发酵辣椒中风味物质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发酵辣椒是我国的一种传统发酵食品,由于其独特的风味而深受人们的喜爱,特别是在湖南、湖北、四川、重庆和江西等地家庭广泛制作。传统的发酵辣椒主要是利用天然附着在辣椒表面的微生物(主要是乳酸菌)进行发酵,发酵时间较长;而人工接种发酵可以明显的缩短发酵时间。关于发酵辣椒的研究主要集中在菌种的分离选育、发酵工艺的优化和风味的调配等方面,关于发酵辣椒中风味物质的研究较少。对于其风味物质的研究不但可以推测发酵辣椒风味的形成机制,防止不良风味产生,同时还可以对发酵工艺的优化和风味的调配提供理论依据。
     本文以新鲜辣椒及其发酵产品为研究对象,采用高效液相色谱和气相色谱/质谱联用对新鲜辣椒及其发酵产品中的风味物质进行了分析。在实验中建立了有机酸的高效液相色谱分析方法,同时建立了香气成分分析的气相色谱/质谱联用分析方法,对不同的新鲜辣椒及其发酵产品中的风味物质进行了比较,还分析了辣椒在发酵过程中风味物质的变化。主要实验结论如下:
     1.在实验中建立了同时测定8种有机酸的色谱分析条件:Hypersil-ODS2色谱柱(4.6mm×200mm,5μm),2%甲醇-0.05mol/LKH_2PO_4(pH2.8)作为流动相,流速0.8mL/min,柱温17℃,进样量5μL,检测波长214nm。在此条件下,8种有机酸能够得到较好的分离,回收率92.87%~106.15%,RSD<3%。
     2.比较了加热提取和超声波提取对发酵辣椒中有机酸的提取效果,表明加热提取效果好于超声波提取,但是两种方法对于不同有机酸的提取效果有所不同,除草酸和琥珀酸含量是以超声波提取较高外,其余的几种酸以加热提取效果更好。
     3.对不同温度条件下发酵辣椒中的8种有机酸进行了定性和定量分析。两种温度条件下,在发酵前后,草酸、柠檬酸和琥珀酸的含量减少;苹果酸、乳酸和乙酸含量增加;甲酸的含量在发酵温度为20℃时有所增加,但在发酵温度为28℃时有所下降;由于在发酵过程中的某些阶段未检测到酒石酸,所以酒石酸的变化情况尚需进一步的研究。某些阶段未检测到酒石酸可能是由于样品中酒石酸含量太少或者是由于草酸影响了酒石酸的检测,这些还需进一步的研究。
     4.在发酵过程中,乳酸是有机酸中含量最大的酸,其含量占总酸的,发酵结束时其含量达到1300mg/100g左右,含量占总酸的30%左右,乳酸可能在发酵辣椒的成酸作用中起主导地位;其他的酸含量相对较少,发酵结束时其含量均在300~600 mg/100g之间,但是在发酵辣椒的风味形成中同样具有重要的作用。
     5.在相同的发酵时间,即发酵的第一天和第七天,28℃下发酵辣椒的总酸值均高于20℃下发酵辣椒的总酸值,其差值在100mg/100g~160mg/100g左右,说明在相同的时间内,较高的发酵温度有利于乳酸菌产酸,能够缩短发酵的时间。
     6.实验中建立了提取和分离分析发酵辣椒中主要风味物质的方法。采用同时蒸馏萃取法以无水乙醚提取发酵辣椒中的风味物质,同时蒸馏萃取2h,其提取效果最好。GC/MS分析条件为:岛津气相色谱质谱联用仪(GCMS-QP2010),Rtx-5MS毛细管柱。GC:程序升温,初温35℃,保留10min,以4℃/min的升温速率升温至250℃,保留10min。进样口温度250℃。进样量1uL,分流比50:1,He气流速33 cm/sec。载气压力35.3 kPa。MS:接口温度250℃,离子源温度230℃。质量范围35~500,电离方式:EI,70 eV,扫描速率0.5 s/scan。四极杆质量分析器。谱库:NIST05和NIST05s。在此分析条件下能够较好的完成对发酵辣椒中风味物质的分离和分析。
     7.发酵辣椒在发酵的过程中,由于微生物的发酵及辅料等的作用,其中的风味物质呈增加的趋势,不论是在20℃还是在28℃下发酵,其中的风味物质都是逐渐增加的。
     8.对比20℃和28℃下发酵辣椒中的风味物质可以看出,28℃下发酵其物质的种类较20℃下发酵少,乙酸、仲丁基乙醚、3-甲基丁醛、己酸乙酯、苯乙醛、壬醛、对烯丙基茴香醚、薄荷酮、2-甲基-3-十一烯、2-甲基十五烷、十五烷、十三醛、肉豆蔻酸乙酯、十五烷酸乙酯、十七烷基乙酸酯、9-十六碳烯酸乙酯等物质在低温发酵时出现,而在28℃时没有检测到,较低温度虽然发酵比较慢,但是更有利于风味物质的形成,尤其是酯类的形成。较高温度发酵则可以缩短发酵时间。
     9.实验中比较了3种不同的发酵辣椒中的风味物质。乙酸乙酯,乙基戊基醚,乙苯,间二甲苯,β-顺式罗勒烯,β-里哪醇,α-萜品醇,2-甲基-十四烷,棕榈酸乙酯,亚油酸乙酯,亚麻酸乙酯等物质在以上3种发酵辣椒中都能检测出,它们可能是发酵辣椒中的共有物质。同时可以看出,购买的发酵辣椒样品中挥发性物质的相对含量较少,远远低于实验室接种标准菌种发酵的样品,发酵的风味不够突出。
     10.发酵小米椒中物质种类和相对含量都较丰富,异丙基乙基醚,丙基乙基醚,乙酸乙酯,乙缩醛,β-里哪醇,2-羟基-安息香酸甲酯(水杨酸甲酯),2-甲基-丁酸己酯,戊酸己酯,3-甲基-丁酸己酯,己酸己酯,癸酸,2-甲基-3-十一烯,长叶烯,十六烷等相对含量较高,可能是主体物质。
     11.鲜椒中含有大量的物质,共检测出烷烃17种,烯烃10种,醚5种,醇类14种,醛类15种,酮5种,酸2种,酯17种。其中乙酸乙酯,正己醛,乙缩醛,2-乙烯醇,对丙烯基茴香醚,己酸己酯,2-甲基十三烷-,2-甲基-3-十一烯,2-甲基-十四烷,β-里哪醇,反式橙花叔醇,十三醛,3,7-二甲基-6-壬烯-1-醇乙酸酯,癸酸己酯,十七烷基乙酸酯,肉豆蔻醛的相对含量较高,同时鲜椒中含有大量的烷烃。
     12.辣椒酱中的物质成分明显的比鲜椒和发酵辣椒中多,在4种辣椒酱中共检测出176种物质,其中异丙基乙基醚,丙基乙基醚,乙酸乙酯,仲丁基乙醚,3-甲基-丁醛,乙缩醛,乙基戊基醚,乙苯,松萜,β—月桂烯,α-水芹烯,桉树脑,β-顺式罗勒烯,萜品油烯,β-里哪醇,α-萜品醇,(E)-2-癸烯醛,(E,E)-2,4-癸二烯醛,可巴烯,十三烷,2-甲基-3-十一烯,十五烷等物质为4种辣椒酱共有,可能是辣椒酱中的主要风味物质。
Fermented Capsicum was a traditional fermented food in China. It was popular in Hunan, Hubei, Sichuan, Chongqing and Jiangxi province et al. Traditional fermented Capsicum was fermented with the Lactic acid bacteria that existing on the surface of Capsicum, but through inoculating Lactic acid bacteria could make the flavor better and shorten the fermented time. The studies about fermented Capsicum were focused on Lactic acid bacteria, et al. The aspect of its flavor compounds was studied very little. Analysis of flavor components of fermented Capsicum could not only explore the formation mechanism of flavor, but also take a consult of improving flavor and fermenting technics.
     This study has analyzed the flavor components of fermented Capsicum with HPLC (High Performance Liquid Chromatography) and GC/MS. The HPLC method and GC/MS method were developed to study the flavor compounds of fresh Capsicum, fermented Capsicum and fermented Capsicum sauce. The main conclusions were as follow.
     1. A method for simultaneous determination of 8 organic acids in fermented capsicum by reverse phase high performance liquid chromatography was developed. Hypersil-ODS2 column(4.6mm×200mm,5μm)was used at 17℃and mobile phase was 2% CH_3OH-0.05 mol/L KH_2PO_4(pH 2.8)with flow rate of 0.8 mL/min. Detection wavelength was at 214 nm. The relative standard deviations were lower than 3%, and the recoveries were 92.87% to 106.15%.
     2. In this study, two methods (extracted with heating or ultrasonic) were used to extract organic acids, it is proved that extraction with heating is better than ultrasonic.
     3. Following fermentation, the content of oxalic acids, citric acids and succinic acids was decreased; the content of malic acids, lactic acids and acetic acids was increased; the content of formic acids was increased in samples fermented at 20℃, but decreased in samples fermented at 28℃; the change of tartaric acids was not clear.
     4. Lactic acids was the highest content acid during fermentation, its content was about 13.5 percent to 46.8 percent; at the end of fermentation, its content reach to 1300 mg/100g. Compared with lactic acid, other acids were relatively low content, at the end of fermentation, the average contents of other seven acids were 300 mg/100g to 600 mg/100g.
     5. In the same fermented days, the content of organic acids in the sample that fermented at 28℃was higher than fermented at 20℃. This means high fermented temperature could induce the formation of organic acids and shorten the time.
     6. The GC/MS method was: Shimadzu GCMS-QP2010 (Shimadzu, Japan.) was equipped with a capillary column: Rtx-5MS (30 m×0.25 mm×0.25 um, Restek, corp, USA.) and a quadrapole mass filter. 1μL volume of sample was injected into column and the split ratio was 50:1. The oven temperature was held at 35℃for 10 min and increase from 35℃to 250℃at the rate of 4℃/min, and the final temperature was maintained for 10min. The flow rate of helium, the carrier gas, was 0.84mL min~(-1). The temperature of injector was 250℃; the ion source temperature and interface temperature were 230℃and 250℃, respectively. Other conditions were as follows: ionization energy, 70 eV; mass range 35~500 amu; and scanning rate 0.5 scans s~(-1)
     7. The aroma components were increased following fermentation either at 20℃or 28℃.
     8. More aroma compounds were detected in the samples fermented at 20℃, Acetic acid; Ether, sec-butyl ethyl; Butanal, 3-methyll; Ethyl caproate; Benzeneacetaldehyde; Nonanal; Estragole; Piperitone; 3-Undecene, 2-methyl; Pentadecane, 2-methyl; Pentadecane; Tridecanal; Myristic acid, ethyl ester; Pentadecanoic acid, ethyl ester; 1-Heptadecanol, acetate and Ethyl 9-hexadecenoate were formed at low fermented temperature, but not detected in the samples fermented at 28℃. Low temperature may be the better condition to form aroma compounds.
     9. Through analyzed three different fermented Capsicum samples, we concluded that the main aroma compounds of fermented Capsicum were Ethyl Acetate; Ethyl amyl ether; Ethylbenzene; Benzene, 1,3-dimethy; beta.-cis-Ocimene; Linalool; alpha.-Terpineol; Tetradecane, 2-methyl; Hexadecanoic acid, ethyl ester; Linoleic acid ethyl ester; Linolenic acid, ethyl ester.
     10. The main aroma compounds of fermented C. frutescens L. were Ether, ethyl isopropyl; Propane, 1-ethoxy-; Ethyl Acetate; Acetal; Linalool; Benzoic acid, 2-hydroxy-, methyl ester(Salicylic acid, methyl ester); Butanoic acid, 2-methyl-, hexylester; Hexyl n-valerate; Butanoic acid, 3-methyl-, hexyl ester; Hexanoic acid, hexyl ester; n-Decanoic acid; 3-Undecene, 2-methyl; Longifolene-(V4); Hexadecane.
     11. The main aroma compounds of fresh Capsicums were Ethyl Acetate; Caproic aldehyde; Acetal; 2-Hexenol; Anisole, p-propenyl; Hexanoic acid, hexyl ester; Tridecane, 2-methyl; 3-Undecene, 2-methyl; Tetradecane, 2-methyl; Linalool; trans-Nerolidol; Tridecanal; 3,7-Dimethyl-6-nonen-l-ol acetate; Decanoic acid, hexyl ester; 1-Heptadecanol, acetate; Myristylaldehyde.
     12. The main aroma compounds of fermented Capsicums sauces were Ether, ethyl isopropyl; Propane, 1-ethoxy; Ethyl Acetate; Ether, sec-butyl ethyl; Butanal, 3-methyl; Acetal; Ethyl amyl ether; Ethylbenzene; Pinene; beta.-Myrcene; alpha.-Phellandrene; Eucalyptol; beta.-cis-Ocimene; Terpinolene; Linalool; alpha.-Terpineol; 2-Decenal, (E); 2,4-Decadienal, (E,E); Copaene; Tridecane; 3-Undecene, 2-methyl; Pentadecane.
引文
[1] Jorge Pino, Enrique Sauri-Duch, Rolando Marbot. Changes in volatile compounds of Habanero chile pepper (Capsicum chinense Jack. cv. Habanero) at two ripening stages. [J]. Food Chemistry, 2006,94:394-398
    [2]张菊华,单杨,李高阳.乳酸菌发酵蔬菜汁的呈味作用[J].湖南农业科学,2004,1:67-70.
    [3]张菊华,单杨,李高阳.乳酸菌发酵蔬菜汁的研究进展[J].饮料工业,2003,6(6):27-31.
    [4]杨春哲,冉艳红.乳酸菌在泡菜生产中的应用[J].食品工业,2003,1.
    [5]赵玲艳,邓放明,杨抚林.乳酸菌的生理功能及其在发酵果蔬中的应用[J].中国食品添加剂,2004,5:77-80.
    [6]彭光华等.辣椒的护绿工艺条件及酸泡辣椒配方优化的研究[J].中国调味品,2001,4:20-22.
    [7]张菊华,单扬.多菌种乳酸菌泡辣椒的工艺研究[J].辣椒杂志,2004,4:44-46.
    [8]赵玲艳,邓放明,杨抚林.自然发酵辣椒中优良乳酸菌的分离与鉴定[J].食品研究与开发,2004,25(3):105-108.
    [9]周晓媛等,发酵辣椒的风味调配[J].食品工业科技,2005,26(1):127-129.
    [10]钟敏,华南理工大学硕士学位论文,辣椒的自然乳酸发酵机理及工艺研究.2001.
    [11]丁耐克.食品风味化学[M].中国轻工业出版社.1996
    [12]高素菊.食品所含的风味物质[J].山东食品科技,1999,2:42—43.
    [13]刘岩梅,张树明.浅谈食品风味物质的分离分析方法[J].中国食品添加剂,2004,3:104-107.
    [14]凌关庭主编,食品添加剂手册[M].北京,化学工业出版社,1997.2
    [15]丁明玉,陈培榕,罗国安.食品中有机酸的高效液相色谱分析法.[J]色谱,1997,15(3):212-215.
    [16]辛梅华.高效液相色谱法测定发酵液中有机酸[J].华侨大学学报自然科学版,1993,14(4):447~450.
    [17]杨毅,李崎,陈蕴等.反相高效液相色谱法(RP-HPLC)测定啤酒中有机酸[J].食品与发酵工业,2003,29(8):6~12.
    [18]毕丽君,顾振宇.固相萃取-反相HPLC分析色酒中有机酸.理化检验.化学分册[J].2000,36(4):163~165.
    [19]辛梅华,李明春,篮心仁等.反相HPLC快速测定调味品中有机酸[J].中国调味品,2003,3:36-39.
    [20]原小寓,吴伟,于泓.离子排斥色谱法分析有机酸的新进展[J].生命科学仪器,2005,3(3):29-33.
    [21]Z. B. GuK zel-Seydim, A. C. Seydim-, A. K. Greene, Determination of Organic Acids and Volatile Flavor Substances in Kefir during Fermentation[J] JOURNAL OF FOOD COMPOSITION AND ANALYSIS 13, 35}43 (2000)
    [22]Shelly Li, James S. Fritz. Organic modifiers for the separation of organic acids and bases by liquid chromatography[J] Journal of Chromatography A, 964 (2002) 91-98
    [23]Guanghou Shui, Lai Peng Leong. Separation and determination of organic acids and phenolic compounds in fruit juices and drinks by high-performance liquid chromatography[J] Journal of Chromatography A, 977 (2002) 89-96
    [24] Ines Mato, Silvia Suarez-Luque, Jose F. Huidobro. A review of the analytical methods to determine organic acids in grape juices and wines[J] Food Research International 38 (2005) 1175-1188
    [25] E. Destandau, J. Vial, A. Jardy, et al, Development and validation of a reversed-phase liquid chromatography method for the quantitative determination of carboxylic acids in industrial reaction mixtures [J]. Journal of Chromatography A, 1088 (2005) 49-56.
    [26] Shou-Feng Chen, Richard A. Mowery, Vanessa A. Castleberry. High-performance liquid chromatography method for simultaneous determination of aliphatic acid, aromatic acid and neutral degradation products in biomass pretreatment hydrolysates [J]. Journal of Chromatography A, 1104 (2006) 54-61.
    [27] E. Kafkas, M. Kosar, N. Turemis. Analysis of sugars, organic acids and vitamin C contents of blackberry genotypes from Turkey [J]. Food Chemistry 97 (2006) 732-736
    [28] 任一平,高宗裕,黄百芬.高效液相色谱法测定黄酒中的有机酸[J],食品与发酵工业,1991,5:41-45.
    [29] 毕丽君,张骊,张鸿发.固相萃取高效液相色谱法分析酱油中的有机酸[J],分析化学,2000,28(11):1391-1394.
    [30] 白冬梅,赵学明,胡宗定.应用HPLC一反相色谱法测定米根霉乳酸发酵液中的有机酸[J],工业微生物,2001,31(1):8-11.
    [31] 高海燕,廖小军,王善广等.反相高效液相色谱法测定果汁中11种有机酸条件的优化[J].分折化学,2004,32(12):1645-1648.
    [32] 朱婷婷,吴帅,邵洪涛等.不同原浓啤酒中有机酸的含量分析[J]食品与发酵工业,2005,31(4):108-112.
    [33] 廖劲松,张水华.食品风味物质的分离研究进展与应用[J].食品工业科技,2003,24(8):106-108.
    [34] 田红玉,孙宝国,刘滨.香味物质分析新技术方法[J].中国食品添加剂增刊学术论文集,286-290.
    [35] 黄业传.自然发酵与人工发酵泡菜的品质对比[J].食品工业,2005,3:41-43.
    [36] 赵大云,丁霄霖.雪里蕻腌菜风味物质的研究[J]食品与机械,2001,2:22-24.
    [37] 赵大云,汤坚,丁霄霖.雪里蕻腌菜特征风味物质的分离和鉴定[J].无锡轻工大学学报,2001,20(3):291-298.
    [38] 范利华,杨洁彬,张篪.乳酸发酵番茄汁、胡萝卜汁风味物质的研究[J].1993,2:18-24.
    [39] 陆利霞,王晓飞,熊晓辉等.植物乳杆菌B2纯种发酵萝卜泡菜的研究[J].食品工业科技,2005,26(7):59-61.
    [40] 田丰伟.泡菜菌系分析和接种发酵研究[硕士学位论文].无锡轻工业大学,2000.
    [41] Hawer, W. D. S., Ha, J. H., Seog, H. M., Nam, Y. J. and Shin, D. W. (1988) Changes in taste and flavour compounds of kimchi during fermentation. Korean Journal of Food Science and Technology. 20(4), 511-517.
    [42] Cha, Y. J., Kim, H. and Cadwallader, K.R. (1998) Aroma-active compounds in Kimchi during fermentation. Journal of Agricultural and Food Chemistry. 46(5), 1944-1953.
    [43] 赖晓英.发酵辣椒工艺的研究.西南大学硕士学位论文,2006.
    [44] 食品中有机酸的测定.[S]GB/T5009.157—2003.
    [45]董园园,董彩霞,卢颖林等.植物组织中有机酸的提取方法比较[J].南京农业大学学报,2005,28(4):140~143
    [46]郭根和,潘葳,苏德森等.反相高效液相色谱法同时测定枇杷中的某些有机酸[J].福建农业学报,2005,20(3):198~201
    [47]周光明,高智席,黄成等.IS-RP-HPLC法快速测定杉科植物中有机酸含量[J].分析化学,2006,34(1):141
    [48]赵景婵,郭治安,常建华等.有机酸类化合物的反相高效液相色谱法的分离条件研究[J].色谱,2001,19(3):260~263.
    [49]黄红心,张玉奎,林从敬等.智能搜索用于实际样品的液相色谱分离条件的优化[J].色谱,1992,10(3):125~128.
    [50]厉程,倪坤仪,郁建等.优化指标gHCRF在HPLC分离氯苄律定有关物质中的应用[J].药学学报,1999,34(10):772~775.
    [51]食品添加剂—乳酸.[S]GB 2023—2003.
    [52]董园园,董彩霞,卢颖林等.植物组织中有机酸的提取方法比较[J].南京农业大学学报,2005,28(4):140~143.
    [53]陈悦娇,王冬梅,邓炜强等.SDRP和SDE法提取乌龙茶香气成分的比较研究[J].中山大学学报,2005,44(6):275-278
    [54]田怀香,王璋,许时婴.GC-O法鉴别金华火腿中的风味活性物质[J].食品与发酵工业,2004,30(12):117-123
    [55]李华,王华,刘拉平.爱格丽白葡萄酒香气成分的GC/MS分析[J].中国农业科学,2005,38(6):1250-1254
    [56]刘凌,崔明学,张京健.不同处理方法对番茄汁挥发性组分的影响[J]:食品与发酵工业,2005,31(3):1-4
    [57]李怀林,杨晓虹,李刚.长白山水杨梅挥发油成分GC-MS分析[J]:长春中医学院学报,2005,21(2):31-32
    [58]杨生玉,朱显峰,张彭湃.纯种发酵江米甜酒中游离氨基酸和挥发性香气成分的组成分析[J]:食品工业科技,2005,26(1):71-73
    [59]韩泳平,宋学伟,李远森等.大花红景天挥发性提取物制备方法比较研究[J]:中国药学杂志,2005,40(13):973-974
    [60]吕强,许莉,肖宏展.岛津公司新型气相色谱质谱联用仪GCMS-QP2010[J].现代仪器,2002,1:26-27
    [61]刘文鹏,李岩.低盐固态酱油灭菌温度对酱油风味及质量影响的研究[J].中国调味品,2002,7:13-16
    [62]刘战丽,罗欣.发酵肠的风味物质及其来源[J].中国调味品,2002,10:32-35
    [63]刘春香,何启伟,付明清.番茄、黄瓜的风味物质及研究[J]:山东农业大学学报(自然科学版),2003,34(2):193-198
    [64]李焱,秦军,黄筑艳等.微波-同时蒸馏萃取花椒挥发油化学成分的GC-MS分析[J].贵州工业大学学报(自然科学版),2005,34(3):33-35
    [65]彭秧锡.同时蒸馏萃取器及其使用方法[J].理化检验化学分册,2004,40(5):296
    [66]李炎强,冼可法.同时蒸馏萃取法与水蒸气蒸馏法分离分析烟草挥发性、半挥发性中性成分的比较[J]:烟草科技/烟草化学,2000,2:18-21
    [67]Efstathios Z. Panagou, Chrysoula C. Tassou. Changes in volatile compounds and related biochemical profile during controlled fermentation of cv. Conservolea green olives[J]. Food Microbiology, 2006
    [68]Y.W. Park, M.A. Drake. Effect of 3 months frozen-storage on organic acid contents and sensory properties, and their correlations in soft goat milk cheese [J]. Small Ruminant Research 58 (2005) 291-298
    [69]赵大云,丁霄霖.雪里蕻腌菜卤汁中有机酸成分气相色谱分析[J].上海交通大学学报,2003,21(3):220-226
    [70]郭瑛,肖朝萍,王红.高效液相色谱法测定乌梅有机酸[J].分析化学研究简报.2004.32(12):1624-1626
    [71]M. M. Mazida, M. M. Salleh, H. Osman. Analysis of volatile aroma compounds of fresh chilli Capsicum annuum) during stages of maturity using solid phase microextraction (SPME) [J]. Journal of Food Composition and Analysis 18 (2005) 427-437
    [72]Deborah S. Garruti, Maria Regina B. Franco, Maria Aparecida A.P. da Silva. Assessment of aroma impact compounds in a cashew apple-based alcoholic beverage by GC-MS and GC-olfactometry [J]. Available online at www.sciencedirect.com
    [73]M. C. Montel, F. Masson, R. Talon. Bacterial Role in Flavour Development [J]. Meat Science, 1998, 49:S111-S123
    [74]Igor Lukic, Mara Banovic, Dordano Persuric et al. Determination of volatile compounds in grape distillates by solid-phase extraction and gas chromatography [J]. Journal of Chromatography A, 9 (2005) 7-13
    [75]Nandor Kocsis, Maria Amtmann, Zsuzsa Mednyanszky et al. G-C-MS Investigation of the Aroma Compounds of Hungarian Red Paprika (Capsicum annuum) Cultivars [J]. JOURNAL OF FOOD COMPOSITION AND ANALYSIS (2002) 15, 195-203
    [76]Jon G. Wilkes, Eric D. Conte, Yongkyoung Kim et al. Sample preparation for the analysis of flavors and off-flavors in foods [J]. Journal of Chromatography A, 880 (2000) 3-33
    [77]Dayun Zhao, Jian Tang, Xiaolin Ding. Analysis of volatile components during potherb mustard (Brassica juncea, Coss.) pickle fermentation using SPME-GC-MS [J]. Available online at www.sciencedirect.com
    [78]Karsten Tjener, Louise H. Stahnke, Lone Andersen et al. A fermented meat model system for studies of microbial aroma formation [J]. Meat Science 66 (2003) 211-218
    [79]R. Perestrelo, A. Fernandes, F.F. Albuquerque et al. Analytical characterization of the aroma of Tinta Negra Mole red wine: Identification of the main odorants compounds [J]. Analytica Chimica Acta 563 (2006) 154-164
    [80]Cheng Hao Zheng, Kyoung Heon Kim, Tae Hwan Kim et al. Analysis and characterization of aroma-active compounds of Schizandra chinensis (omija) leaves [J]. Journal of the Science of Food and Agriculture, 85:161-166 (2005)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700