ZnO量子点的合成及与MEH-PPV复合电致发光器件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文首先利用改进的化学溶液法制备了ZnO量子点,通过X射线衍射(XRD)、透射电镜(TEM)、原子力显微镜(AFM)、吸收光谱(Abs)、光致发光光谱(PL)等进行表征,证明ZnO量子点粒径均匀(直径约为4.83nm),分散性良好。由于量子效应,Abs和PL与ZnO体材料相比均发生了一定程度的蓝移,Abs吸收边由体材料的370nm蓝移到359nm,PL发光峰由体材料的387nm蓝移到377nm左右,并且粒径越小,蓝移越大。
     进行了ZnO量子点稳定性研究,通过改变ZnO量子点在乙醇中的浓度调节ZnO量子点在乙醇中分散度,浓度由大到小(从1.6mol/L到0.05mol/L),得到了381nm-375nm不同发光峰的光致发光光谱,这是由分散度不同导致ZnO量子点的团聚所致。PL只有近紫外发光峰,为ZnO量子点的激子态发光,证明ZnO量子点表面缺陷和杂质缺陷较少。另外,研究了ZnO量子点的陈化现象,在不同条件下(25℃陈化30天、0℃冷藏陈化30天和新制备的样品)陈化将对导致团聚和对ZnO量子点材料的形貌及光致发光光谱都有不同的影响,研究了ZnO的团聚机制以及导致团聚的原因。
     ZnO量子点由于库伦阻塞效应,具有较好的电子传输特性。进行了ZnO量子点作为电子传输层(ETL)平衡有机电致发光器件的载流子,改善MEH-PPV的发光特性。制备了结构为ITO/PEDOT:PSS/MEH-PPV/ZnO QDs/Al和结构为ITO/PEDOT:PSS/MEH-PPV/Al的器件,并进行了对比,ZnO量子点作为电子传输层使发光器件的发光特性以及亮度等得到了很好的改善,启亮电压为3.0V,电压为8V时电流由8mA增加到14mA,光功率由112nw增加到147nw,EL发光峰为MEH-PPV的590nm,峰位未发生移动。
     根据ZnO量子点的量子蓝移效应,理论上可以得到比ZnO体材料更短波长的近紫外光发射。量子点LED由于其发光材料的窄带宽,发光颜色更纯更饱和(半峰宽一般为40nm),发光峰根据量子点粒径尺寸可调。因此本论文进行了通过ZnnO量子点掺杂的方法使ZnO量子点作为发光层(EL)的尝试,制备了结构为ITO/PEDOT:PSS/MEH-PPV:ZnO QDs/Al和结构为ITO/PEDOT:PSS/MEH-PPV/Al的器件进行了对比,但是最终由于表面悬挂键等表面缺陷导致的淬灭等原因,并未得到ZnO量子点的近紫外光发射。
The preparation of ZnO quantum dots (QDs) with modified chemical solution method was studied, and ZnO QDs were characterized with X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), Absorption Spectrum (Abs) and Photoluminescence Spectrum (PL) methods. The size of ZnO QDs was uniform (the diameter of ZnO QDs is approximately4.83nm). The ZnO QDs were randomly distributed in the ethyl alcohol; the blue shift of optical absorption edge (from370nm to359nm) and photoluminescence peak (from387nm to approximately377nm) was observed because of a so-called quantum size effect.
     The stability of ZnO QDs was studied. Different dispersion degree of ZnO QDs distributed in the ethyl alcohol were prepared by changing the density of ZnO QDs (from1.6mol/L to0.05mol/L). Photoluminescence peaks from381nm to371nm were observed, the cause of which was researched. Only nearly ultraviolet photoluminescence peaks were observed, which came from the excitonic luminescence of ZnO QDs, proving that surface defect and impurity defect were less in ZnO QDs. The ageing of ZnO QDs was also studied. Ageing under different conditions (room temperature25℃ageing for30days,0℃ageing for30days and ZnO QDs just prepared), the reunion, topography and PL peaks of ZnO QDs would be different. The reunion mechanism and the cause of it were discussed.
     ZnO QDs have good electronic transmission characteristics because of their Coulomb blockade effect. Therefore, ZnO QDs applied as Electron Transport Layer (ETL) to balance of the charge carriers in inorganic-organic light-emitting diodes (LEDs) and to improve the luminous efficiency of MEH-PPV was studied. The device started luminising at voltage3.0V,(The current is from8mA to14mA at voltage8.0V; the light power is from112nw to147nw at voltage8.0V); The EL peak is590nm.
     Theoretically, nearly ultraviolet emission (blue shift compared to that of ZnO bulk materials) could be observed, based on the quantum blue shift effect of ZnO QDs. Quantum-dot-based LEDs are characterized by pure and saturated emission colors (Halfpeak breadth is more or less40nm) with narrow bandwidth, and their emission wavelength is easily tuned by changing the size of the quantum dots. Therefore, we tried to dope ZnO QDs into MEH-PPV as Emitting Layer (EL) in order to get the nearly ultraviolet emission of ZnO QDs, but failed because of quenching, which came from the surface defect (such as dangling bonds on the surface) of ZnO QDs.
引文
[1]Chestnoy N., Harris T. D., Hull R., et al. Luminescence and photophysics of cadmium sulfide semiconductor clusters:the nature of the emitting electronic stat[J]. Journal of Physical Chemistry,1986,90:3393-3399.
    [2]Henglein A. Small—particle research:Physicochemical properties of extremely small colloidal metal and semiconductor particles[J]. Chemical Reviews,1989,89:1861-1873.
    [3]Wang Y., HerronN.. Nanometer-sized semiconductor clusters:materials synthesis, quantum size effects, and photophysical properties[J]. Journal of Physical Chemistry,1991,95:525-532.
    [4]吴晓春,陈文驹.半导体量子点电子结构理论研究的进展[J].物理,1995,24(4):218-223.
    [5]Halperin W. P.. Quantum size effects in metal particles[J]. Review Modem Physical,1986, 58:533-606.
    [6]Mikhail D. Lukin, Jacob Taylor. Quantum leaps in the solid state [J]. NATURE,2010,16(467).
    [7]Ball P., Garwin L—Science at the atomic scale[J]. Nature,1992,355:761-766.
    [8]李相敏.LED前沿技术:量子点(Quantum Dot)LED[J].科技信息,2010,21:40.
    [9]Hatice S, engul, Thomas L. Theis. An environmental impact assessment of quantum dot photovoltaics (QDPV)from raw material acquisition through use [J]. Journal of Cleaner Production, 2011,19:21-31.
    [10]薛钰芝.量子点材料光伏电池的研究[J].太阳能,2007,1(5):15-16.
    [11]向辉.量子点技术改进太阳能电池[J].世界科学,2007,6:13.
    [12]杨峰,蔡芳共,柯川,等.Ti02纳米管阵列在太阳能电池中应用的研究进展[J].材料导报,2010,24(6):50-52.
    [13]邹永刚,李林,刘国军,等GaAs太阳能电池的研究进展[J].长春理工大学学报,2010,33(1):44-47.
    [14]申德振.Ⅱ族氧化物光电材料的研究进展与展望.第五届全国氧化锌学术会议论文集.深圳.2011.深圳.出版者中国物理学会发光分会.2011:1.
    [15]TANG ZK, GEORGE P Y, WONG K L, et. Room temperature ultraviolent laser emission from microstructured ZnO thin film [J]. Nonlinear Optics,1997,18(2—4):355—359.
    [16]Yunqing Wang, Lingxin Chen. Quantum dots, lighting up the research and development of nanomedicine [J]. NANOMEDICINE,2011,18.
    [17]PEARTON S J, NORTON D P, IP K, et al. Recent progress in processing and prope-ies of ZnO [J].Superlattices and Microstructures,2005,34(1-2):293-340.
    [18]J. M. CARUGE1, J. E. HALPERT, V. WOOD, V. BULOVIC, M. G. BAWEND1. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers [J].Nature, 2008,34:247-250.
    [19]Colvin, V. L., Schlamp, M. C.& Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer[J]. Nature 370,354-357 (1994).
    [20]Dabbousi, B. O., Bawendi, M. G., Onitsuka, O.& Rubner, M. F. Electroluminescence from CdSe quantum-dot/polymer composites [J]. Appl. Phys. Lett.66,1316-1318 (1995).
    [21]Coe, S., Woo, W.-K., Bawendi, M.& Bulovic', V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices [J]. Nature 420,800-803 (2002).
    [22]Zhao, J. et al. Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer [J]. Nano Lett.6,463-467 (2006).
    [23]Hikmet, R. A. M., Chin, P. T. K., Talapin, D. V.& Weller, H. Polarized-light-emitting quantum-dot diodes [J]. Adv. Mater.17,1436-1439 (2005).
    [24]Coe-Sullivan, S., Steckel, J. S., Woo, W.-K., Bawendi, M. G.& Bulovic', V. Large-area ordered quantum-dot monolayers via phase separation during spin-casting [J]. Adv. Funct. Mater.15, 1117-1124(2005).
    [25]Schlamp, M. C., Peng, X.& Alivisatos, A. P. Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer [J]. J. Appl. Phys. 82,5837-5842(1997).
    [26]Steckel, J. S. et al. Color-saturated green-emitting QD-LEDs [J]. Angew. Chem. Int. Edn 45, 5796-5799 (2006).
    [27]Steckel, J. S. et al. Blue luminescence from (CdS)ZnS core-shell nanocrystals [J]. Angew. Chem. Int. Edn43,2154-2158 (2004).
    [28]Mueller, A. H. et al. Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers [J]. Nano Lett.5,1039-1044 (2005).
    [29]Zhao, J. et al. Electroluminescence from isolated CdSe/ZnS quantum dots in multilayered lightemitting diodes [J]. J. Appl. Phys.96,3206-3210 (2004).
    [30]Chaudhary, S., Ozkan, M.& Chan, W. C. W. Trilayer hybrid polymer-quantum dot light-emitting Diodes [J]. Appl. Phys. Lett.84,2925-2927 (2004).
    [31]Gao, M. et al. Electroluminescence of different colors from polycation/CdTe nanocrystal selfassembled films [J]. J. Appl. Phys.87,2297-2302 (2000).
    [32]O'Connor, E. et al. Near-infrared electroluminescent devices based on colloidal HgTe quantum dot arrays [J]. Appl. Phys. Lett.86,201114 (2005).
    [33]Steckel, J. S.& Bowendi, M. G.1.3-1.55 mm tunable electroluminescence from PbSe quantum dots embedded within an organic device. Adv. Mater.15,1682-1686 (2003).
    [34]Bakueva, L. et al. Size-tunable infrared (1000-1600 nm) electroluminescence from PbS quantumdot nanocrystals in a semiconducting polymer [J]. Appl. Phys. Lett.82,2895-2897 (2003).
    [35]V. L. COLVIN, M. C. SCHLAMP, A. P. ALIVISATOS:Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer [J]. Nature 1994,370:354-357.
    [36]XIAOGANG PENG, MICHAEL C. SCHLAMP, ANDREAS V. et al. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility [J]. Journal of the American Chemical Society 1997,119:7019.
    [37]S. COE, W. K. WOO, M. BAWENDI, et al:Electroluminescence from single mono-layers of nanocrystals in molecular organic devices [J]. Nature 2002,420:800-803.
    [38]QINGJIANG SUN 1,Y.ANDREW WANG,LIN SONG LI, Bright, multicoloured light-emittingdiodes based on quantum dots[J]. Nature photonics,2007,1:717-722.
    [39]W.-M. Schulz, M. Eichfelder, M. Reischle, C. Kessler. Pulsed single-photon resonant-cavity quantum dot LED [J]. Journal of Crystal Growth,2011,315:127-130.
    [40]Jennifer G. Pagan, Edward B. Stokes. Colloidal quantum dot active layers for light emitting diodes [J]. solid-state electronics,2006,50: 1461-1465.
    [41]Lei Qian, Ying Zheng, Jiangeng Xue*, Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. [J] Nature photonics,2011,5:543-548.
    [42]Tang C W, Vanslyke S A. Organic electroluminescent diodes[,J]. Appl. Phys. Lett.,1987, 51:913-915.
    [43]BurroughesJ.H,Bradley D.D.C,BrownA.R,etal.,Nature,347(1990),539.
    [44]Braun D and HeegerA.J.,Appl.Phys.Lett.58(1991),1982.
    [45]Adachi C, Tokito S, Tsutsui T, et al. Electroluminescence in organic films with three-layer structure [J]. Jpn. J. Appl. Phys.,1988,27:269.
    [46]杨玲敏,叶志镇.ZnO量子点的制备及其光电性能研究进展[J].纳米材料与结构,2004,12:22-32.
    [47]Wu H z, QIU D J, CAI Y J, el O1. Optical studies of ZnO quantum dots grown on Si(001) [J]. Journal of Crystal Growth,2002,245:50-55.
    [48]MOHANTA D, NATH S S, BORDOLOIA, et al. Optical absorption study of 100-MeV chlorine ion-irradiated hydroxyl—free ZnO semiconductor quantum dots[J]. J Appl Phys,2002, 92(12):7149-7151.
    [49]ROEST A L, KELLY J J, VANMAEKELBERGH D. COulOmb blockade of electron transport in a ZnO quantum—dot solid[J]. Appl Phys Lett,2003,83(26):5530-5532.
    [50]Na L, Xiaodan L,Xin Jin,Changli L. Preparation and characterization of UV-curable ZnO/polymer nanocomposite films [J]. Polymer International,2007,56:138-143.
    [51]Verges M A, Mifsud A, Serna C J,Formation of rod-like zinc oxide microcrystals in homogeneous solutions [J].Journal of the Chemical Society, Faraday Transactions,1990,86:959-963.
    [52]徐叙瑢,苏勉曾.发光学与发光材料.北京.化学工业出版社.2004,10:3-4.
    [53]Yang Yang, Wan-Nan Li, Yong-Song Luo. Novel ultraviolet-opaque, visible-transparent and light-emitting ZnO-QD/silicone composites with tunable luminescence colors [J]. Polymer,2010, 51:2755-2762.
    [54]ChaoxingWua, Fushan LiA,Yongai Zhang. Field emission arrays fabricated utilizing conjugated ZnO quantum dot/carbon nanotube hybrid nanocomposite [J]. Applied Surface Science,2011,257: 4539-4542.
    [55]Hee Yeon Yang,Dong Ick Son,Tae Whan Kim. Enhancement of the photocurrent in ultraviolet photodetectors fabricated utilizing hybrid polymer-ZnO quantum dot nanocomposites due to an embedded graphene layer [J]. Organic Electronics,2010,11:1313-1317.
    [56]Zhenyi Zhang, Changlu Shao,Fei Gao. Enhanced ultraviolet emission from highly dispersed ZnO quantum dots embedded in poly(vinyl pyrrolidone) electrospun nanofibers [J]. Journal of Colloid and Interface Science,2010,347:215-220.
    [57]Nikodem Tomczaka, Dominik Ja'nczewski, Mingyong Han. Designer polymer-quantum dot architectures [J]. Progress in Polymer Science,2009,34:393-430.
    [58]Xu Zhao,Shu-yi Wei, Cong-xin Xia, Guo-hong Wei. Optical properties of exciton confinement in wurtzite ZnO/MgxZnlxOcoupled quantum dots [J]. Journal of Luminescence,2011, 131:297-300.
    [59]Zhenyi Zhang, Changlu Shao, Fei Gao. Enhanced ultraviolet emission from highly dispersed ZnO quantum dots embedded in poly(vinyl pyrrolidone) electrospun nanofibers [J]. Journal of Colloid and Interface Science,2010,347:215-220.
    [60]郑晋生,吴小丽,吴川六.紫外一可见吸收光谱研究CdS量子点生长动力学[J].分析化学,2009,37:127.
    [61]Peter Moeck. Epitaxial and endotaxial semiconductor quantum dots:A brief review on atomic ordering and the void-mediated formation mechanism [J]. Nonlinear Analysis,2005,63:1311-1321.
    [62]Takahisa Omata,Kazuyuki Takahashi,Shinichi Hashimoto. UV luminescent organic-capped ZnO quantum dots synthesized by alkoxide hydrolysis with dilute water [J]. Journal of Colloid and Interface Science,2011,355:274-281. Seth Coe-Sullivan,Wing-Keung Woo,jonathan S. Steckel. Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices [J]. Organic Electronics,2003,4:123-130.
    [63]Lin Zhang, Fan Li, Yiwang Chen. Stably dispersible P3HT/ZnO nanocomposites with tunable luminescence by in-situ hydrolysis and copolymerization of zinc methacrylate [J]. Journal of Luminescence,2010,130:2332-2338.
    [64]Lichan Chen, Nengna Xu, Haiyan Yang. Zinc oxide quantum dots synthesized by electrochemical etching of metallic zinc in organic electrolyte and their electrochemiluminescent properties [J]. Electrochimica Acta,2011,3(56):1387-1391.
    [65]郭幸,曾大文,谢长生.CuO表面修饰ZnO量子点及其光学性能[J].硅酸盐学报,2006,34(6):679-683.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700