R L, et al. Redox reactions in lignin degradation: interactions between laccase, different peroxidases and cellobiose:quinone oxidoreductase [J]. Journal of biotechnology,1990,13(2):189-198.
    [101]杜甫佑.白腐菌木质纤维素降解次序研究[D].武汉:华中科技大学,2004.
    [102]Dorado J, Almendros G, Camarero S, et al. Transformation of wheat straw in the course of solid-state fermentation by four ligninolytic basidiomycetes[J], Enzyme and microbial technology,1999,25(7):605-612.
    [103]Eriksson K-E L, Blanchette R A, Ander P. Microbial and enzymatic degradation of wood and wood components [M]. Springer-verlag,1990.
    [104]Ghosh P, Singh A. Physicochemical and biological treatments for enzymatic/microbial conversion of lignocellulosic biomass[J]. Advances in applied microbiology,1993,39:295-333.
    [105]Camarero S, Garcia O, Vidal T, et al. Efficient bleaching of non-wood high-quality paper pulp using laccase-mediator system[J]. Enzyme and microbial technology,2004,35(2):113-120.
    [106]吴涓,肖亚中.白腐真菌处理灰法造纸黑液废水的研究[J].生物学杂志,2002,19(5):17-18.
    [107]任拥政,章北平,张晓昱,等.白腐菌-厌氧-好氧工艺处理造纸黑液研究[J].华中科技大学学报:城市科学版,2004,21(1):44-46.
    [108]Lara M A, RodnGuez-Malaver A J, Rojas O J, et al. Black liquor lignin biodegradation by Trametes elegans[J]. International biodeterioration & biodegradation,2003,52(3):167-173.
    [109]Chandra R, Abhishek A, Sankhwar M. Bacterial decolorization and detoxification of black liquor from rayon grade pulp manufacturing paper industry and detection of their metabolic products[J]. Bioresource technology, 2011,102(11):6429-6436.
    [110]任华峰.一株对氯苯胺降解菌的分离鉴定及其降解特性的研究[D].哈尔滨:东北农业大学,2004.
    [111]Leadbetter E, Foster J. Incorporation of molecular oxygen in bacterial cells utilizing hydrocarbons for growth [J]. Nature,1959,1428-1429.
    [112]史敬华,刘菲,李烨,等.不同基质共代谢降解地下水中四氯乙烯的研究[J].地学前缘,2006,13(1):145-149.
    [113]Chen Y-C, Zhan H-Y, Chen Z-H, et al. Coupled anaerobic/aerobic biodegradation of 2,4,6 trichlorophenol[J]. Journal of environmental sciences (China),2003,15(4):469-474.
    [114]Kennedy M S, Grammas J, Arbuckle W B. Parachlorophenol degradation using bioaugmentation [J]. Research journal of the water pollution control federation, 1990,66(7):227-233.
    [115]Boon N, Goris J, De Vos P, et al. Bioaugmentation of activated sludge by an indigenous 3-chloroaniline-degrading Comamonas testosteroni strain, I2gfp[J]. Applied and environmental microbiology,2000,66(7):2906-2913.
    [116]张甲耀,龚利萍,罗宇煊,等.嗜碱细菌复合碳源条件下对麦草木质素的降解[J].环境科学,2002,23(1):70-73.
    [117]比嘉照夫.拯救地球大变革[M].冯玉润.译.北京:中国农业大学出版社,1996.
    [118]曾常华.复合菌群及其固定化技术处理抗生素生产废水的研究[D].南昌: 南昌大学,2007.
    [119]孟萍平,李科林.有效微生物群对生活污水中有机物的降解能力研究[J].中南林学院学报,1997,17(4):8-13.
    [120]田娜,朱亮.应用EM技术的膜法生物降解试验研究[J].水资源保护,2005,21(6):72-74.
    [121]朱永光,严平,廖银章,等.炼油废水处理菌剂的研究[J].环境科学,2006,27(3):508-512.
    [122]温桂照,陈敏.高效优势混合菌降解废水中的氯代芳香族化合物[J].上海环境科学,2000,1 9(8):379-381.
    [123]杨意东,杨丽君.高浓度有机废水固定化生物处理技术的研究[J].给水排水,2000,26(1):43-48.
    [124]张珂,俞正千.麦草浆碱回收技术指南[M].北京:中国轻工业出版社,1995,5-17,173-198.
    [125]环境监测分析方法编写组.环境监测方法[M].北京:城乡建设环境保护部,2003.
    [126]国家环境保护总局.水质化学需氧量的测定快速消解分光光度法[S].北京;中国环境科学出版社.2007.
    [127]潘学军,谢来苏,隆言泉.麦草Soda-AQ黑液中木素的紫外特性及其定量测定[J].天津造纸,1992,14(2):7-11.
    [128]Association A P H. Water Environment Federation (1998) Standard methods for the examination of water and wastewater [M]. Washington, DC.1994.
    [129]吴泽惠.用钙试剂羧酸钠为指示剂络合滴定法测定降水中钙离子[J].分析科学学报,1999,15(6):498-501.
    [130]李万利.芦苇乙醇法分离木素制浆研究(Ⅲ)[J].中华纸业,2006,26(11):42-45.
    [131]陈云平,陈瑞强,程贤甦,等.甘蔗渣高沸醇木质素光谱分析与结构测定[J].光谱学与光谱分析,2006,26(10):1880-1883.
    [132]Lin S Y. Process for reduction of lignin color [P]. USA:4184845,1980,1,22-26.
    [133]Huuha T S, Kurniawan T A, Sillanpaa M E. Removal of silicon from pulping whitewater using integrated treatment of chemical precipitation and evaporation [J]. Chemical engineering journal,2010,158(3):584-592.
    [134]费德君.化工实验研究方法及技术[M].北京:化学工业出版社,2008.
    [135]郭京波,陶宗娅,罗学刚.竹木质素的红外光谱与X射线光电子能谱分析[J].化学学报,2005,63(16):1536-1540.
    [136]柴立元,陈跃辉,黄燕,等.三国吴简蚀斑可培养微生物的多样性[J].中南大学学报(自然科学版),2010,41(5):1674-1679.
    [137]蔡磊,尹峻峰,杨丽萍,等.几种简便的木质素降解真菌定性筛选方法[J].微生物学通报,2002,29(1):67-69.
    [138]Archibald F S. A new assay for lignin-type peroxidases employing the dye azure B [J]. Applied and environmental microbiology,1992,58(9):3110-3116.
    [139]康从宝,李清心,刘瑞田,等.一株白腐苗产生的漆酶对RB亮蓝的脱色作用[J].应用与环境生物学报,2002,8(3):298-301.
    [140]Tailliez P, Girard H, Millet J, et al. Enhanced cellulose fermentation by an asporogenous and ethanol-tolerant mutant of Clostridium thermocellum[J]. Applied and environmental microbiology,1989,55(1):207-211.
    [141]王宏勋.白腐菌生物处理草浆碱法蒸煮黑液研究[D].武汉:华中科技大学,2004.
    [142]Orth A B, Royse D, Tien M. Ubiquity of lignin-degrading peroxidases among various wood-degrading fungi [J]. Applied and environmental microbiology, 1993,59(12):4017-4023.
    [143]Camarero S, Sarkar S, Ruiz-Duenas F J, et al. Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites [J]. Journal of biological chemistry,1999,274(15):10324-10330.
    [144]Nakagawa Y, Sakamoto Y, Kikuchi S, et al. A chimeric laccase with hybrid properties of the parental Lentinula edodes laccases[J]. Microbiological research,2010,165(5):392-401.
    [145]Lopez M J, Vargas-Garcia M D C, Suarez-Estrella F, et al. Lignocellulose-degrading enzymes produced by the ascomycete Coniochaeta ligniaria and related species:Application for a lignocellulosic substrate treatment [J]. Enzyme and microbial technology,2007,40(4):794-800.
    [146]Raj A, Krishna Reddy M, Chandra R. Identification of low molecular weight aromatic compounds by gas chromatography-mass spectrometry (GC-MS) from kraft lignin degradation by three Bacillussp[J]. International biodeterioration & biodegradation,2007,59(4):292-296.
    [147]Chandra R, Raj A, Yadav S, et al. Reduction of pollutants in pulp paper mill effluent treated by PCP-degrading bacterial strains[J]. Environmental monitoring and assessment,2009,155(1):1-11.
    [148]罗宇煊,张甲耀,管筱武,等.嗜碱细菌降解木质素的复合碳源共代谢研究Ⅰ-复合碳源组合方式及氮源的选择[J].城市环境与城市生态,2000,13(2):8-10.
    [149]王璟,张志杰,孙先锋,等.应用生物强化技术处理焦化废水难降解有机物[J].城市环境与城市生态,2000,06:42-44.
    [150]赵亚华.生物化学实验技术教程[M].广州:华南理工大学出版社,2000.
    [151]Ramadan M A, El-Tayeb O M, Alexander M. Inoculum size as a factor limiting success of inoculation for biodegradation[J]. Applied and environmental microbiology,1990,56(5):1392-1396.
    [152]王亚娥,刘宝堂,李杰.包埋固定化微生物强化SBR工艺脱氮性能研究[J].环境科学与技术,2009,32(012):164-167.
    [153]魏永成,罗福成.蒽酮分光光度法测定海藻多糖总糖含量[J].天然产物研究与开发,1995,7(3):37-40.
    [154]Lin S Y, Dence C W. Methods in lignin chemistry [M]. Springer,1992.
    [155]乔维川.嗜黑液菌的生物反应特性及应用研究[D].南京:南京林业大学,2007.
    [156]Stewart P, Kersten P, Vanden Wymelenberg A, et al. Lignin peroxidase gene family of Phanerochaete chrysosporium:complex regulation by carbon and nitrogen limitation and identification of a second dimorphic chromosome[J]. Journal of bacteriology,1992,174(15):5036-5042.
    [157]Penalva M A, Arst H N. Regulation of gene expression by ambient pH in filamentous fungi and yeasts[J]. Microbiology and molecular biology reviews, 2002,66(3):426-446.
    [158]郑志锋,邹局春,花勃,等.核桃壳化学组分的研究[J].西南林学院学报,2006,26(2):33-36.
    [159]沈其荣,徐勇,杨红,等.化学处理水稻秸秆水溶性有机物的光谱特征研究[J].光谱学与光谱分析,2005,25(2):211-215.
    [160]Gierer J, Imsgard F, Noren I. Studies on the degradation of phenolic lignin units of the β-aryl ether type with oxygen in alkaline media[J]. Acta chem scand B, 1977,31(561-572.
    [161]Kawai S, Asukai M, Ohya N, et al. Degradation of a non-phenolic β-O-4 substructure and of polymeric lignin model compounds by laccase of Coriolus versicolor in the presence of 1-hydroxybenzotriazole [J]. FEMS microbiology letters,1999,170(1):51-57.
    [162]Masai E, Shinohara S, Hara H, et al. Genetic and biochemical characterization of a 2-pyrone-4,6-dicarboxylic acid hydrolase involved in the protocatechuate 4,5-cleavage pathway of Sphingomonas paucimobilis SYK-6[J]. Journal of bacteriology,1999,181(1):55-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700