大叶藻生物量动态、解剖结构及耐盐生理特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高等沉水植物大叶藻(Zostera marina L.)是广泛分布于我国辽宁、山东及河北沿海浅海水域中的一种海草,具有重要的生态学价值。大叶藻能够在高盐度海水中完成整个生活史,是研究高等植物耐盐机理的良好材料。本研究对青岛浅近岸海域汇泉湾大叶藻的生物量进行野外追踪调查,分析其月变化特征,揭示大叶藻生物量分配的季节规律;采用解剖学方法探究不同盐度对大叶藻形态结构的影响;采用生理学方法研究不同盐度海水对大叶藻的生理效应,探讨大叶藻耐盐的生理机制。
     1.青岛汇泉湾大叶藻的生物量月动态特征
     于2010-2011年对青岛汇泉湾大叶藻生物量进行野外跟踪调查,结果表明,2010年5月-2011年4月,生物量的月变化经历了一个由减少到增加的过程。5月份生物量达到最大值。6月-10月是大叶藻种群特征变化最大的时期,平均株高明显下降,种群密度迅速减少,生物量出现明显下降,生物量积累速率为负值。11月份以后生物量出现小幅增加,生物量积累效率较低。初春进人快速生长期,植株高度增加,种群密度增加,生物量大量积累,生物量积累效率较高。11月-次年4月群落AGR(绝对生长速率)值为正;5-10月AGR值为负。大叶藻在11月到次年4月RGR(相对生长速率)值为正,而5-10月份RGR均为负值。
     2.大叶藻解剖结构的观察
     显微结构和超微结构观察结果显示,根表皮最外层有一层体积较大的破碎的薄壁细胞;紧接着是一层小而紧密的细胞,根的中心是维管束,表皮和维管束之间有巨大的气道。盐度对大叶藻通气组织的形成有一定影响。茎表皮是由一层小而排列紧密的细胞构成的。茎的中心是中央维管束,中央维管束和表皮之间是薄壁组织,其间规则的散布气道。不同盐度下幼苗茎部结构并没有太大差别,但52.5盐度人工海水处理的大叶藻茎外围有一层增生组织,其中分布着巨大的气道。幼苗大叶藻的茎表皮为功能细胞,推测幼茎也具有一定的吸收功能。大叶藻叶仅有一层小而致密的表皮细胞,叶肉细胞为大型薄壁组织;叶片内散布着排列十分规则的巨大气道及叶片维管束,气道是由薄壁细胞规律排列而成的花环状结构,隔4个左右的气道就有由薄壁细胞和厚角细胞紧密排列组成的叶片维管束。大叶藻叶表皮细胞壁增厚有随盐度增加而增加的趋势。正常海水盐度处理的大叶藻叶绿体结构最为完整,其受低渗影响和高渗影响都比较大。17.5及35盐度处理下叶中线粒体保持完整,52.5盐浓度可使叶中的线粒体嵴膨胀,结构破坏。
     3.大叶藻对盐胁迫的生理响应
     在实验室条件下,测定大叶藻的耐盐阈值,研究了不同盐度海水处理(17.5,35,52.5)对大叶藻的生理效应。结果表明,大叶藻存活的耐盐阈值为61.25;呼吸速率随着盐度的增加呈不显著增加趋势,光合速率随着盐度增加而略有降低;大叶藻叶片中Na~+、Ca~(2+)含量、渗透势、丙二醛含量、脯氨酸含量、自由氨基酸、可溶性糖和有机酸均随着海水盐度的增高而显著增加;K~+含量随海水盐度的增高而降低;海水浓度变化对大叶藻含水量影响不大;Na~+的含量为叶>根>茎,说明大部分Na~+储存在叶片中;随着盐处理浓度的增加大叶藻植株的K~+/Na~+比和Ca~(2+)/Na~+比值均明显降低,盐度梯度下大叶藻根部、茎部及叶部对SK,Na (ASK, Na)的吸收呈显著上升趋势。而ASCa,Na值呈缓慢增加的趋势,差异不显著。
Zostera marina L. is a kind of seagrasses that widely distribute in the sea of Liaoning Province, Shandong Province and Hebei Province. Z. marina can complete the entire life history in the high salinity of sea water, so it is considered as the perfect material to study the mechanism of salt tolerance in higher plants. In this paper, the biomass of Z. marina in Qingdao Huiquan bay was investigated to reveal the seasonal allocation rules of the Z. marina. Furthermore, the effect on the anatomical structures of Z. marina and the physiological effects of Z. marina in different salinity were studied to discuss the physiological mechanisms of salt-tolerance of Z. marina.
     1. The monthly dynamic characteristics of biomass of Z. marina in Qingdao Huiquan bay
     The continuous investigation of biomass of the Z. marina L in Qingdao Huiquan bay has been proposed from 2010 to 2011. The analysis of the monthly variation date showed that the biomass underwent a process of reduction to an increase from May to April and the maximum of biomass appeared in May. The population characteristics has changed obviously from June to October,with the average height decreasing significantly and the population density declining rapidly. Furthermore the biomass has declined markedly and accumulation rate of biomass is negative. After November the biomass has a slight increased, biomass accumulated less efficient. The biomass entered the fast growing period in the early of spring.The plant height and the population density has increased. The biomass accumulated rapidly. The community AGR (absolute growth rate) is positive from November to April of next year; and the AGR is negative from May to October. The RGR (relative growth rate) of Z. marina
     L in May to October are negative, while November to April of next year the value of RGR is positive.
     2. The observation of the anatomical structures of Z. marina The observation of frozen section and scanning electron microscope from Z. marina in different salinity (17.5, 35, 52.5) artificial seawater (ASW) showed that the outermost of the root epidermis is larger parenchyma cells which structure is broken. Next to the broken larger parenchyma cells is small sclerenchymatous cell which arranged closely. The center of the root is vascular bundle. There are many large aerenchymas between the epidermis and vascular bundle in root. The salinity treatment affects the formation of the aerenchyma to some extent. The outermost broken parenchyma cells are presumed that it only existing in seedlings of Z.marina, and its functions need to be studied further. The epidermis of shoot of Z. marina is a layer of small cells which closely arranged. The center of the shoot is vascular bundle, between the vascular bundle and epidermal there is parenchyma, which was distributed many aerenchymas. The scanning electron microscope of the shoot of Z. marina in 52.5‰ASW treated show that there is some hyperplasia surrounded by the shoot in which distributed large aerenchyma, and the structure of the hyperplasia are very similar to leaves. There are functional epidermal cells in shoot, suggesting that young shoot also has some absorption function. There is only a layer of small and dense epidermal cells of the leaf. The mesophyll consisted of many large parenchyma cells. There are a lot of large aerenchymas and some leaf vein in the leaf. The aerenchyma of the leaf is constituted of the regular arrangement parenchyma cells which look like a flowers ring. About every four aerenchyma there is a leaf vein which is constructed by parenchyma cells and collenchyma cells. The leaf epidermal cell wall is thickening with salinity increasing. The chloroplast structure is most complete in normal sea water salinity. It was worse impacted by hypotonic and hypertonic. The certain salinity can lead in the mitochondria’s structural damage.
     3. The physiological response of Z. marina to salt stress Under laboratory conditions the limiting salinity of Z. marina was measured. The
     physiological effects in different salinity gradients (17.5, 35, 52.5) were identified and the physiological mechanisms of sea halophyte were discussed. The results showed that the limiting salinity of Z. marina was 61.25. The respiration rate of Z. marina L has increased and the photosynthetic rate has decreased slightly with the increasing salinity. The content of Na~+, Ca~(2+), organic osmoticas, such as proline, free amino acids, organic acids, soluble sugars, MDA increased with increasing salinity. The osmotic potential also increased with increasing salinity. However, the contents of K ~+ were decreased with increasing salinity and water content was no significant difference under salinity gradients treatment. The content of Na~+ is leaf> root> stem, and the K ~+ / Na ~+ ratio and Ca~(2 +) / Na ~+ ratios were significantly lower. The ASK, Na of shoot, stems and leaves was gradually increased, but the increasing of ASCa, Na was not significant
引文
[1]许战洲,黄良民,黄小平等.海草生物量和初级生产力研究进展.生态学报,2007,27(6):2594-2602
    [2] Hemminga M A, Duarte CM. SeagrassEcology. Cambridge: CambridgeUniversity Press, 2000:20-22.
    [3]林鹏.海洋高等植物生态学.北京:科学出版社, 2006. 85-89.
    [4]杨宗岱,吴宝铃.中国海草场的分布生产力及其结构与功能的初步探讨.生态学报.1981, 1(1): 84-88
    [5]郭栋,张沛东,张秀梅等.山东近岸海域海草种类的初步调查研究.海洋湖沼通报.2010,2:17-21
    [6] Keddy C.J,Partriquin D.J. An annual form of eelgrass in Nova Scotia.Aquat Bot.1978,5:163-170
    [7] KEMP W M, BOYNTON W R, TWILLEY R R, STEVENSON J C, MEANS J C. The decline of submerged vascular plants in upper Chesapeake Bay: summary of results concerning possible causes. Mar Technol Soc J.1983,17:45-69
    [8] Den H.C.The sea-grasses of the world. North Holland Publ.Co. Amsterdam.1970
    [9]李文涛,张秀梅.海草场的生态功能.中国海洋大学学报:自然科学版,2009,39(5):933-939
    [10] Hily C, Raffin C, Brun A, den Hartog C. Spatio-temporal variability of wasting disease symptoms in eelgrass meadows of Brittany(France). Aquat Bot,2002, 72(1): 37-53
    [11] Kirchman D L, Mazzella L, Alberte R S, et al. Epiphytic Bacterial Production on Zostera marina. Mar Ecol Prog Ser, 1984, 15:117-123
    [12] Bostrom C, Bonsdorff E. Community structure and spatial variation of benthic invertebrates associated with Zostera marina(L.) beds in the northern Baltic Sea. J Sea Res, 1997, 37: 153-166
    [13] Gambi M C, Nowell A R M, Jumars P A. Flume observations on flow dynamics in Zostera marina(eelgrass) beds. Mar Ecol Prog Ser, 1990, 61: 159-169
    [14] Bouma T J, De Vries M B, Low E, et al. Trade-offs related to ecosystem engineering: a case study on stiffness of emerging macrophytes. Ecology, 2005, 86: 2187-2199
    [15] Gacia E, Granata T C, Duarte C M.An approach to measurement of particle flux and sediment retention within seagrass (Posidonia oceanica) meadows. Aquat Bot, 1999, 65: 255-268
    [16] Gacia E, Duarte C M, Marba N, et al.Sediment deposition and Production in SE-Asiaseagrass meadows. Estuar Coast Shelf Sci, 2003, 56: 909-919
    [17] Fonseca M S. Sediment stabilization by Halophila decipiensin comparison to other seagrasses. Estuar Coast Shelf Sci, 1989, 29:501-507
    [18] Lee K S, Park S R, Kim Y K. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: A review. Journal of Experimental Marine Biology and Ecology, 2007, 350: 144-175
    [19] Gacia E, Invers O, ManzaneraM,et al. Impact of the brine from a desalination plant on a shallow seagrass (Posidonia Oceanica) meadow. Estuarine,Coastal and Shelf Science, 2007, 72: 579-590
    [20] KochM S, SchopmeyerSA, Kyhn-HansenC,etal.Tropical seagrass species tolerance to hyper salinity stress. Aquatic Botany, 2007, 86: 14-24
    [21] BiebelR, McRoy C P. Plasmatic resitance and rate of respiration and photosynthesis of Zostera marina at different salinities and temperatures. Marine Biology, 1971, 8: 48-56
    [22] Robertson J I, Mann KH.Disturbance by ice and life-history adaptations of the seagrass Zostera marina. Marine Biology, 1984, 80: 131-141
    [23] LeeK S, Park S R, Kim JB. Production dynamics of the eelgrass, Zostera marina in two bay systems on the south coast of the Korean peninsula. Marine Biology, 2005, 147: 1091-1108
    [24] Lenschner C, ReesU. CO2gas exchange of two intertribal seagrass species Zostera marine L. and Zostera nolltii Hornem during emersion. Aquatic Botany, 1993, 45: 53-62
    [25] BiebelR, McRoy C P. Plasmatic resistance and rate of respiration and photosynthesis of Zostera marina at different salinities and temperatures. Marine Biology, 1971, 8: 48-56
    [26] HaneltD, Li J, Nultsch W. Tidal dependence of photoinhibition of photosynthesis in marine macrophytes of the South China Sea. Bot. Acta, 1994, 107: 66-72
    [27] BieblR, McRoy C P. Plasmatic resistance of respiration and photosynthesis of Zostera marina at different salinities and temperatures. Marine Biology, 1971, 8: 48-56
    [28] KerrE A, StrotherS.Effects of irradiance, temperature and salinity on photosynthesis of Zostera muelleri. Aquatic Botany, 1985, 23: 177-183
    [29] DawesC J, Lobban C S, TomaskoD A. Comparison of the physiological ecology of the seagrasses Halophila decipiens Ostenfeld and H.johnsonii Eiseman from Florida. Aquatic Botany, 1989, 33: 149-154
    [30] McMillan C, Moseley FN. Salinity tolerances of five marine spermatophytes of Redfish Bay, Texas. Ecology, 1967, 48 (3): 503-506.
    [31] Walker DI. Correlations between salinity and growth of the seagrass Amphibolisantarctica (Labil.l ) Sonder and Aschers., in Shark Bay, Western Australia, using a new method for measuring production rate. Aquatic Botany, 1985, 23: 13-26
    [32] Walker DI, Mc Comb A J. Salinity response of the seagrass Amphibolisantarctica (Labil.l) Sonder et Aschers: an experimental validation of field results. Aquatic Botany, 1990, 36: 359-366
    [33] Vermaat J E ,Verhagen F C A, Lindenburg D. Contrasting responses in two populations of Zostera noltii Hornem. to experimental photoperiod manipulation at two salinities. Aquatic Botany, 2000, 67: 179-189
    [34]李文涛,张秀梅.移植大叶藻的形态,生长和繁殖的季节性变化.中国水产科学. 2010,17(5):976-986
    [35] Zharova N,Sfriso A,Voinov A,et al.A simulation model for the annual fluctuation of Zostera marina biomass in the Venice lagoon. Aquat Bot,2001,70:135-150
    [36] Sfriso A,Francesco Ghetti P. Seasonal variation in biomass, morphometric parameters and production of seagrasses in the lagoon of Venice. Aquat Bot,1998,61:207-223
    [37] Short F T,Burdick D M. Eelgrass as an indicator of nutrientover-enrichment in estuaries//A final report submitted to the NOAA/UNH cooperative Institute for Coastal and stuarine Environmental Technology(CICEET).NOAA,USA,2003
    [38]高亚平,方建光.桑沟湾大叶藻有性繁殖特性的观察研究.渔业科学进展.2010,31(4):53-58
    [39]高亚平,方建光等.桑沟湾大叶藻附着生物的季节变化.渔业科学进展. 2010,31(4):59-64
    [40] Lee K S,Park S R,Kim Y K. Effects of irradiance,temperature,and nutrients on growth dynamics of seagrasses: A review. Journal of Experimental Marine Biology and Ecology, 2007, 350: 144-175
    [41] Touchette B W,Burkholder JM.Review of nitrogen and phosphorus metabolism in seagrasses. Journal of Experimental Marine Biology and Ecology,2000,250: 133-167
    [42] LeeK S, Dundon KH. Influence of sediment nitrogen availability on carbon and nitrogen dynamics in the seagrass Thalassia testudinum. Marine Biology, 1990, 134: 217-226
    [43] Van LentF, Verchuure JM, VeghelL J. Comparative study on populations of ZosteramarinaL. (eelgrass):in situnitrogen enrichmentand light manipopulation. Journal of Experimental Marine Biology and Ecology, 1995, 185: 55-76
    [44] CampbellS J,McKnzie L J,Kerville S P,et al.Patterns in tropical seagrass photosynthesis in relation to light,depth and habitat. Estuarine,Coastal and ShelfScience,2007,73: 551-562
    [45] Burkholder JM,TomaskoD A,Touchette BW. Seagrasses and eutrophication Journal of Experimenta l.Marine Biology and Ecology,2007,350:46-72
    [46] Caba S, MachasR, SantosR. Biomass-density relationships of the seagrass Zostera noltii: a tool form onitoring anthropogenic nutrient disturbance.Estuarine,Coastal and Shelf Science,2007,74: 557-564
    [47] LongstaffB J,DennisonW C.Seagrass survival during pulsed turbidity events:the effects of light deprivation on the pulsed turbidity events:the effects of light deprivation on the seagrasses Halodule pinifolia and Halophila ovalis. Aquatic Botany,1999,65: 105-121
    [48] CarruthersT J B, DennisonW C, LongstaffB J,etal. Seagrass habitats of northeast Australia: models of key processes and controls. Bulletin of Marine Science,2002,17(3): 1153-1169
    [49] Green E P, Short F T. World Atlas of Seagrasses. Prepared by the UNEP World Conservation Monitoring Centre,Berkeley, USA: University of California Press, 2003. 298
    [50] Krause-Jensen D, MiddelboeA, Sand-JensenK,etal. Eelgrass, Zostera marina, growth along depth gradients: upper boundaries of the variation as a powerful predictive too. l Oikos,2000,233-244
    [51] PeraltaG,Bouma T J,van Soelen J,etal.On the use of sediment fertilization for seagrass restoration: amesocosm study on Zostera marina L.Aquatic Botany,2003,75: 95-110
    [52] Agostini S, Pergent G, Marchand B.Growth and primary production of Cymodocea nodosain a coastal lagoon.Aquatic Botany,2003,76:185-193
    [53] Heck JrK L and Valentine JF.Plant-herbivore interaction in seagrass meadows.Journal of Experimental Marine Biology and Ecology,2006,330:420-436
    [54] Orth R J, Harwell M C, Inglis G J. Ecology of seagrass seeds and dispersal strategies. In: Larkum AW D, OrthR J, DuarteCM eds. Seagrass: Biology, Ecology and Conservation. Springer, The Netherlands, 2006, 691: 111-133
    [55] Moore K A, Wetzel R L. Seasonal variations in eelgrass (Zostera marina L.) responses to nutrient enrichment and reduced light availability in experimental ecosystems. Journal ofExperimental Marine Biologiy and Ecology,2000,244:1-28.
    [56] Grice AM, Loneragan N R, Dennison W C. Light intensity and the interactions between physiology, morphology and stable isotope ratios in five species of seagrass. Journal of Experimental Marine Biology and Ecology, 1996, 195: 91-110
    [57] O. Mascaró,T. Valdemarsen.Experimental manipulation of sediment organic content and water column aeration reduces Zostera marina (eelgrass) growth and survival. Journal of Experimental Marine Biology and Ecology 2009,373 :26–34
    [58] Borum J, Pedersen O, Greve TM,et al. The potential role of plant oxygen and sulphide dynamics in die-off events of the tropical seagrass,Thalassia testudinum. Journal of Ecology, 2005, 93: 148-158
    [59] Burkholder JM, Tomasko DA, Touchette BW.Seagrasses and eutrophication.Journal of Experimental Marine Biology and Ecology, 2007, 350:46-72
    [60]郭栋,张沛东等,荣成俚岛近岸海域大叶藻的生态学研究.中国海洋大学学报.2010,40(9):51-55
    [61] Flowers,T.J., Troke, P.F. and Yeo, A.R.The mechanism of salt tolerance in halophytes. Annual Review of Plant Physiology .1977,28: 89-121
    [62] Greenway, H. and Munns, R.Mechanism of salt tolerance in nonhalophytes. Annual Review of Plant Physiology .1980,31, 149-190
    [63] Munns, R and Termaat, A.Whole plant responses to salinity.Australian Journal of Plant Physiology. 1986,13:143-160
    [64] Munns, R., Schachtman, D.P. and Condon, A.G. The significance of a two phase growth response to salinity in wheat and barley.Australian Journal of Plant Physiology .1995,22: 561-669
    [65] Xiong, L. and Zhu, J.-K.Molecular and genetic aspects of plant responses to osmotic stress. Plant,Cell and Environment. 2002,25: 131-139
    [66] Mark T. and Romola D. Na Tolerance and Na Transport in Higher Plants.Annals of Botany. 2003,503-627
    [67] Lichtentaler, H.K.Vegetation stress: an introduction to the stress concept in plants. Journal of Plant Physiology.1996,148: 4-14
    [68] Stassart, J.M., Neirinckx, L. and Dejaegere, R.The interactions between monovalent cations and Ca during their absorption on isolated cell walls and absorption by intact barley roots. Annalsof Botany.1981,47:647-652
    [69] Cramer, G.R., Lauchli,A.and Polito, V.S.Displacement of Ca2+ by Na+ from the plasma membrane of root cells. A primary response to plant stress. Plant Physiology .1985,79: 207-211
    [70] Zhong, H. and Lauchli, A. Spatial and temporal aspects of growth in the primary root of cotton seedlings: effects of NaCI and CaCl2. Journal of Experimental Botany .1993,44: 763-771
    [71] Binzel, M.L., Hess, F.D., Bressan, R.A. and Hasegawa, P.M. Intracellular compartmentation of ions in salt adapted tobacco cells. Plant Physiology .1988,86: 607-614
    [72] Carden, D.E.The cell physiology of barley salt tolerance.Ph.D.thesis, University of Sussex, U.K. 1999.
    [73] Blumwald, E.Sodium transport and salt tolerance in plants. Current Opinion in Cell Biology .2000,12:431-434
    [74]陈敏,李平华,王宝山.Na+转运体与植物的耐盐性.植物生理学通讯.2007,43(4):617-622
    [75] Munns, R and Termaat, A.Whole plant responses to salinity. Australian Journal of Plant Physiology .1986,13:143-160
    [76]贾洪涛,赵可夫.盐胁迫下Na+、K+、Cl-对碱蓬和玉米离子的吸收效应.山东师大学报(自然科学版).1998.13(44):37-440
    [77] Inze.D,Montaga.MV.Oxidative Stress in Plants. Current Opinion in Biotechnology, 1995(6):153-158
    [78] HAILIN ZHONG and ANDRéLAUCHLI .Changes of Cell Wall Composition and Polymer Size in Primary Roots of Cotton Seedlings Under High Salinity .Journal of Experimental Botany (1993) 44 (4): 773-778
    [79] Hans-Werner K. Ultrastructural and physiological changes in root cells of sorghum plants(Sorghum bicolor×S. sudanensis cv. Sweet Sioux) induced by NaCl, Journal of Experimental Botany, 1997,48(3): 693-706
    [80] Stelzer R., and Lfiuchli, A. Salt and flooding tolerance of Puccinellia pesonis L. Plant physiology, 1978, 88: 437-448
    [81] Yeo A.R.,Kramer D,Liuchli A.,and Gullasch J. Ion distribution in salt-stressed mature Zea mays roots in relation to ultrastructure and retention of sodium, Journal of Experimental Botany, 1977,28(102): 17-29
    [82]朱宇族,张勇等.小花碱茅茎适应盐胁迫的显微结构研究.中国草地,2000,(5):6-9
    [83]朱宇族,张勇.盐胁迫下小花碱茅超微结构的研究,中国草地,2000,4: 30-32,58
    [84]朱宇胜,张勇等.小花碱茅叶适应盐胁迫的显微结构研究.中国草地,2001,23(2):19-22
    [85]郑文菊,徐兰义,王勋陵,盐分对植物结构的影响,草业学报,1993,2(1): 78-80
    [86]贾恢光,赵蔓蓉,典型盐地植物叶绿体超微结构的研究,西北植物学报,1990,10(1): 70-72
    [87] Smith M M.Salt induced ultrastructrual damage to mitochondria in root tips of a Salt sensitive ecotype of Aigrostis stolonifere, Journal of Experimental Botany, 1982, 33(136):886
    [88] Mansour et.al. Diabetes mellitus in Saudi Arabia. Medical Services Department, Saudi Arabian Armed. 2004,25 (11): 1603-1610
    [89]赵可夫范海盐胁迫下盐生植物与泌盐植物的渗透调节物质及其贡献的比较研究.应用与环境生物学报,2000,6(2):99-105
    [90]郭北海.甜菜碱醛脱氢酶基因转化小麦及其表达.植物学报,2000,42(3):279-283
    [91] K C Chou and C T Zhang.Predicting protein folding types by distance functions that make allowances for amino acid interactions. The Journal of Biological Chemistry,1994, 269:22014-22020
    [92] Flowers TJ, Troke Jl,Yeo AR The mechanism of Salt Tolerance in halophytes. Ann Rew, Plant physiol 1977, 28: 89-121
    [93] Niu X, Bressan RA ,asegawa PM,Ion homeostasis in NaCI stress environments, etal.Plant physiol,1995,9:735-742
    [94] Serrano R, Gaxiola R.Microbal models and salt-stress torlerance in plants. Crit Rev plant Sci, 1994, 3:121-138
    [95] Flowers TJ,Hajibagher A, Yeo AR. Ion accumulations in the cell walls of rice plants growing under saline conditions,evidence for the Overtli hypothesis. Plant Cell Environ, 1991,14: 319-325
    [96] Greenway H, Munns R. Mechanisms of salt talerance in nonhalophytes.Annual Review of plant physiology, 1980, 31:149-190
    [97] Wyn Johns RG. Salt tolerance In: CB Johnson(eds) physiological processes limiting plant productivity London:Butterworths, 1981:271-292
    [98] Jian-kang Zhu, Ji-ping Liu, Ming-xiong Li. Genetic Analysis of salt tolertance in rabidopsis: Evidence for a Critical role potassium nutrition. The Plant Cell. 1998: 1191-194
    [99] Ayala F, O'Jeary JW. Growth and physiology of salicornia bigelovii Torrat suboptimalsalinity, Plant Sci 1995, 156 (2):197-205
    [100] Barkla BJ, Blumwald E. Ientification of a 17kDa protein associated with the vacuolar Na+/H+ antiport In Membrane transport in plants and fungi: molecular mechanisms and control Eds Blatt MR, Leigh RA. Sanders D Cambridge: The Company of Biologists Ltd 1994:141-153
    [101] Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR.Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA, 2001,98: 11444–11449.
    [102]叶春江,赵可夫.高等海洋盐生植物大叶藻研究进展及其与海洋生活的适应.植物学通报.2002, 19 (2) :184~193
    [103]于函,马有会,张岩等.大叶藻的生态学特征及其与环境的关系.海洋湖沼通报.2007,增刊:112-120
    [104] Arai M, Pak J Y, Normura K, Nitta T, 1991.Seawater -resistant, non-spherical protoplasts from seagrass leaves. Physiol Plant 83: 551-559
    [105] Fukuhara T, Pak J Y, Ohwaki Y, Tsujimura H, Nitta T. Tissue-specific Expression of Gene for a Putative Plasma membrane H+-ATPase in a Seagrass. Plant Physiol, 1996. 110: 35-42
    [106] Pak JY,Fukuhara T, Nitta T.Discrete subcellular localization of a membrane-bound ATPase activity in marine angiosperms and marine algae. Planta .1995.196:15-22
    [107] Hellblom F. Carbon acquisition in Zostera marina (Ph.D Thesis). 2000. www.botan.su.se
    [108] Jose A F, Maria J G, Huber H F.Physiological evidence for a proton pump and sodium exclusion mechanisms at the plasma membrane of the marine angiosperm Zostera marina L. J Exp Bot.1999.50:1763-1768
    [109] Flowers T J.The effect of sodium chloride on enzyme activities from four halophytes species of chenopodiaceae. Phytochemistry .1972. 11:1881-6
    [110] Yeo A. Molecular biology of salt tolerance in the context of whole -plant physiology. J Exp Bot, 1998.49(323): 915-929
    [111]马欣荣,大叶藻组织培养及其Na+/H+逆向转运蛋白基因的初步研究:[中国海洋大学硕士学位论文].青岛:中国海洋大学,2002
    [112] Roberts,M.J.等,1985:植物生物量和净初级生产的侧定,见Coombs,J.等著,生物生产力和光合作用侧定技术,邱国雄等译,科学出版社,1986,120
    [113]倪红伟,臧淑英,高亦珂.三江平原沼泽化草甸小叶章种群地上生物量及其生长速率季节动态的研究.植物研究,1996,16
    [114]李丽纯,林瑞坤,吴振海.闽江口湿地互花米草地上生物量的月动态特征.资源科学.2009,31(11):1967-1972
    [115] Touchette B W,Burkholder J A M.Overview of thephysiological ecology of carbon metabolism in seagrasses.J Exp Mar Biol Ecol,2000,250:169-205
    [116] Zharova N,Sfriso A,Voinov A,et al.A simulation model for the annual fluctuation of Zosteramarina biomass in the Venice lagoon.Aquat Bot,2001,70:135-150
    [117] Sfriso A,Francesco Ghetti P.Seasonal variation in biomass,morphometric parameters and production of seagrasses inthe lagoon of Venice.Aquat Bot,1998,61:207-223
    [118] Short F T,Burdick D M.Eelgrass as an indicator of nutrient over-enrichment in estuaries//A final report submitted to the NOAA/UNH cooperative Institute for Coastal and Estuarine Environmental Technology(CICEET).NOAA
    [119] PerezM, Romero J. Photosynthetic response to light and temperature of the seagrassCymodocea nodosaand the prediction of its seasonality.Aquatic Botany, 1992, 43: 51-62
    [120] Terrados J, Ros J D. Temperature effects on photosynthesis and depth distribution of the seagrass Cymodocea nodosa(Ucria) Ascherson in a Mediterranean coastal lagoon: the Mar Menor (SE Spain). Mar. Eco.l,1995,16: 133-144
    [121] Lee K S,Park S R,Kim Y K.Effects of irradiance,temperature,and nutrients on growth dynamics of seagrasses:Areview.J Exp Mar Biol Ecol,2007,350:144-175
    [122] Rafael V.,Erikj V.,Pedro J.,et al. Relative growth rate and biomass allocation in 20 Aegilops(Poaceae)species.New Phytol,1998,140:425-437
    [123]栾金花,张乐,邹元春,等.不同水分梯度下三江平原湿地漂筏苔草无性系株高生长特性.湿地科学,2006,4(4):258-263.
    [124]多立安,赵树兰.中国东北羊草草原生长季内产量生态模拟及信息参数应用.生态学报,2002,22(1):34-47
    [125]张春和,李建东.东北盐化草甸小章茅群落地上生产结构与生物量的形成规律.中国草地,1994,(1):9-13
    [126] Cao M K,Woodward F I.Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change.Global Change Biol,1998,4:185-198
    [127] Lieth,H等著.王业蓬等译.生物圈第一性生产力.北京:科学出版社,1985
    [128] Schimel D S,Emanuel W,Rizzo B,et al.Continental scale variability in ecosystem processes:models,data,and the role of disturbance.Ecol Monogr,1997,67:251-271
    [129] Gay L W,et al.Solar variability on the floor of a pine plantation.Agric Meteorol,1971,8:39-50
    [130]沈国英.施并章.海洋生态学.北京:科学出版社.2002:327-328
    [131]李文涛,张秀梅.海草场的生态功能.中国海洋大学学报:自然科学版,2009,39(5):933-939.
    [132] Den H C. The seagrass of the world, Tweed Reeks. Deel, 1970, 59(1): 1-38
    [133] Duarte CM. Seagrass ecology at the turn of the millennium: challenges for the new century. Aquatic Botany, 1999, 65: 7-20
    [134]厦门大学植物生态学研究室译, C.J.达维斯著, 1989.海洋植物学.厦门:厦门大学出版社
    [135] Chen L Z, Wang W Q, Lin P. Influence of water logging time on the growth of Kandelia candel seedlings. ActaOceano. Sinica, Plant Physiology. Beijing: Chinese Higher Education Press, 2001, 23: 149-157
    [136] Watkin E L J, Thomson C J. and Greenway H. Root development and aerenchyma formation in two wheat cultivars and triticale cultivar grown in stagnant agar and aerated nutrient solution. Annals of Botany, 1998, 81: 349-354
    [137]辛华,曹玉芳,辛洪婵.山东滨海盐生植物根结构及通气组织的比较研究.植物学通报. 2002,19(1):98~102
    [138] FanM S, Zhang F S. Aerenchyma formation in plantand its physiological and ecological significance. Plant Physiology Communications, 2002, 38
    [139] Saab I N,Sachs M M.1996.A flooding-induced xyloglucan endotransglycosylase homolog in maize is responsive to ethylene and associated with aerenchyma.Plant Physiol.,112:385-391
    [140]樊明寿,张福锁.2002.植物通气组织的形成过程和生理生态学意义.植物生理学通讯,38:615-618
    [141]孔妤,王忠,顾蕴洁,汪月霞.植物根内通气组织形成的研究进展.植物学通报.2008,25(2):248-253
    [142] Flower TJ, Yeo AR (1988). Ion relation of salt tolerance. In: Baker DD, Hall JL, eds. Solute Transport in Cells andTissues. New York: John Wiley and Sons. pp. 392-416
    [143] WANG XUE KUI. Principles, experiments and technology of plant physiological and biochemical. Beijing: Higher Education Press,2006,159-160
    [144] LI ZHIFANG. The relationship between aging of rice leaf and the activities of superoxide dismustase and lipid superoxidation.Acta Botanica Sinica, 1984,26(6): 605-615
    [145] TROLL W, LINDALEY J. Proline content determination in plant tissues. J Biol Chem, 1955, 215:655-660
    [146] HYMAN ROSEN.A modified ninhydrin colorimetric analysis for amino acids.Arch Biochem and Biophys,1957,(67):10-15
    [147] Li RONG QIAN, WANG JIANBO. Cells and Physiology of Plant Stress. Wuhan: Wuhan University Press, 2002.
    [148]杨成龙,段瑞军,李瑞梅等,盐生植物海马齿耐盐的生理特性,生态学报.2010,30(17): 4617-4627
    [149] Zhao KEFU. Physiology of plant under salt stress. Beijing: China Science and Technology Press, 1993
    [150] Muns R. Physiological process limiting plant growth in saline soils. Plant Cell Environ, 1993, 16(1):15- 24
    [151] YANG Y L, YANG N, AN L ZH. Research advances about plasma lemma H+-ATPase in plants.ActaBot Boreal.-Occident, 2006, 26(11):2388-2396
    [152] ZhaoK F, FanH, Zhou S, Song J. Study on the salt and drought tolerance of Suaeda salsa and Kalanchoe daigremobtiana under iso-osmotic salt and water stress. Plant Science, 2003, 165(4): 837-844
    [153] Greenway H, MUNNS R. Mechanisms of salt tolerance in no halophytes.Annual Review of plant biology, 1980, 31:149-190
    [154] Li Y, Zhang Y P, SunM, Gao B M. Research advance in the effects of salt stress on plant and the mechanism of plant resistance. Chinese Agricultural Science Bulletin, 2008, 24(1): 258-265
    [155] Zhang K F, ZhaoZ F. Effects of salt and water stresses on osmotic adjustment of Suaeda salsa seed lings. Acta Botanica Sinica, 1998, 40(1): 56-61
    [156] Zhang H Y, Fan Z F. Comparative study on the content of inorganic and organic solutes in ten salt-tolerant plants in Yuncheng Salt lake. Acta Ecologica Sinica, 2002, 22(3): 352-358
    [157] Zhang H Y. A study on the characters of content of inorganic ions in salt-stressed Suaeda salsa. Acta Botanica Boreali-Occidentalia Sinica, 2002, 22(1): 129-135.
    [158] GORHAM J. Genetics and physiology of enhanced K/Na discrimination In: Randall P ed Genetic aspects of plant mineral nutrition Borders. The Netherlands: Kluwer Academic Publishers, 1993, 151-159
    [159]刘行,张彦广,金露梅耐盐生理特性的研究,河北农业大学学报,2009,32( 2):34-38
    [160]刘爱容,赵可夫.盐胁迫下盐芥渗透调节物质的积累及其渗透调节作用.植物生理与分子生物学学报,2005,31(4):389-395
    [161] THOMAS JC, SEPAHI M, ARENDALL B. Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. Plant Cell and Environment, 18: 801-806
    [162] Nadezhda Zharova, Adriano Sfriso, Alexey Voinov et al. A simulation model for the annual fluctuation of Zostera marina biomass in the Venice lagoon. Aquatic Botany 70 (2001) 135–150.
    [163] Richard C. Zimmerman , John L. ReguzzonP, Randall S. Alberte. Eelgrass (Zostera marina L.) transplants in San Francisco Bay: Role of light availability on metabolism, growth and survival. Aquatic Botany 51 (1995) 67-86.
    [164] James E. Kaldy , Kun-Seop Lee. Factors controlling Zostera marina L. growth in the eastern and western Pacific Ocean: Comparisons between Korea and Oregon, USA. Aquatic Botany 87 (2007) 116–126
    [165] Frances van Lent , Jacobus M. Verschuureb, Manfred L.J. Comparative study on populations of Zostera marina L.(eelgrass): in situ nitrogen enrichment and light manipulation. Journal of Experimental Marine Biology and Ecology 185 (1995) 55-76
    [166]张风琴,王友绍,董俊德,等.重金属污水对木榄幼苗几种保护酶及膜脂质过氧化作用的影响.热带海洋学报, 2006, 25(2): 66-70.
    [167]王三根.植物生理生化.北京:中国农业出版社,2001: 103
    [168]柯玉琴,潘廷国.NaCl胁迫对甘薯叶片叶绿体超微结构及一些酶活性的影响.植物生理学报,1999,25(3):229--233.
    [169]秘彩莉,黄占景,邵素霞,等.近似等位基因系小麦盐胁迫下叶绿体超微结构的比较研究.电子显微学报,2001,20(2):98--101.
    [170]朱守旌,张勇.盐胁迫下小花碱茅超微结构的研究.中国草地,2000(4):30--32.
    [171]克热木·伊力,侯江涛,买合木提,等.盐胁迫对扁桃光合特性和叶绿体超微结构的影响.西北植物学报,2006,26(11):2220-2226.
    [172]夏富才,姜贵全,陆静梅.盐生植物抗盐结构机理研究进展.通化师范学院学报,2002,23(2):67--69.
    [173]董美芳,袁王俊,尚富德.小盐芥营养器官的结构特点与其盐渍环境的关系研究.西北植物学报,2005,25(6):1077--1082.
    [174]李国旗,安树青,张纪林,等.土壤盐胁迫下杨树次生木质部的解剖特征.林业科学,2003,39(4):89--98.
    [175]郑文菊,张承烈.盐生和中生环境中宁枸杞叶显微和超显微结构的研究.草业学报,1998,7(3):72~76.
    [176]郑文菊,王勋陵,沈禹颖.几种盐地植物同化器官的超微结构研究.电子显微学报,1999,18(5):507~512.
    [177]汪文俊,王广策,黄勃等.大叶藻(Zostera marinaL.)PSⅠ和PSⅡ复合物的分离鉴定.海洋与湖沼. 2004, 35(5): 446-452.
    [178] Golldack D., and Dietz K.J. Salt-induced expression of the vacuolar H +-ATPase in the common ice plant is develop-mentally controlled and tissue specific. Plant Physiol. 2001, 125:1643-1654.
    [179] Gaxiola R.A.,Li J.,Undurraga S.et al. Drought-and salt-tolerant plants result from overexpression of the AVP1 H+-pump,Proc.Natl.Acad.Sci. 2001, 98(20): 11444-11449.
    [180] Shi H.,and Zhu J.K. Regulation of expression of the vac-uolar Na+/H+antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Mol.Biol. 2002, 50(3):543-550.
    [181] PENG Y H,ZHU Y F,MAO Y Q,et al. Alkali grass resists salt stress through highK +and an endodermis barriertoNa +. J Exp Bot, 2004, 55(398):939-949.
    [182]单雷,赵双宜,夏光敏.植物耐盐相关基因及其耐盐机制研究进展.分子植物育种. 2006, 4(1): 15-22.
    [183]杜金友,孟宪强,徐兴友等.植物耐盐相关基因克隆与基因工程的研究进展.河北科技师范学院学报. 2006, 20(1):68-72.
    [184] Mittova V,Guym,Talm,et al. Salinity up-regulates the antioxidatives ystem in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersiconpennellii. J Exp Bot, 2004, 55(399):1105-1113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700