非标记信号增强型荧光分子信标的构建研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因检测是指对受检者基因编码序列的测定和定位分析,根据已知的基因片段来确定与检测序列相关的疾病。基因变异与人类许多疾病有关,如心血管疾病、糖尿病等。
     分子信标技术(Molecular beacon,MB)是由Tyagi和Kramer等于1996年建立的。分子信标是一个U型发卡结构的单链寡聚核苷酸链,在其内部含有部分序列互补配对形成的茎状部分。分子信标的茎-环结构中,环状部分一般为15-30碱基,并与目标序列互补;茎状部分一般含有5-7碱基,根据碱基互补配对原则相互配对形成茎的结构。探针的两端即5’端标记有荧光素,而3’端标记有淬灭剂。探针与目标序列互补杂交之前,由于荧光素和淬灭剂在空间结构上靠得很近,根据能量共振原理,淬灭剂将荧光素荧光淬灭,不会产生荧光;探针与目标序列完全互补配对后,发卡结构打开,荧光素与淬灭剂分开,荧光恢复;如果探针与目标序列之间存在错配碱基,发卡结构不能打开,也不会产生荧光。因此分子信标可以有效的区分全匹配目标DNA链和存在单碱基错配的目标DNA链。
     经典的分子信标需要在寡核苷酸链两端分别标记荧光基团和淬灭基团,实验成本较高,而且操作过程难于操作控制。近年来,许多人改变分子信标结构,构建了许多新型的分子信标来检测DNA。因此,本论文在经典分子信标结构的基础上,构建一种非标记的分子信标来检测DNA。有文献报道,荧光杂环小分子AMND (2-amino-7-methyl-1,8-naphthyridine, AMND)可以通过氢键与DNA双链中未配对的C碱基(胞嘧啶,Cytosine)结合,其荧光发生淬灭。我们拟利用DNA双链中未配对碱基对荧光小分子的荧光淬灭作用制备非标记的分子信标,用于目标DNA链的检测。
     本论文分为两部分:第一部分为综述部分,第二部分为研究报告部分。
     第一章是综述部分。综述部分介绍分子信标的原理,应用及其研究进展。重点介绍分子信标的结构,同时介绍国内外非标记DNA检测技术,阐明了本论文的研究背景,研究意义,研究目的以及研究内容。
     第二部分是研究报告,由两部分组成。第一部分为非标记信号增强型荧光分子信标的构建研究。由于AMND可以特异性的与C碱基(胞嘧啶,Cytosine)结合。因此,本实验选择AMND作为荧光小分子。首先合成荧光杂环小分子AMND(2-氨基-7-甲基-1,8-二氮杂萘,2-amino-7-methyl-1,8-naphthyridine)并对其进行了结构表征。
     之后,将合成出的荧光小分子作为信号物质用于构建非标记信号增强型荧光分子信标。利用两段单链DNA杂交形成一个发卡DNA结构,其特点在于发卡DNA的茎状部分形成了一个空缺位点,空缺位点对面是C碱基。荧光杂环小分子AMND通过氢键识别未配对的C碱基并嵌入空缺位点,AMND荧光发生淬灭。当向体系加入与分子信标环状部分互补的目标连时,分子信标环状部分打开,AMND与目标碱基结合的微环境发生变化,AMND被释放出,其荧光强度恢复表明目标链的存在。研究了影响荧光淬灭的因素,优化了实验条件。研究发现,当加入目标DNA链时,AMND荧光强度恢复,而加入含有错配碱基的目标链时,荧光恢复不明显,表明我们的非标记分子信标可以有效的区分完全互补链和单碱基错配。
     第三部分是有关汞离子的检测。汞蒸气有高度的扩散性和较大的脂溶性,通过血液循环,进入人体器官,然后被氧化,在人体器官中累积起来,当人体汞离子浓度达到一定浓度时,就会出现各种症状,如头痛、肢体麻木,严重者出现肝炎、肾炎、尿血等症状。因此,对汞离子的检测显得尤为重要。近年来,许多学者报道了基于金纳米粒子比色法来检测汞离子。本实验基于单链DNA与金纳米粒子发生作用,当向体系加入一定浓度的NaCl时,由于单链DNA对金纳米粒子的保护作用,金纳米粒子不发生团聚;然后再加入汞离子,使得单链DNA与汞离子形成“T-Hg2+-T”结构,从而与金纳米粒子分离,金纳米粒子聚沉,颜色由酒红色变为蓝色,从而达到检测汞离子的目的。
     本研究利用荧光小分子和双链中未配对碱基通过氢键结合并伴随着小分子荧光淬灭的原理设计了简单、非标记的分子信标,并将其用于目标单链DNA的检测。这一非标记分子信标能够很好地区分全匹配和单碱基错配DNA序列,因而这一非标记分子信标可以用来检测SNPs,将为SNPs分型方法的基础和应用研究提供新思路。此外,我们还研究了利用“T-Hg2+-T”结构的形成,通过比色法检测Hg2+。我们方法的特点在于使用了含T-T错配的双链DNA来稳定金纳米粒子,与通常的单链相比,我们的体系响应速度更快。
The sequence-specific detection of DNA hybridization has attracted considerable interest in a wide range of areas including molecular diagnostics, environmental monitoring, and antibioterrorism. Therefore, there is a continuing demand for sensitive and selective DNA probes. Many kinds of DNA probes have been developed in recent years through various molecular-engineering strategies to meet this demand. Amount these DNA probes, MBs have attract much attentions due in part to their stability, unique functionality and molecular specificity.
     The conventional MBs are single-stranded oligonucleotide probes that possess a stem-and-loop structure. The loop portion of an MB is complementary to a target single-stranded DNA, while the stem is formed by 5 to 7 bp from two complementary arm sequences that are on either end of the MB. A fluorophore is attached to the end of one arm, while a quencher is attached to the end of the other arm. The stem maintains a close proximity of the two moieties, causing fluorescence to be quenched by fluorescence resonance energy transfer (FRET). When an MB hybridizes with its complementary DNA (cDNA), the MB undergoes a spontaneous conformational reorganization with the opening of the stem, leading to a fluorescence restoration. The unique target recognition and signal transduction capabilities of MBs have led to their application in many biochemical and biological assays including quantitative PCR, protein-DNA interactions, multiplex genetic analysis, and the detection of mRNA in living cells. As part of a general program aimed at developing free-labeled MBs, we want to investigate whether the non-covalently bind small fluorescence molecules can be a signal molecules for MBs.
     The paper includes two parts, review and study.
     The first chapter is part of the overview section to describe the principle of molecular beacons, application and research. Focuses on the structure of molecular beacons, we also introduced domestic and foreign non-labeled DNA testing technology, explained the background of this thesis, and to study the meaning, purpose and research content.
     The second chapter is research report:First, we synthesit the fluorescent small molecules AMND (2-amino-7-methyl-1,8-naphthyridine) as it has been reported that AMND can bind to cytosine bases specifically.
     And then, a free-labeled molecular beacon (MB) based on non-covalent binding of a fluorescence molecule,2-amino-7-methyl-1,8-naphthyridin-(AMND), to the intentional gap site in the stem moiety of a hairpin DNA has been developed. When the free-labeled MB was under a closed state, a gap site was formed in the stem moiety of a hairpin DNA. The fluorescence of the small fluorescence molecule was significantly quenched by binding to the unpaired base at the gap site through hydrogen bond, and thus the free-labeled MB shows almost no fluorescence. Upon hybridization with a complementary target ss-DNA (cDNA), the free-labeled MB undergoes a conformational change to take an open state, resulting in an effective fluorescence enhancement owing to a release of the small fluorescence molecules from the gap site. Fluorescence titration and circular dichroism (CD) spectra were used to demonstrate that the binding of AMND to cytosine base at gap site was strong and do not induce a significant conformational change of the hairpin DNA. Under the optimal conditions, the fluorescence intensity of the free-labeled MB increased with an increase of the concentration of cDNA and a detection limit of 9×10-11 M cDNA was achieved. Single mismatched target ss-DNA can be effectively discriminated from complementary target ss-DNA. There may be some advantages in utilizing this type of free-labeled MB over more-traditional ones. First, both ends of the free-labeled MB can be left free to introduce other useful functionalities. Second, our free-labeled MB synthesis is relatively simple and inexpensive because no label is required.
     The third part is colorimetric detection method for Hg2+ ions based on DNA oligonucleotides and unmodified gold nanoparticles (DNA/AuNPs) sensing system. Mercury is a widespread pollutant with distinct toxicological profiles, and it exists in a variety of different forms (metallic, ionic, and as part of organic and inorganic salts and complexes). Solvated mercuric ion (Hg2+), one of the most stable inorganic forms of mercury, is a caustic and carcinogenic material with high cellular toxicity. Here, we report a simple and sensitive colorimetric detection method for Hg2+ions based on DNA oligonucleotides and unmodified gold nanoparticles (DNA/AuNPs) sensing system. Complementary DNA strands with T-T mismatches could effectively protect AuNPs from salt induced aggregation. While in the presence of Hg2+ions T-Hg2+-T coordination chemistry leads to the formation of DNA duplexes, and AuNPs are less well protected thus aggregate at the same salt concentration, accompanying by color change from red to blue. Employing duplex oligonucleotides with T-T mismatches in the sensing system, a sensitive linear range for Hg2+ ions from 0.05 to 2μM and a detection limit of 17 nM are obtained.
引文
[1]E. C. Miller, J. A. Miller. Mechanisms of chemical carcinogenesis[J]. Cancer,1981, 47(s5):1055-1064.
    [2]聂志扬,肖飞,郭健.DNA测序技术与仪器的发展[J].中国医疗器械信息,2009,15(10):13-16.
    [3]曹虹,王立军,孙文该等.人类基因组计划呼唤博士生的时代意识[J].西部医学,2005,17(1):82-83.
    [4]孙国波,董飚.基因芯片技术研究进展及其应用[J].上海畜牧兽医通讯,2009,(6):27-29.
    [5]李金恒,陈冰.基因芯片及其在突变检测中的应用[J].医学研究生学报,2005,18(1):54-58.
    [6]顾明亮,邱长春.生物芯片技术及展望[J].滨州医学院学报,2003,26(2):120-122.
    [7]姚群峰,徐顺清,周宜开.DNA芯片技术及其在突变检测中的应用[J].癌变·畸变·突变,1999,11(5):246-249.
    [8]徐炳森,邵健忠.几种新型生物芯片的研究进展[J].生物化学与生物物理进展,2000,27(3):251-254.
    [9]甄志成,姚志建.毛细管阵列电泳与规模化DNA测序[J].色谱,2001,19(4):361-364.
    [10]康燕,封科军,蒋健晖等.分子信标研究进展[J].化学传感器,2008,28(2):1-11.
    [11]S. Tyagi, F. R. Kramer. Molecular beacons:Probes that fluoresce upon hybridization[J]. Nat. Biotechnol.,1996,14(3):303-308.
    [12]江雅新,方晓红,万立骏等.一种新型荧光探针--分子信标的研究及应用进展[J].分析化学研究报告,2004,32(5):668-672.
    [13]B. Dubertret, M. Calame, A. J. Libchaber. Single-mismatch detection using gold-quenched fluorescent oligonucleotides[J]. Nat. Biotechnol.,2001,19(4): 365-370.
    [14]J. Brunner, R. Kraemer. Copper(II)-quenched oligonucleotide probes for fluorescent DNA sensing [J]. J. Am. Chem. Soc.,2004,126(42):13626-13627.
    [15]C. Y. J. Yang, H. Lin, W. H. Tan. Molecular assembly of superquenchers in signaling molecular interactions [J]. J. Am. Chem. Soc.,2005,127(37): 12772-12773.
    [16]G. T. Hwang, Y. J. Seo, B. H. Kim. A highly discriminating quencher-free molecular beacon for probing DNA[J]. J. Am. Chem. Soc.,2004,126(21): 6528-6529.
    [17]G. Bonnet, S. Tyagi, A. Libchaber, et al. Thermodynamic basis of the enhanced specificity of structured DNA probes[J]. Proc. Natl. Acad. Sci.,1999,96(11): 6171-6176.
    [18]S. Tyagi, S. A. E. Marras, F. R. Kramer. Wavelength-shifting molecular beacons[J]. Nat. Biotechnol.,2000,18:1191-1196.
    [19]王怡瑾,王宏,聂立波等.分子信标技术[J].化学通报,2004,(12):912-918.
    [20]G. Bonnet, O. Ktivhrbdky, A. Libchaber. Kinetics of conformational fluctuations in DNA hairpin-loops[J]. Proc. Natl. Acad. Sci.,1998,95(15):8602-8606.
    [21]Y. Jin, K. M. Wang, W. H. Tan, et al. Monitoring molecular beacon/DNA interactions using atomic force microscopy [J]. Anal. Chem.,2004,76(19): 5721-5725.
    [22]C. B. Ma, Z. W Tang, X. Q Huo, et al. Real-time monitoring of double-stranded DNA cleavage using molecular beacons[J]. Talanta,2008,76(2):458-461.
    [23]Z. W. Tang, K. M. Wan, W. H. Tan, et al. Real-time monitoring of nucleic acid ligation in homogenous solutions using molecular beacons[J]. Nucleic. Acids. Res., 2003,31(23):e148.
    [24]孔德明,古珑,沈含熙等.TaqMan-分子灯标:一种新型的荧光基因检测探针[J].化学学报,2003,61(5):755-759.
    [25]D. L. Solo, X. L. Zhang, P. Lu, et al. Real time detection of DNA RNA hybridization in living cells[J]. Proc. Natl. Acad. Sci.,1998,95(20):11538-11543.
    [26]T. Matsuo. In situ visualization of messenger RNA for basic fibroblast growth factor in living cells[J]. Biochim. Biophys. Acta.,1998,1379(2):178-184.
    [27]A. J. Brookes. The essence of SNPs[J]. Gene,1999,234(2):177-186.
    [28]F. S. Collins, M. S. Guyer, A. Chakravarti. Variations on a theme:Cataloging human DNA sequence variation[J]. Science,1997,278(5343):1580-1581.
    [29]B. Gottgens, L. M. Barton, J. G. Gilbert, et al. Analysis of vertebrate SCL loci identifies conserved enhancers[J]. Nat. Biotechnol.,2000,18(2):181-186.
    [30]G. G. Loots, R. M. Locksley, C. M. Blankespoor, et al. Identification of a coordinate regulator of interleukins 4,13 and 5 by cross-species sequence comparisons[J]. Science,2000,288(5463):136-140.
    [31]H. Tao, D. R. Cox, K. A. Frazer. Allele-specific KRT1 expression is a complex trait[J]. Plos Genet.,2006,2(6):e93.
    [32]P. C. Gwee, K. Tang, P. H. Sew, et al. Strong linkage disequilibrium at the nucleotide analogue transporter ABCC5 gene locus[J]. Pharmacogenet. Genom., 2005,15(2):91-104.
    [33]C. A. Marotta, J. T. Wilson, B. G. Forget. Human beta-globin messenger RNA. Ⅲ. nucleotide sequences derived from complementary DNA[J]. J. Biol. Chem.,1977, 25290(14):5040-5053.
    [34]S. A. Tishkoff, F. A. Reed, A. Ranciaro. Convergent adaptation of human lactase persistence in Africa and Europe[J]. Nat. Genet.,2007,39(1):31-40.
    [35]刘万清,贺林.SNP-为人类基因组描绘新的蓝图[J].遗传,1998,20(6):38-40.
    [36]G. Barbajani, A. Magagni, E. Minch. An apportionment of human DNA diversity [J]. Proc. Natl. Acad. Sci.,1997,94(9):4516-4519.
    [37]W. H. Tan, X. H. Fang, Jeffery Li, et al. Molecular Beacons:A novel DNA probe for nucleic acid and protein studies[J]. Chem. Eur. J.,2006,6(7):1107-1111.
    [38]N. Hamaguchi, A. Ellington, M. Stanton. Aptamer beacons for the direct detection of proteins[J]. Anal. Chem.,2001,294(2):126-131.
    [39]J. W. J. Li, X. H. Fang, S. M. Schuster, et al. Molecular beacons:A novel approach to detect protein-DNA interactions [J]. Angew. Chem. Int. Ed.,2000, 39(6):1049-1052.
    [40]J. W. J. Li, X. H. Fang, W. H. Tan. Molecular aptamer beacons for real-time protein recognition[J]. Biochem. Biophys. Res. Commun.,2002,292(1):31-40.
    [41]A. E. Radi, J. L. A. Sanchez, E. Baldrich, et al. Ultrasensitive electrochemical, molecular beacon aptasensor[J]. J. Am. Chem. Soc.,2006,128(1):117-124.
    [42]X. H. Fang, J. W. J. Li, W. H. Tan. Using molecular beacons to probe molecular interactions between lactate dehydrogenase and single-stranded DNA[J]. Anal. Chem.,2000,72(14):3280-3285.
    [43]X. H. Fang, Z. H. Cao, T. Beck, et al. Molecular aptamer for real-time on coprotein platelet-derived growth factor monitoring by fluorescence anisotropy[J]. Anal. Chem.,2001,73(23):5752-5757.
    [44]牛超,王月兰,岳俊杰等.DNA芯片技术在食品病原体检测中的应用[J].生物技术通讯,2009,20(4):594-597.
    [45]张骞,盛军.基因芯片技术的发展和应用[J].中国医学科学院学报,2008,30(3):344-347.
    [46]王明泉,王晓珊.生物芯片技术及其在环境科学领域的应用[J].环境科学与技术,2007,30(5):101-105.
    [47]张润锋,陈宏.基因芯片及应用[J].黄牛杂志,2008,28(3):35-38.
    [48]翟新验,刘钧.基因芯片技术的应用前景[J].当代畜牧,2003,(6):41-43.
    [49]韩莹,桑锋,鲁亚平.基因芯片技术及其应用研究[J].生物技术通报,2006,(4):12-15.
    [50]H. Du, C. M. Strohsahl, J. Camera, et al. Sensitivity and specificity of metal surface immobilized "molecular beacon" biosensors[J]. J. Am. Chem. Soc.,2005, 127(21):7932-7940.
    [51]H. Wang, J. Li, H. P. Liu, et al. Label-free hybridization detection of a single nucleotide mismatch by immobilization of molecular beacons on an agarose film[J]. Nucleic. Acids. Res.,2002,30(12):e61.
    [52]卓琳.DNA与小分子相互作用的研究进展[J].重庆工商大学学报(自然科学版),2005,22(5):440-445.
    [53]廖见培.DNA与小分子药物相互作用的研究[D].长沙:湖南大学,2001.
    [54]黄琦,汪维鹏,钟文英等.药物分子与DNA相互作用的研究方法[J].中南药学,2004,2(6):354-357.
    [55]G. Yang, J. Z. Wu, L. Wang, et al. Study of the interaction between novel ruthenium (Ⅱ)-polypyridyl complexes and calf thymus DNA[J]. J. Inorg. Biochem.,1997,66(2):141-144.
    [56]C. V. Kumar, E. H. Asuncion. DNA binding studies and site selective fluorescence sensitization of an anthryl Probe[J]. J. Am. Chem. Soc.,1993,115(19):8547-8553.
    [57]彭俊峰,凌建亚,张晗星等.虫草素与DNA作用的光谱研究[J].光谱学与光谱分析,2004,24(7):858-861.
    [58]Y. L. Zhou, Y. Z. Li. Studies of interaction between poly (allylamine hydrochloride) and double helix DNA by spectral methods[J]. Biophys. Chem.,2004,107(3): 273-281.
    [59]E. B. Brauns, C. J. Murphy, M. A. Berg. Local dynamics in DNA by temperature-dependent stokes shifts of an intercalated dye[J]. J. Am. Chem. Soc., 1998,120(10):2449-2456.
    [60]L. Strekowski, B. Wilson. Noncovalent interactions with DNA:An overview[J]. Mutat. Res.,2007,623(1-2):3-13.
    [61]叶勇,杨俊亮,刘艳红等.偏端霉素衍生物与DNA相互作用的圆二色谱测定[J].郑州大学学报(医学版),2009,44(11):1161-1163.
    [62]G. M. Pavan, A. Danani, S. Pricl, et al. Modeling the multivalent recognition between dendritic molecules and DNA:Understanding how ligand "sacrifice" and screening can enhance binding[J]. J. Am. Chem. Soc.,2009,131(28):9686-9694.
    [63]R. Bonomi, F. Selvestrel, V. Lombardo, et al. Phosphate diester and DNA hydrolysis by a multivalent nanoparticle-based catalys[J]. J. Am. Chem. Soc.,2008, 130(47):15744-15745.
    [64]陈仪娜.DNA与生物小分子相互作用的研究[D].兰州:西北师范大学,2007.
    [65]S. N. Li, P. A. He, J. H. Dong, et al. DNA-directed self-assembling of carbon nanotubes[J]. J. Am. Chem. Soc.,2005,127(1):14-15.
    [66]X. Z. Zhang, K. Jiao, S. F. Liu, et al. Readily reusable electrochemical DNA hybridization biosensor based on the interaction of DNA with single-walled carbon nanotubes[J]. Anal. Chem.,2009,81(15):6006-6012.
    [67]胡劲波,黄清泉,李启隆.博莱霉素与DN A在镍离子注入修饰电极上的相互作用及其应用[J].化学学报,2001,59(6):836-841.
    [68]夏前正,刘姝娜,蔡称心.DNA化学损伤的电化学检测[J].南京师大学报(自然科学版),2007,30(4):119-124.
    [69]D. M. U, P. Pereza, C. Teijeiroa, et al. Interactions of surface-confined DNA with acid-activated mitomy C[J]. Biophys. Chem.,1998,75(2):87-95.
    [70]胡耐根.重金属铅、汞污染对人的影响[J].科技信息,2009,(35):1186-1187.
    [71]孙淑兰.汞的来源、特性、用途及对环境的污染和对人类健康的危害[J].上海计量测试,2006,5:6-9.
    [72]I. Falnoga, M. T. Znidaric, M. Horvat, et al. Mercury, selenium, and cadmium in human autopsy samples from idrija residents and mercury mine workers[J]. Environ. Res. Sect. A,2000,84(3):211-218.
    [73]R. K. Zalups, L. D. Parks, V. T. Cannon, et al. Mechanisms of action of 2,3-dimercaptopropane-l-sulfonatend the transport, disposition, and toxicity of inorganic mercury in isolated perfused segments of rabbit proximal tubules[J]. Mol. Pharmacol.,1998,54(2):353-363.
    [74]R. K. Zalups, A. G. Aslamkhan, S. Ahmad. Human organic anion transporter mediates cellular uptake of cysteine-S conjugates of inorganic mercury [J]. Kidney. Int.,2004,66:251-261.
    [75]杨水莲,李晓军,冯克玉等.我国汞中毒临床研究概况[J].中国职业医学,2004,31(6):50-52.
    [76]S. E. Pogarev, V. Ryzhov, N. Mashyanov, et al. Direct measurement of the mercury content of exhaled air:A new approach for determination of the mercury dose received[J]. Anal. Bioanal. Chem.,2002,374(6):1039-1044.
    [77]蔡文洁,江研因.甲基汞暴露与人体健康影响[J].上海环境科学,2008,27(3):129-134.
    [78]李春英,邱炳源.甲基汞的毒性作用[J].中华预防医学杂志,2001,35(6):420-421.
    [79]王锐,任锐,刘世凯.甲基汞的生殖毒性及其研究进展[J].国外医学卫生学分册,2001,28(4):215-228.
    [80]刘忠民,仲井邦,佐藤洋.甲基汞暴露对小鼠胎儿期和成长期神经行为的影响[J].吉林大学学报(医学版),2006,32(3):436-439.
    [81]宋吉英.汞的富集和检测方法研究进展[J].化学世界,2009(5):312-314.
    [82]杨杰,王竹天,杨大进.食品中总汞检测方法的研究进展[J].中国食品卫生杂志,2008,20(4):346-351.
    [83]李秀华,尔墩扎玛.分光光度法检测饲料中汞含量[J].饲料工业,2007,28(16):48-50.
    [84]刘丽萍,张妮娜,李筱薇等.直接测汞仪测定食品中的总汞[J].中国食品卫生杂志,2010,22(1):19-23.
    [85]高健,张荣成.载体型重金属螯合树脂的制备及其吸附性能研究[J].天津化工,2001,(5):1-3.
    [86]孙俊梅,刘怀志,廖振环等.奎宁负载树脂分离氢化物发生ICP-AES测定汞的研究[J].1998,14(4):288-291.
    [87]J. Chwastowska, A. Rogowska, E. Sterlinska, et al. Chelating 2-mercapto-benzothiazole loaded resin. Application to the separation of inorganic and alkylmercury species for their atomic absorption spectrometry determination in natural waters[J]. Talanta,1999,49(4):837-842.
    [88]于文强,易清风.金纳米颗粒修饰钛电极的制备及其对葡萄糖氧化的电催化活性[J].黄金,2009,30(7):5-8.
    [89]习东,罗小平,宁琴.金纳米颗粒基因探针同步检测HBV和HCV的初步研究[J].中国现代医学杂志,2009,19(3):321-324.
    [90]习东,宁琴,卢强华等.金纳米颗粒基因探针检测HBV DNA[J].临床检验杂志,2007,25(30):165-167.
    [91]赫丽娜,刘帅,孙瑾.纳米金溶胶的制备与应用研究[J].科技信息,2009,(13):30-31.
    [92]沈理明,姚建林,顾仁敖.金纳米粒子的电化学合成及光谱表征[J].光谱学与光谱分析,2005,25(12):1998-2001.
    [93]殷焕顺,艾仕云,汪建民.制备金纳米粒子的研究进展[J].材料研究与应用,2007,1(4):277-280.
    [94]蔡强,吴维明,陈裕泉.纳米金的电检测方法与免疫检测中的应用[J].传感技术学报,2003,(2):124-131.
    [95]C. S. Thaxton, D. G. Georganopoulou, C. A. Mirkin. Gold nanoparticle probes for the detection of nucleic acid targets[J]. Clin. Chim. Acta.,2006,363(1):120-126.
    [96]M. Valden, X. Lai, D. W. Goodman. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties[J]. Science.1998,281(5383): 1647-1650.
    [97]缪谦,金葆康,林祥钦.ss-DNA在纳米金上固载和杂化的电化学传感研究[J].高等学校化学学报,2000,21(1):27-30.
    [98]蔡宏,王延琴,何品刚等.基于纳米金胶标记DNA探针的电化学DNA传感器研究[J].2003,24(8):1390-1394.
    [99]S. P. Song, Z. Q. Liang, J. Zhang, et al. Gold-nanoparticle-based multicolor nanobeacons for sequence-specific DNA analysis[J]. Angew. Chem. Int. Ed.,2009, 48(46):1-5.
    [100]孙莉萍,张建锋,李辉等.金纳米粒子与单链DNA的相互作用[J].高等学校化学学报,2009,30(1):95-99.
    [101]莫志宏,杨琳玲,杨小超等.基于胸腺嘧啶-汞离子-胸腺嘧啶结构和纳米金放大传感器检测汞离子[J].2009,37(7):1033-1036.
    [102]S. Mansy, R. S. Tobias. Heavy metal-nucleotide reactions. Ⅳ. Nature of the reaction between mercury (Ⅱ) and ijridine or thymidine. vibrational spectroscopic studies on binding to N(3), C(4)=0, and C(5) of the uracil base[J]. Inorg. Chem., 1975,14(2):287-291.
    [103]J. S. Lee, M. S. Han, C. A. Mirkin. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles[J]. Angew. Chem. Int. Ed.,2007,46 (22):4093-4096.
    [104]D. Li, A. Wieckowska, I. Willner. Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines[J]. Angew. Chem. Int. Ed.,2008,47(21):3927-3931.
    [105]X. J Xue, F. Wang, X. G. Liu. One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates [J]. J. Am. Chem. Soc., 2008,130(11):3244-3245.
    [106]C. W. Liu, Y. T. Hsieh, C. C. Huang, et al. Detection of mercury(Ⅱ) based on Hg2+-DNA complexes inducing the aggregation of gold nanoparticles[J]. Chem. Commun.,2008, (19):2242-2244.
    [107]T. Li, B. L. Li, E. K. Wang, et al. G-quadruplex-based DNAzyme for sensitive mercury detection with the naked eye[J]. Chem. Commun.,2009,28(24): 3551-3553.
    [108]H. Wang, Y. X. Wang, J. Y. Jin, et al. Gold nanoparticle-based colorimetric and "turn-on" fluorescent probe for mercury (Ⅱ) ions in aqueous solution[J]. Anal. Chem.,2009,80(23):9021-9028.
    [109]刘兴奋,武海萍,李玉兰等.一种高灵敏度、高特异性检测重金属Hg2+的比色生物传感方法[J].核技术,2007,30(5):467-472.
    [110]M. J. Heller. DNA microarray technology:Devices, systems, and applications[J]. Annu. Rev. Biomed. Eng.,2002,4:129-153.
    [111]R. A. Cardullo, S. Agrawal, C. Flores, et al. Detection of nucleic acid hybridization by nonradiative fluorescence resonance energy transfer[J]. Proc. Natl. Acad. Sci.,1988,85(23):8790-8794.
    [112]R. G. H. Immink, T. W. J. Gadella, S. Ferrario, et al. Analysis of MADS box protein-protein interactions in living plant cells[J]. Proc. Natl. Acad. Sci.,2002, 99(4):2416-2421.
    [113]P. M. Holland, R. D. Abramson, R. Watson, et al. Detection of specific polymerase chain reaction product by utilizingthe 5'-3'exonuclease activity of thermos aquatic us DNA polymerase [J]. Proc. Natl. Acad. Sci.,1999,88(16): 7276-7280.
    [114]Q. Guo, M. Lu, L. A. Marky, et al. Interaction of the dye ethidium bromide with DNA containing guanine repeats[J]. Biochemistry,1992,31(9):2451-2455.
    [115]K. Nakatani, S. Sando, I. Saito. Recognition of a single guanine bulge by 2-acylamino-1,8-naphthyridine[J]. J. Am. Chem. Soc.,2000,122(10):2772-2177.
    [116]K. Yoshimoto, S. Nishizawa, M. Minagawa, et al. Use of abasic site containing DNA strands for nucleobase recognition in water[J]. J. Am. Chem. Soc.,2003, 125(30):8982-8983.
    [117]Y. Xiang, A. J. Tong, Y. Lu. Abasic site-containing DNAzyme and aptamer for label-free fluorescent detection of Pb2+ and adenosine with high sensitivity, selectivity, and tunable dynamic range[J]. J. Am. Chem. Soc.,2009,131(42): 15352-15357.
    [118]D. R. Duckett, D. M. J. Lilley. Effects of base mismatches on the structure of the four-way DNA junction[J]. J. of Mol. Biol.,1991, (221)1:147-161.
    [119]K. Ramanathan, K. Rogers. A fluorescence based assay for DNA damage induced by styrene oxide[J]. Sens. Actuators B.,2003,91 (1-3):205-210.
    [120]J. Wang, M. Musameh, Y. H. Lin. Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors[J]. J. Am. Chem. Soc.,2003, 125(9):2408-2409.
    [121]X. H. Xu, H. C. Yang, T. E. Mallouk, et al. Immobilization of DNA on an aluminum (Ⅲ) alkanebisphosphonate thin film with electrogenerated chemiluminescent detection[J]. J. Am. Chem. Soc.,1994,116(18):8386-8378.
    [122]S. Yamaguchi, T. Shimomura. Adsorption, immobilization, and hybridization of DNA studied by the use of quartz crystal oscillators [J]. Anal. Chem.,1993,65(14): 1925-1927.
    [123]K. Yoshimoto, S. Nishizawa, M. Minagawa, et al. Use of abasic site-containing DNA strands for nucleobase recognition in water [J]. J. Am. Chem. Soc.,2003, 125(30):8982-8983.
    [124]H. Satake, S. N. WA, N. Teramae. Ratiometric fluorescence detection of pyrimidine/purine transversion by using a 2-amino-1,8-naphthyridine derivative[J]. Anal. Sci.,2006,22(2):195-197.
    [125]Y. Sato, S. Nishizawa, K. Yoshimoto, et al. Influence of substituent modifications on the binding of 2-amino-1,8-naphthyridines to cytosine opposite an AP site in DNA duplexes:Thermodynamic characterization[J]. Nucleic. Acids. Res.,2009, 37(5):1411-1422.
    [126]H. Wang, Y. X. Wang, J. Y. Jin, et al. Gold nanoparticle-based colorimetric and "turn-on" fluorescent probe for mercury(II) ions in aqueous solution[J]. Anal. Chem.,2008,80(23):9021-9028.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700