豇豆泡制加工适性评价及脆性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泡豇豆因其风味独特以及促消化、增食欲等功效深受消费者的喜爱。随着我国经济快速健康的发展,人民的生活水平不断提高,对食品的要求也越来越高,因此研究如何提高泡菜的品质有着重要意义。本文以湖北地区广泛栽培的9个豇豆品种为原料进行泡制,并从产量、病虫害情况以及泡制后的营养成分、色泽、脆度、有毒有害物质含量等几个方面对它们进行了综合评价;在此基础上以其中2个品种为原料,对影响产品脆度的因素和泡制过程中豇豆脆度的变化规律及其机理进行了研究,其主要结果如下:
     1.不同品种的豇豆泡制后品质有较大的差异。灰色关联度分析结果表明,汕豇6号、高产四号、201特长豇豆与参考品种的关联度最接近,泡制以后综合性状最优,适宜于泡制加工。
     2.以脆度为评价指标,在豇豆成熟度、盐浓度、环境温度、漂烫时间、漂烫温度、添加CaCl_2浓度、泡制时间7个单因素试验的基础上,采用三因素二次回归正交旋转组合设计对豇豆泡制加工的条件进行了优化。
     建立的豇豆脆度与添加CaCl_2浓度、盐浓度和泡制时间的回归模型如下:
     Y=61.41+0.09X_1+0.17X_2-0.45X_3+0.25X_1X_2-0.22X_1X_3+0.06X_2X_3-0.45X_1~2-0.42X_2~2-0.74X_3~2
     各因子对泡制豇豆脆度影响的大小依次为泡制时间、盐浓度、添加CaCl_2浓度。建立的回归模型显著性检验达极显著水平,无失拟因素存在,较好的拟合了泡制豇豆脆度与各影响因子之间的关系。采用频数分析法模拟寻优,可获得脆度y≥61.49g的工艺条件为:添加CaCl_2浓度0.10%-0.11%,盐浓度4.06%-4.20%,泡制时间7-8d。
     3.在泡制过程中豇豆的脆度会呈现先下降、后上升、再下降的变化规律。豇豆脆度的变化与其水分含量、纤维素含量、水溶性果胶含量、原果胶含量以及果胶酶和纤维素酶的活性有关。采用3种不同的数据统计方法得到的结果存在较大的差异:灰色关联度分析结果表明,影响豇豆泡制以后脆度的主要因素依次为原果胶含量、水分含量、纤维素含量和果胶酶活性;简单相关分析结果表明,豇豆脆度与水溶性果胶含量呈极显著负相关,与水分含量和纤维素含量呈显著正相关:逐步回归分析结果表明,水分含量、原果胶含量、水溶性果胶含量和纤维素酶活性才是影响泡制豇豆脆度的主要因子。总体来说,各因子可能均对豇豆脆度有直接或间接的影响。
Pickled cowpea was liked deeply by the large crowd because of unique flavor and promoting digestion, increasing appetite, and other effectiveness. With China's rapid and healthy economic development and people's living standard continued to improve, the demand for food has increased, and the study of how to improve the quality of pickles is of great significance. Nine Cowpea varieties, cultivated broadly in Hubei, were pickled, and we carried out an comprehensive evaluation on them by yields, plant diseases and insect pests as well as several aspects after pickling such as nutritive ingredients, color, brittleness, deleterious substances and so on. Selecting two varieties as raw material, the influential factors upon crispness of pickled cowpea, the mechanism and changing law of crispness during pickling were studied, the main study results were summarized as follows:
     1. There was a great difference on the quality to different varieties after pickling. According to the Grey Correlative Degree Analysis principle, the results showed that correlative value of 201 techang, gaochan 4 and shanjiang 6 are nearer to reference variety and comprehensive performances are good, so they are the most proper varieties for pickling.
     2. Based on single factor experiment which crispness was evaluation indexes including maturity, salt concentration, environmental temperature, blanching time, blanching temperature, CaCl_2 concentration and pickled time, the optimum process parameters were determined with three-factor quadric orthogonal regression composite experimental design.
     The mathematical models were established as followings:
     Y=61.41 +0.09X_1+0.17X_2-0.45X_3+0.25X_1X_2,-0.22X_1X_3+0.06X_2X_3-0.45X_1~2-0.42X_2~2- 0.74X_3~2
     The crispness of pickled cowpea was noticeably affected by pickled time, salt concentration and CaCl_2 concentration in significant order. The model of crispness showed no significant lack of suitability at 5%, but it was statistically significant at 1%. The model was appropriate to express response variables. The scheme for getting crispness more than 61.49g was that CaCl_2 concentration 0.10%-0.11%, salt concentration 4.06%-4.20%. pickled time 7-8d.
     3. Crispness declined first and then increased and afterwards declined again during pickling. There was relationship between crispness of pickled cowpea and water content, cellulose content, water soluble pectin, petin content, pectinase and cellulase activity. Results revealed great divergence in comparison with three data statistics method: the grey correlation analysis results showed that the main fators influencing the crispness of pickled cowpea were pectin content, water content, cellulose content and pectinase activity in significant order; correlation analysis of parameters indicated that the crispness of pickled cowpea had significant negative correlation with water soluble pectin content, and positive correlation with water content and cellulose content; the stepwise regression analysis results showed that the main factors influenceing the crispness of pickled cowpea were water content, petin content, water soluble pectin content and cellulase activity. Overall, these factors affected the crispness of pickled cowpea directly or indirectly.
引文
1.蔡永峰,熊涛,岳国海等.直投式生物法快速生产泡菜工艺条件的研究.食品与发酵工业,2006,32(6):73-76
    2.陈晓平,刘华英,魏小川等.自然发酵酸菜汁中乳酸菌的分离筛选与鉴定研究.食品科学,2006,27(2):91-94
    3.陈有容,杨凤琼.降低腌制蔬菜亚硝酸盐含量方法的研究进展.上海水产大学学报,2004,13(1):67-71
    4.陈仲翔,董英.泡菜工业化生产的研究进展.食品科技,2004,(4):33-35
    5.大连轻工业学院.食品分析.北京:中国轻工业出版社,2000
    6.邓聚龙.灰色系统基本方法.武汉:华中科技大学出版社,2005,82.110
    7.董全.低盐酱菜脆度保持的研究.江苏调味副食品,2002,9-10
    8.段翰英,李远志,蒋善有等.泡菜的亚硝酸盐积累问题研究.食品的研究与开发,2001,22(6):15-17
    9.韩涛,李丽萍,艾启俊.漂烫对蔬菜果实质地的影晌及低温漂烫作用的机理.食品工业科技,2003,24(2):89-92
    10.韩雅珊.食品化学实验指导.北京:中国农业大学出版社,1996
    11.胡宗利.我国腌渍食品的历史现状对策及发展趋势.中国调味品,1999,1(1):6-8
    12.季巧珍.咸菜腌制过程中亚硝酸盐日变化观察.医学理论与实践,2000,13(8):511-512
    13.姜燕,田鸣华,刘政霞等.泡菜酱腌菜的营养及家庭制作.北京:人民军医出版社,2005,6
    14.雷虹,高忠诚,秦智伟.盐渍幼瓜的脆度研究.中国调味品,2002(11):19-22
    15.李宝树,于斌.采用两种方法评估中国蔬菜营养价值的结果及意见.吉林蔬菜,1999,(5):4-6
    16.李基银.腌菜质量与卫生.北京:中国轻工业出版社,1988,151-164
    17.李珊,李永峰,王之波.蔬菜、腌菜亚硝酸盐测定及Vc对亚硝酸盐阻断.中国公共卫生,2004,20(3):357
    18.李书华,蒲彪,陈封政.泡菜的功能及防腐研究进展.中国酿造,2005(4):6-8
    19.李文斌,唐中伟,宋敏丽.韩国泡菜营养价值与保健功能的最新研究.农产品加工学刊,2006(8):83-84
    20.李曜东,魏玉凝,顾淑荣.PG与番茄果实成熟的关系.植物学通报,2004,21(1):79-83
    21.李幼筠.中国泡菜的研究.中国调味品,2006(1):57-63
    22.林燕文、黄君红.泡菜营养强化食品的研究初探.食品科技,2001,(2):28-29
    23.刘刚,赵桂琴.灰色系统理论在燕麦抗倒伏综合评价中的应用.草业科学,2006,23(10):23-27
    24.刘录祥,孙其信.灰色系统理论应用于作物新品种评估初探.中国农业科学,1989,22(3):22-27
    25.吕家龙.蔬菜栽培学各论.北京:中国农业出版社,2001,197
    26.罗雪华,蔡秀娟.紫外分光光度法测定蔬菜硝酸盐含量.华南热带农业大学学报,2004,10(1):13-16
    27.潘秀娟,屠康.质构仪质地多面分析(TPA)方法对苹果采后质地变化的检测.农业工程学报,2005,21(3):166-170
    28.蒲朝文,夏传福,谢朝怀等.酱腌菜腌制过程中亚硝酸盐含量动态变化及消除措施的研究.中国农业科学,2001,30(6):352-354
    29.沈国华,卢英,何丁喜等.纯菌接种发酵技术在腌渍蔬菜加工上的应用研究(一、二).中国调味品,2002,6:24-28
    30.苏青海.酱腌菜的脆性变化及保脆措施.四川食品工业科技,1995,3,29-30
    31.孙力军,李正伟,孙德坤等.纯种接种和促菌物质的添加对苔菜泡菜发酵过程及其品质的影响.食品与发酵工业,2003,29(8):103-105
    32.孙平.食品分析.北京:化学工业出版社,2005,403-405
    33.孙哲浩,赵谋明.食品的质构特性与新产品开发.食品研究与开发,2006,27(2):103-105
    34.陶兴无,高冰.接种乳酸菌对甜酸蕌头腌制工艺和品质的影响.中国酿造,2007,3:53-55
    35.王利群,王文兵,吴守一等.蔬菜硝酸盐含量和硝酸还原酶活性的研究.食品科学,2002,24(12):37-40
    36.魏宝东,姜炳义,冯辉.番茄果实货架期硬度的变化及其影响因素的研究.食品科学,2005,26(3):249-252
    37.吴勤民.泡菜工艺及货架期研究.广西轻工业,2006,6:25-26
    38.吴艳华,聂芊,吴春.大白菜腌渍过程中亚硝酸盐的变化规律.江苏食品与发酵,2001,(3):4-6
    39.薛彦斌,高桥绫,中村伶之辅.番茄果实采后硬度变化的理化分析.保鲜与加工,2002,6:19-20
    40.杨德兴,戴京晶,庞向宇.猕猴桃衰老过程中PG,果胶质和细胞壁超微结构的变化.园艺学报,1993,20(4):341-345
    41.杨荣玲,肖更生,吴晓玉等.我国蔬菜发酵加工研究进展.保鲜与加工,2006,6(2):15-19
    42.杨晓晖.泡菜中低温发酵乳酸菌的分离鉴定及发酵工艺的研究.中国农业大学硕士学位论文,2005
    43.尹利端,韩北忠,黄晶晶等.萝卜泡菜发酵过程中食盐对微生物变化的影响.中国酿造,2005,3:19-21
    44.尹新明,原国辉,马长生.美洲斑潜蝇对豇豆危害的产量损失及防治指标研究.河南农业大学学报,1999,33(2):194-197
    45.于泓鹏,曾庆孝.脆度的研究方法及其控制参数.食品与发酵业,2004,85-88
    46.余家林.农业多元试验统计.北京:北京农业大学出版社,1993
    47.余恺,胡卓炎,余小林.荔枝果肉质构特性测定参数的研究.中国食品学报,2006,6(1):101-105
    48.原永兰,窦坦德,苏保乐等.盐渍加工方式对蔬菜农药残留量的影响.山东农业科学,2005,4:48-49
    49.张飞,岳田利,费坚等.果胶酶活力的测定方法研究.西北农业学报,2004,13(4):134-137
    50.张庆芳,迟乃玉,郑艳等.关于蔬菜腌渍发酵亚硝酸盐问题的探讨.微生物杂志,2003,23(4):41-44
    51.张善生.中国酱腌菜.北京:中国商业出版社,1994
    52.赵大云,丁霄霖.雪里蕻腌菜的质构与果胶组分含量的关系.无锡轻工业大学学报,2001,20(1):40-43
    53.赵丽郡,齐凤兰,陈有容.泡菜研究现状及展望.食品研究与开发,2006,25(3):21-24
    54.赵利民,胡元宝,张显.大白菜杂交组合(品种)灰色关联度综合评判方法的建立.西北农业学报,2006,15(4):183~187
    55.赵勇,李红娟,孙治强.郑州农区土壤重金属污染与蔬菜质量相关性探析.中国生态农业学报,2006,14(4):126-130
    56.郑桂富,许晖,武杰.亚硝酸盐在雪里蕻腌制过程中生成规律的研究.四川大学学报,2000,32(3):85-87
    57.钟之绚,郭剑.酸白菜发酵中乳酸菌群的分析.微生物学报,1995,35(1):74-76
    58.周培根,罗祖友,戚晓玉等.桃成熟期间果实软化与果胶及有关酶的关系.南京农业大学学报,1991,14(2):33-37
    59. Sun M C. Red pepper powder and Kimichi reduce body weight and blood and tissue lipids in rats fed a high fat diet. Nutraceuticals and Food, 2002, 7(2): 162-167
    60. Chang H K. Inhbitory effect the growth of intestinal pathogenic bacteria by Kimchi fermentation. Kerean J Food Sci Tech, 2002, 34(3): 480-486
    61. Howard L R, Buescher R W. Cell Wall Characteristics and Firmness of Fresh Pack Cucumber Pickles Affected by Pasteurization and Calcium Chloride. J of Food Biochemistry, 1990, 14: 31-43
    
    62. Howard L R, Buescher R W. Cell Wall Characteristics and Firmness of Fresh Pack Cucumber Pickles Affected by Pas-teurization and Calcium Chloride. J of Food Biochemistry, 1990, 14: 31-43
    
    63. Hudson J M, Buescher R W. Pectic Substances and Firmness of Cucumber Pickles as Influenced by CaCl2, NaCl and Brine Storage. J of Food Biochemistry, 1985(9): 211-219
    
    64. Keun O J. Anticancer effects of leek Kimchi on human cancer cells. Nutraceuticals and food, 2002, 7(3): 250-254
    
    65. Lin T, Mcfeeters R F. Relationships Among Cell Constituents, Calcium and Texture During Cucumber Fermentation and Storage. J Food Sci, 1983,48: 66-69
    
    66. Nancy J G, Tony S, Paule O. Gary C, Claude P C. Selection and characterization of mixed starter cultures for lactic acid fermentation of carrot, cabbage, beet and onion vegetable mixtures. International Journal of Food Microbiology, 2001, 64: 261-275
    
    67. Nikolaos E M, Petr D, Ingegerd S. Studies on some raw material characteristic in different Swedish apple varieties. Journal of Food Engineering, 2004, 62: 21-129
    
    68. Paul K, Jerome P C. Interference and Its Correction in Pectin Analysis Using the m-Hydroxydiphenyl Method. J Food Sci, 1982, 47: 756-764
    
    69. Pederson C.S, Albury M.N. The effect of pure culture inoculation on fermentation of cucumbers. Food Technology, 1961, 15, 351-354
    
    70. Sila D N, Smout C, Vu T S, Loey A V, Hendrickx M E. Influence of pre-treatment conditions on the texture and cell wall components of carrots during thermal processing. Journal of Food Science, 2005, 70(2):85-91
    
    71. Sistrunk W A, Joseph K. Influence of Processing Methodology on Quality of Cucumber Pickles. J Food Sci, 1982, 47: 949-953
    
    72. Yago M R, Feria A, Roderigo M N. Influenceia de la temperaturey de lainoculation con Lactobacillus plantarum sobreel processo de fermentation para obtencion decolacida. Revista de Agroquimicay Tecnologia de Alimentos, 1985, 25, 295

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700