生物表面活性剂及其在城市生活垃圾堆肥中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展及城市生活垃圾的增加,如何提高堆肥质量,缩短堆肥周期,日益受到重视。生物表面活性剂作为一种对环境较为友好的新型的表面活性剂,将其加入到堆肥中有望改善堆肥的微环境,提高堆肥质量。
     在本课题的研究过程中,制备了生物表面活性剂,找到了本实验室从中国典型培养物保藏中心购买的铜绿假单胞菌的最佳培养条件,并对发酵液中的生物表面活性剂进行了分离提纯,然后,对提取的较纯的生物表面活性剂进行了鉴定和表征,结果表明培养的发酵液中的确存在鼠李糖脂,为下一步实验作了铺垫。
     为了将生物表面活性剂更好的运用到城市固体废物的堆肥中,本研究对堆肥中产生生物表面活性剂的细菌进行了筛选,实验结果发现枯草芽孢杆菌为堆肥中产生生物表面活性剂的主要菌种。
     接着,本研究将铜绿假单胞菌产生的鼠李糖脂发酵液应用到蔬菜基质的降解过程,本实验主要考察了鼠李糖脂发酵液对蔬菜基质降解过程的影响,并且初步探讨了其作用方式。实验表明鼠李糖脂发酵液能够在一定程度上加快蔬菜基质的降解过程,即有可能加快堆肥中易降解物质的降解过程。
     由于土壤中石油烃的污染越来越严重并且化学表面活性剂的应用有较大的局限性,本实验试着用生物表面活性剂发酵液和堆肥的方法来促进被污染土壤中的石油烃的降解,结果表明莎梵婷及鼠李糖脂对堆肥中的石油烃都能起到降解加强作用,并且不同的生物表面活性剂效果不同。从本实验的结果来看,鼠李糖脂发酵液对油的降解效果比莎梵婷发酵液好。
     本研究课题对生物表面活性剂的特性及其在堆肥中的应用进行了研究,主要是生物表面活性剂对蔬菜基质及堆肥中石油烃的降解的研究,取得了一定的研究成果。本课题为较新的研究方向,对科研工作者有一定的参考价值。
With the development of economy and the increasing production of municipal solid waste, how to improve the quality of compost and reduce the cycle of composting has become of more and more interests. Biosurfactant, a new surfactant which is environmental acceptable, is expected to have the potential to ameliorate the microenvironment in composting and increase the quality of compost when it is added.
    In the study, rhamnolipid biosurfactant was produced and the optimal condition for Pseudomonas aeruginosa from China Center for Type Culture Collection to produce the biosurfactant was determined. The biosurfactant was also separated and purified from its broth. Furthermore, it was identified and the results verified the existence of the surfactant, which was preparation for the next experiment.
    For better application of the biosurfactant into municipal solid waste degradation process, in the study biosurfactant-producing bacteria were screened from compost. The results showed Bacillus subtilis were the main biosurfactant-producing bacteria in composting.
    Next, the culture liquid of rhamnolipid produced by Pseudomonas aeruginos was applied to the vegetable substrate degradation process to examine the stimulative role of rhamnolipid broth on the process and to simply disclose the mechanism. The experiment result showed that rhamnolipid broth can enhance the degradation process of vegetable substrate. Consequently it may accelerate the degradation process of readily degradable organic matter in composting.
    Because of more and more serious pollution of oil hydrocarbon in soil and the limited application of synthetic surfactants to remove such contaminants, in the study two biosurfactants were used to help degrade the oil hydrocarbon in soil, using composting method. The results showed that biosurfactant surfactin and rhamnolipid can facilitate degradation of the oil hydrocarbon in composting with different degree and rhamnolipid functioned more positively than surfactin.
    Some physiochemical and biological characteristics of biosurfactant and its application into composting were investigated in the paper. Its positive function on vegetable substrate degradation and oil hydrocarbon removal from composting soil
    
    
    was also validated. The subject suggested a new study field and the work may be helpful to the coming researchers.
引文
[1] Zhang B Y, Huang G H, Chen B, et al. Production of biosurfactants in batch reactor for food waste composting. In: Waste Management and the Environment. Spain, 2003, 131-140
    [2] Miller R M. Bioremediation Science and Applications. Madison: Soil Science Special Publication. 1995, 43:33-54
    [3] Desai J D, Banat I M. Microbial production of surfactants and their commercial potential. Microbial Molec Biol Rev, 1997, 61(1): 47-64
    [4] Banat I M. Characterization of biosurfactants and their use in pollution removal—State of the Art. ACTA Biotechnologica, 1995, 15(3): 251-267
    [5] Alexander M. Biodegradation and bioremediation.In: Academic Press. New York: A division of Harcourt Brace & Company, 1994:71-98
    [6] Zhang Y, Miller R M. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl. Environ. Microbiol, 1992, 58:3276-3282
    [7] 方云,夏咏梅.生物表面活性剂.北京:中国轻工业出版社,1992第1版,5
    [8] Wagner F, Back H, Kretschmer A. Prodution. in: Microbiol Enhanced Oil Recovery. America, Pennwell Publishing, 1983, 55-66
    [9] Hayes M, Neestaas E, Hrebenar K R. Microbial surfactants. Chemtech, 1986: 239-243
    [10] 李祖义.生物工程与表面活性剂.表面活性剂工业,1987第1版,4:16
    [11] 陈坚.环境生物技术.北京:高等教育出版社,2002第1版,412-413
    [12] Morgan P, Watkinson R J. Hydrocarbon degradation in soils and methods for soil biotreatment. Crit Rev Biotechnol, 1989, 8(4): 305
    [13] Rocha C, Infante C. Enhanced oily sludge biodegradation by a tension-active agent isolated from Pseudomonas aeruginosa USB-CS1. Appl Microbiol Biotechnol, 1997, 47:615-619
    [14] Rosenberg E, Ron E Z. High-and low-molecular mass microbial surfactants. Appl Microbiol Biotechnol, 1999, 52:154-162
    [15] Makkar R S, Cameotra S S. An update on the use of unconventional substrates for biosurfactant production and their new applications. Appl Microbiol Biotechnol, 2002, 58:428-434
    
    
    [16] Fleck L C, Bicca F C, Zachia Ayub M A. Physiological aspects of hydrocarbon emulsification, metal resistance and DNA profile of biodegrading bacteria isolated from oil polluted sites. Biotechnology Letters, 2000, 22:285-289
    [17] Antonio A Garcia, Matthew R. Bioseparation Process Science.北京:清华大学出版社,2002第1版,164-190
    [18] 徐燕莉等.表面活性剂的功能.北京:化学工业出版社,2000第1版,8-13
    [19] Desai J D, Banat I M. Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev, 1997, 61(1): 47-64
    [20] Hansen K G, Desai J D, Desai A J. A rapid and simple screening technique for potential crude oil degrading microorganisms. Biotechnol Tech, 1993, 7: 745-748
    [21] Shulga A N, Karpenko E V, Eliseev S A. The method for determination of anionogenic bacterial surface-active peptidolipids. Microbiol J, 1993, 55:85-88
    [22] Siegmund I, Wagner F. New method for detecting Rhamnolipids exerted by Pseudomonas species grown on mineral agar. Biotechnol Tech, 1991,5:265-268
    [23] Bodour A A, R M Miller-Maier. Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. J. Microbiol. Methods, 1998, 32:273-280
    [24] Lin S C, Goursaud J C, Kramer P J, et al. Production of biosurfactants by Bacillus licheniformis strain JF-2. Microbial Enhancement of oil recovery-recent advances, 1990:216-219
    [25] 徐成勇,鲁时瑛,周莲等.发酵法生产生物表面活性剂.微生物学通报,2003,30(3):87
    [26] Davis D A, Lynch H C, Varley J. The production of surfactin in batch culture by Bacillus subtilis ATCC 21332 is strongly influenced by the conditions of nitrogen metabolism. Enzyme Microb. Technol., 1999, 25: 322-329
    [27] Fox S L, Bala G A. Production of surfactin from Bacillus subtilis ATCC 21332 using photo substrates. Biosource Technology, 2000, 75:235-240
    [28] 方云,夏咏梅.生物表面活性剂.北京:中国轻工业出版社,1992第1版,7
    [29] Morgan P, Watkinson R J. Hydrocarbon degradation in soils and methods for soil biotreatment. Crit Rev Biotechnol, 1989, 8(4): 305-333
    [30] 徐成勇,鲁时瑛,周莲等.发酵法生产生物表面活性剂.微生物学通报,2003,30(3):89
    [31] 徐志伟,尤勤,孙炳寅.生物表面活性剂的工业应用.生物技术,1995,5(3):
    
    6-7
    [32] 张翠竹,梁凤来,张心平等.一种脂肽类生物表面活性剂的理化性质及其对原油的作用.油田化学,2000,17(2):172-176
    [33] 梅建风,闵航.生物表面活性剂及其应用.工业微生物,2001,31(1):54-57
    [34] Kosaric N. Biosurfactants Production, Properties and Applications. New york: Marcel Dekker Inc, 1993:329-371
    [35] 陈坚,华兆哲,伦世仪.生物表面活性剂在环境生物工程中的应用.环境科学,1996,17(4):85-87
    [36] Lang S, Wagner F, Kosarci N. Biological Activitics of biosurfactants. New Nork: Marcel Dekker, 1993:251-268
    [37] Klekner V, Kosaric N. Biosurfactants for cosmetics. New Nork: Marcel Dekker, 1993, 329-372
    [38] 范立梅.生物表面活性剂及其应用.生物学通报,2000,35(8):21-22
    [39] 赵由才.生活垃圾资源化原理与技术.北京:化学工业出版社,2002第1版,140
    [40] 罗宇煊,张甲耀,马瑛.有害废物堆肥技术及堆肥生态系统研究进展.上海环境科学,1999,18(10):478
    [41] Zucconi F, Bertoldi M. Compost specification for the production and compost from municipal solid waste. London: Elsevier Applied Science, 1987:30-50
    [42] Inbar Y, Chen Y, Hadar Y, et al. New approaches to compost maturity. Biocycle, 1990, 64-69
    [43] 李艳霞,王敏健,王菊思.有机固体废弃物堆肥的腐熟度参数及指标.环境科学,1999,20(2):98-103
    [44] Haug R T. Compost Engineering: Priciples and Pratice. Ann Arbor Science, 1980, 586
    [45] 李国建,钱新东.堆肥腐熟度指标的探讨.城市环境与城市生态,1990,3(2):27-30
    [46] USEPA. Compost of municipal wastewater sludges. Center for Env. Research Information Office of Research and Development, 1985:62-85
    [47] Nakasaki K, H Yaguchi, Y Sasaki et al. Effects of pH control on composting of garbage. Waste Management&Research, 1993, 11: 117-125
    [48] Inbar Y, Y Chen, Y Hadar. Solid state carbon-13 nuclear magnetic resource infrared spectroscopy of composted organic matter. Soil Sci. Am, 1989, 53: 1695-1701
    [49] Chefetz, P G Hatcher, Y Hadar et al. Chemical and biological characterization
    
    of organic matter during composting of municipal solid waste. Environ. Qual, 1996, 25: 776-785
    [50] Hirai M F, V Chanyasak, H Kubota. A standard measurement for compost maturity. Bio Cycle, 1983:54-56
    [51] Chanyasak V, A Katayama et al. Effects of compost maturity on growth komatsuna in Neubauer's pot: Growth inhibitory factors and assessment of degree of maturity by org-C/org-N ratio of water extracts. Soil Sci. Plant Nutr, 1983, 29: 251-259
    [52] Piotrowski E G, K M Valetine et al. Soild-state, C-13, cross-polarization, "magic-angle" spinning, NMR spectroscopy studies of sewage sludge. Soil Sci, 1984, 137: 194-203
    [53] Gerasimawicz W V, D M Byler. Carbon-13 CPMASNMR and FTIR spectroscopic studies of humic acids. Soil Sci., 1985, 139:270-278
    [54] Preston C M, J A Ripmeester, et al. Application of solution and solid-state multinuclear NMR to a peat-based composting system for fish and crab scrap. Can. J. Spectroscopy, 1986, 31:63-69
    [55] Chen Y, Y Inbar. Chemical and spectroscopical analyses of organic matter transformations during composting in relation to compost maturity. In: Science and Engineering of Composting: Design, Environmental, Microbiological and Utilization Aspects. Worthington: Renaissance Publ, 1993, 551-600
    [56] Hoitink H A J, G A Kuter. Effects of compost in growth on soilborne pathogens. In: The Role of Organic Matter in Modern Agriculture. Netherlands: Martinus Nijhoff Publ, 1986, 289-306
    [57] Inbar Y, Y Chen, H A JHoitink. Properties for establishing standards for utilization of composts in container media. In: Science and engineering of composting: Design, environmental, microbiological and utilization aspects. Worthington: Renaissance Publ, 1993, 668-695
    [58] 陈世和,张所明.城市垃圾堆肥原理与工艺.上海:复旦大学出版社,1990第1版,120-135
    [59] 陈林根,姜雪芳.固体有机废物好氧堆肥发酵工艺概述与展望.环境污染与防治,1997,19(2):37
    [60] Chanyasak V, Hirai M, Kubota H. Changes of chemical components and nitrogen transformation in water extracts as measure during composting of garbage. Journal of Fermentation Technology, 1982, 60(5): 439-446
    
    
    [61] Miikki V, Hnninen K, Knuutinen J, et al. Characterization of humic material formed by composting of domestic and industrial wastes. Part 1. Alkaline cupric oxide oxidation followed by reversed phase HPLC analysis of the degradation products. Chemosphere, 1994, 29(12): 2609-2618
    [62] 陈志强,吕炳南,于春晓,等.城市垃圾好氧堆肥处理的几个关键问题.城市环境与城市生态,2002,15(6):45-47
    [63] 杨师棣.生物表面活性剂的应用及发展趋势.今日科技,2002,9:40-41
    [64] 王雨来.新颖的生物表面活性剂.新技术、新产品、新工艺,2002,28(11):28-30
    [65] Maria S. Kuyukina, Irena B. Ivshina, et al. Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. Journal of Microbiological Methods, 2001, 46:149-156
    [66] Sung-Chyr Lin, Horng-Jyh Jiang. Recovery and purification of the lipopetide biosurfactant of Bacillus subtilis by ultrafitration. Biotechnology Techniques, 1997, 11(6): 413-416
    [67] 方云,夏咏梅.生物表面活性剂.中国轻工业出版社.1992年第一版,109
    [68] 孙彦.生物分离工程.北京:化学工业出版社,2001:8
    [69] Maria S Kuyukina, Irena B Ivshina, et al. Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. Journal of Microbiological Methods, 2001, 46:149-156
    [70] Juan C. Mata-Sandoval, Jeffrey Karns, Alba Torrents. High-performance liquid chromatography method for the characterization of rhamnolipid mixtures produced by Pseusomonas aeruginosa UG2 on corn oil. Journal of Chromatography A, 1999, 864:211-220
    [71] Maria S.Kuyukina, Irena B Ivshina, Jim C Philp. Nick Christofi. Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. Journal of Microbiological Methods, 2001, 46:149-156
    [72] Rosenberg E, Zuckerberg A, Rubinowitz C. Isolation and emulsifying properties. Appl. Environ. Microbiol, 1979, 37(3): 402
    [73] D.A. Davis, H.C. Lynch, J. Varley. The application of foaming for the recovery of Surfactin from B. subtilis ATCC 21332 culture. Enzyme Microb. Technol., 2001, 28: 346-354
    [74] 任波.生物化工产品生产工艺技术及应用.化学工业出版社,1992第1版,89
    [75] 汪正范,牟世芬.色谱分析样品处理.化学工业出版社,2001第1版,89
    
    
    [76] atherine N Mulligan, Raymond N Yong, Bernard F Gibbs. Heavy metal removal from sediments by biosurfactants. Journal of Hazardous Materials, 2001, 85: 11-125
    [77] Sung-Chyr Lin, Kuo-Ging Lin, Chih-Chen Lo, et al. Enhanced biosurfactant production by a Bacillus licheniformis mutant. Enzyme Microb. Technol, 1998, 23: 267-273
    [78] Sung-Chyr Lin, Yi-Chuan Chen, Yu-Ming Lin. General approach for the development of high-performance liquid chromatography methods for biosurfactant analysis and purification. Journal of Chromatgraphy A, 1998,825: 149-159
    [79] Masaaki Morikawa, Yoshihiko Hirata, Tadayuki Imanaka. A study on the structure-function relationship of lipopeptide biosurfactants. Biochimica et Biophysica Acta, 2000, 1488:216-218
    [80] 王敬尊,瞿慧生.复杂样品的综合分析剖析技术概论.化学工业出版社,2001第1版,71
    [81] Antonio A Garcia, Matthew R, Bonen, et al. Bioseparation Process Science. 清华大学出版社,2002年第1版,206
    [82] 石杰.仪器分析.郑州大学出版社,2003第1版,372
    [83] Baneyx F, Ayling A, Palumbo T, et al. Optimization of growth conditions for the production of proteolytically-sensitive proteins in the periplasmic space of Escherichia coli. Appl. Microbiol. Biotechnol, 1991, 36(1): 14-20
    [84] Ullrich C, Kluge B, Palacz Z, et al. Cell-free biosynthesis of surfactin, a cyclic lipopeptide produced by Bacillus subtilis. Biochemistry, 1991, 30(26): 6503-6508
    [85] Ashani Y, Rothschild N, Segal Y, et al. Prophylaxis against organophosphate poisoning by an enzyme hydrolyzing organo-phosphorus compounds in mice. Life Science, 1991, 49:367-374
    [86] Lin S C, Sharma M M, Geordiou G. Production and Deactivation of the Lipopeptide Surfactant from Bacillus licheniformis JF-2. Biotechnol Progress, 1993, 9: 138-145
    [87] Lin S C, Minton M A, Sharma M M, et al. Purification, Structure and Immunological Characterization of a Biosurfactant Produced by Bacillus licheniformis JF-2. Appl. Environ. Microbiol, 1994, 60:31-38
    [88] Yakimov M M, Timmis K N, Wray V, et al. Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface
    
    Bacillus licheniformis BAS50. Appl. Environ. Microbiol, 1995, 61(5): 1706-1703
    [89] S Arino, R Marchal, J P Vandecasteele. Identification and production of a rhamnolipidic biosurfactant by a Pseudomonas species. Appl Microbiol Biotechnol, 1996, 45:164-168
    [90] N M Catherine, B F Gibbs. Correlation of Nitrogen metabolism with biosurfactant production by Pseudomonas aeruginosa. Appl Environ Microbiol, 1989, 55(11): 3016-3019
    [91] L G Santos, O Kappeli, A Fiechter. Pseudomonas aeruginosa biosurfactant production in continuous culture with Glucose as carbon source. Appl Environ Microbiol, 1984, 48(2): 301-305
    [92] M M Nakano, M A Marahiel, P Zuber. Identification of agenetic locus required for biosynthesis of the lipopeptide anti-biotic surfactin in Bacillus subtilis. J Bacteriol, 1988, 70:5662-5668
    [93] E Deziel, G Paquette, R Villemur, et al. Biosurfactant production by a soil Pseudomonas strain growing on polycyclic aromatic hydrocarbons. Applied Environmental Microbiology, 1996, 62(6): 1908-1912
    [94] 席北斗,刘鸿亮,孟伟,等.垃圾堆肥高效复合微生物菌剂的制备.环境科学研究,2003,16(2):58-60
    [95] Zhang B Y, Huang G H, Chen B, et al. Production of biosurfactants in batch reactor for food waste composting. In: Waste Management and the Environment. Spain, 2003, 131-140
    [96] R M Miller. Surfactant-enhanced bioavailability of slightly soluble organic compounds. Bioremediation Science and Applications. 1995, 43:33
    [97] J D Desai, I M Banat. Microbial production of surfactants and their commercial potential. Microbial. Molec. Biol. Rev, 1997, 61:1-47
    [98] I M Banat. Characterization of biosurfactants and their use in pollution removal—State of the Art. Acta Biotechnol., 1995, 15:251
    [99] M Alexander. Biodegradation and bioremediation. Academic Press. San Diego, 1994
    [100] Jennings E M, Tanner R S. Biosurfactant-producing bacteria found in contaminated and uncontaminated soils. Proceedings of the 2000 Conference on Hazardous Waste Research, 2000
    [101] 潘冰峰,徐国梁,施邑屏,等.生物表面活性剂产生菌的筛选.微生物学报,1996,39(3):264-267
    
    
    [102] Yateem A, Balba M T, et al. A1-Awadhi, Isolation and Characterization of Biosurfactant-Producing Bacteria from Oil-Contaminated Soil. Soil and Sediment Contamination 2002, 11(1): 41-51
    [103] 丁克强,孙铁珩,李培军.石油污染土壤的生物修复技术.生态学杂志,2000,19(2):50-55
    [104] F William, Jr Brinton, W Mary. Microbial Appraches to Characterization of Composting Processes. Compost Science and Utilization, 1994:12-17
    [105] D M Falatko, J T Novak. Effect of biologically produced surfactants on the mobility and biodegradation of petroleum hydrocarbons. Water Environemt Research, 1993, 64(2): 163-169
    [106] L H Guerra-Santos, O Kappeli, A Fletcher. Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors. Appl.Microbiol. Biotechnol. 1986, 24:443-448
    [107] 陈世和,张所明,宛玲,等.城市生活垃圾堆肥处理的微生物特性研究.上海环境科学,1989,8(8):17-21
    [108] G Berg, E Rambeloarisoa, G Guista, et al. Fermentation Procedure of a soil bacterium with emulsifying activity. J Env Sei Health, 1990, 7: 753
    [109] Hee-Sik Kim, Jong-Woon Jeon, et al. Surface and physico-chemical properties of a glycolipid biosurfactant, mannosylerythritol lipid, from Candida Antarctica. Biotechnology Letters, 2002, 24: 1637-1641
    [110] Siegmund Lang, Jim C Philp. Surface-active lipids in rhodococci. Antonie van Leeuwenhoek, 1998, 74: 59-70
    [111] Leonardo Colombo Fleck, Flavio Correa Bicca, et al. Physiological aspects of hydrocarbon emulsification, met all resistance and DNA profile of biodegrading bacteria isolated from oil polluted sites. Biotechnology Letters, 2000, 22: 285-289
    [112] Churchill S A, Churchill P F. Biodegradation rate enhancement of hydrocarbons by an oleophilic fertilizer and a rhamnolipid biosurfactant. Journal of Environmental Quality, 1995, 24: 19-28
    [113] Churchill Sharon A, Jones Leslie. Biosurfactant enhanced bioremediation of hazardous substances. Waste Management, 1993, 13: 519
    [114] Cassicy D P, Hadak A J. Microorganism selection and biosurfactant production in a continuously and periodically operated bioslurry reactor. Journal of Hazardous Materials, 2001, 84:253-264
    [115] Barathi S, Vasudevan N. Utilization of petroleum hydrocarbons by
    
    Pseudomonos fluorescens isolated from a petroleum-contaminated soil. Environment International, 2001, 26:413-416
    [116] Dai Kitamoto, Sangita Ghosh. Formation of giant vesicles from diacylmannosylerythritols, and their binding to concanavalin A. The Royal Society of Chemistry, 2000: 861-862
    [117] Southam G, Whitney M. Structural characterization of the hydrocarbon degradation baterial-oil interface: Implications for bioremediation. International Biodeterioration and biodegradation, 2001, 47:197-201
    [118] Hee-Sik Kim, Seong-Bin Kim. Expression of sfp gene and hydrocarbon degradation by Bacillus subtilis. Biotechnology Letters, 2000, 22: 1431-1436
    [119] A. Kollmer, A. schmid. On liquid-liquid mass transfer in two-liquid-phase fermentations. Bioprocess Engineering, 1999, 20:441-448
    [120] Zhang B Y, Huang G H, Chen B, et al. Production of biosurfactants in batch reactor for food waste composting. In: Waste Management and the Environment. Spain, 2003, 131-140
    [121] Vishwanathan S A, Bagley S T. Isolation and characterization of solvent-utilizing thermophilic bacteria. Orlando, 2001: 20-24
    [122] Y. Prabhu, P S Phale. Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel met albolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Appl Microbiol Biotechnol, 2003: 55-56
    [123] Noordman Wouter H, Wachter Johann H J. The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability. Journal of Biotechnology, 2002, 94:195-211
    [124] S Arino, R. Marchal. Identification and production of a rhamnolipidic biosurfactant by a Pseudomonas species. Appl Microbiol Biotechnol, 1996, 45: 162-168
    [125] Dean S M, Jin Y. Phenanthrene degradation in soils co-inoculated with phenanthrene-degradation and biosurfactant-producing bacterial. Journal of Evironmental Quality, 2001, 30: 1126-1133
    [126] A Yateem, M T Balba. Isolation and characterization of biosurfactantproducing bacteria from oil-contaminated soil. Soil and Sediment Contamination, 2002, 11: 41-55
    [127] Kirti Dubey, Asha Juwarkar. Distillery and curd whey wastes as viable alternative sources for biosurfactant production. World Journal of
    
    Microbiology and Biotechnology, 2001, 17:61-69
    [128] 陈小萱.土壤有机质水合热测定法的改进研究.土壤通报,1981,4:43-44
    [129] 王中民等.城市垃圾处理与处置.北京:中国建筑工业出版社,1991第1版,56
    [130] Jose L R Gallego, Jorge Loredo.Bioremediation of diesel-contaminated soils: Evaluation of potential in situ techniques by study of bacterial degradation. Biodegradation, 2001, 12:325-335
    [131] Von Open B, W Klein. Sorption of non-polar and polar compounds to soils: processes, measurements and experience with the applicability of the modified OECD Guideline 106. Chemosphere, 22:258-263
    [132] Kuhnt G. Behavior and fate of surfactants in oil. Environ. Toxical.Chem, 1993, 12: 1813-1820
    [133] Bollag J M, C J Myers, R D Minard. Biological and chemical interactions of pesticides with soil organic matter. Sci. Total Environ., 1992, 123:205-217
    [134] J J Ortega-Valvo, M Lahlou, C Saiz-Jimenez. Effect of organic matter and clays on the biodegradation of phenanthrene in soils. International Biodeterioration and Biodegradation, 1997, 40(2): 101-106
    [135] Susan D Haigh. A review of the interaction of surfactants with organic contaminants in oil. The Science of the Total Environment, 1996, 185: 161-170
    [136] Volkering F. Bioavailability and biodegradation of polycyclic aromatic hydrocarbon: [Ph.D. Thesis]. Netherlands: Wageningen Agricultural University, 1996, 58
    [137] Hong Jeong-Jin, Yang Seung-Man. Adsorption of tricarboxylic acid biosurfactant derived from spiculisporic acid on titanium dioxide surface. Colloilds and Surfaces B: Biointerfaces, 1996, 7:221-233
    [138] Harry J T, Joseph B H, J Michelle Thomas. Effect of surfactant addition on phenanthene biodegradation in sediments. Environmental Toxicology and Chemistry, 1995, 14(6): 953-959
    [139] Olivera N L, Commendatore M G, Morán A C, et al. Biosurfactant-enhance degradation of residual hydrocarbons from ship bilge wastes. Journal of industrial microbiology and biotechnology, 2000, 25:70-73
    [140] Poremba K, Gunkel W, Lang S, et al. Marine biosurfactants Ⅲ Toxicity testing with marine microorganisms and comparison with synthetic surfactants. Zeit. Naturforsch, 1991, 46:210-216
    
    
    [141] K.S.M. Rahman, Thahira J Rahman, Y Kourkoutas, et al. Banat Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresource Technology, 2003, 90: 159-168
    [142] R S Makkar, SS Cameotra. Biosurfactant production by a thermophilic Bacillus subtilis strain. Institute of Microbial Technology, 1997, 18:37-42
    [143] Rainer Fiebig, Detlef Schulze, Jae-Chun Chung, et al. Biodegradation of polychlorinated biphenyls (PCBs) in the presence of a bioemulsifier produced on sunflower oil. Biodegradation, 1997, 8:67-75
    [144] Marta Garca-Junco, Elvira De Olmedo, Jose-Julio, et al. Bioavailability of solid and non-aqueous phase liquid(NAPL)-dissolved phenanthrene to the biosurfactant producing bacterium Pseudomonas aeruginosa 19SJ. Environmental Microbiology, 2001, 3(9): 561-569
    [145] Cameotra S S, Singh H D, Hazarika A K, et al. Mode of uptake of insoluble solid substrates by microorganisms. Ⅱ. Uptake of solid n-alkanes by yeast and bacterial species. Biotechnol Bioeng, 1983, 25: 2945-2956
    [146] De ziel E, Paquette G, Villemur R, et al. Biosurfactant production by a soil Pseudomonas strain growing on polycyclic aromatic hydrocarbons. Appl Environ Microbiol, 1996, 62:1908-1912
    [147] Hisatsuka K, Nakahara T, Sano N, et al. Formation of rhamnolipid by Pseudomonas aeruginosa and its function in hydrocarbon fermentation. Agric Biol Chem, 1971, 35: 686-692
    [148] Cumaraswamy V, Ren Xupeng. Enhanced solubility and biodegradation of naphthalene with biosurfactant. Journal of Environmental Engineering, 2000, 126(7): 629-634
    [149] E Rosenberg, E Z Ron. High-and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol, 1999, 52:154-162
    [150] Luthy R G, Dzombak D A, peters C A, et al. Remediating tar-contaminated soil at manufactured gas plant sites. Environ Sci Technol, 1994, 28: 266A-277A
    [151] Harms H, Bosma TNP. Mass transfer limitation of microbial growth and pollutant degradation. J Ind Microbiol Biotechnol, 1997, 18: 97-105
    [152] Wick L Y, Springael D, Harms H. Bacterial strategies to improve the bioavailability of hydrophobic organic pollutants. In: Treatment of
    
    contaminated soil. New York: Berlin Heidel Berg, 2001, 203-217
    [153] Francois Roch, Martin Alexander. Bioremediation of hydrophobic compounds in the presence of surfactants. Environmental Toxicology and Chemistry, 1995, 14(7): 1151-1158
    [154] A Kollmer, A Schmid, B Sonnleitner. On liquid-liquid mass transfer in two-liquid-phase fermentations. Bioprocess Engeneeting, 1999, 20:441-448
    [155] Qun Li, Bruce E Logan. Enhancing bacterial transport for bioaugmentation of aquifers using low ionic strength solutions and surfactants. Wat. Res., 1999, 33, 4: 1090-1100
    [156] L Y Wick, A R de Munain, D Springael, et al. Responses of Mycobacterium sp. LB501T to the low bioavailability of solid anthracene. Appl Microbiol Biotechnol, 2002, 58:378-385
    [157] Zhang Y, Miller R. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol, 1992, 58:3276-3282
    [158] Zhang Y, Miller R. Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl Environ Microbiol, 1994, 60: 2101-2106
    [159] N L Olivera, M G Commendatore, J L Esteves. Biosurfactant-enhanced degradation of residual hydrocarbons from ship bilge wastes. Journal of Industrial Microbiology and Biotechnology, 2000, 25:70-73
    [160] Rosenberg M, Rosenberg E. Role of adherence in growth of Acinetobacter calcoaceticus RAG-1 on hexadecane. J Bacteriol, 1981, 148:51-57
    [161] Herman D C, Zhang Y, Miller R M. Rhamnolipid (biosurfactant) effects on cell aggregation and biodegradation of residual hexadecane under saturated flow conditions. Appl Environ Microbiol, 1997, 63:3622-3627
    [162] Al-Tahhan R A, Sandrin T R, Bodour A A, et al. Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol, 2000, 66:3262-3268
    [163] S Arino, R Marchal, J P Vandecasteele. Identification and production of a rhamnolipidic biosurfactant by a Pseudomonas species. Appl Microbiol Biotechnol, 1996, 45:162-168
    [164] 马瑛,张甲耀,侯祖军,等.堆肥化生物修复技术处理有毒有害固体废弃
    
    物的模拟研究.环境科学,1997,18(4):65-69
    [165] 陈志强,吕炳南,于春晓,等.城市垃圾好氧堆肥处理的几个关键问题.城市环境与城市生态,2002,15(6):45-47
    [166] 冯明谦.动态发酵工艺参数的研究.四川环境,1999,18(4):17-21
    [167] 沈其荣,王瑞宝,王岩等.堆肥制作中的生物化学变化特征.南京农业大学学报,1996,20(2):51-57
    [168] Knapp E B. C, N and microbial biomass interrelationship during the decoposition of wheatstraw. Soil Bi-ol and Biochem, 1989, 15:455-461
    [169] Knapp E B. Microbial respiration and growth during the decomposition of wheat straw. Soil Biol and Biochem, 1989, 15: 319-323
    [170] 李承强,魏源送,樊耀波,等.堆肥腐熟度的研究进展.环境科学进展,1999,7(6):1-12
    [171] 房敏,黄焕忠,黄铭洪.评估固体废弃物腐熟和稳定的研究.固废处理与处置,1999,18(2):91-93
    [172] 金文标,宋莉晖,董晓利,等.油污土壤呼吸作用强度的测定.油气田环境保护,1998,8(4):33
    [173] Robert L Rhykerd. Influence of Salinity on bioremediation of Oil Soil. Environmental pollution, 1995, 90(1): 127-130

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700