一种新型舱壁结构抗冲特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
舰船生命力是舰船的一个重要性能指标。现代军事对研究反舰武器的破坏力和舰船的抗爆抗冲能力提出了越来越高的要求。开展新型舰船防护结构研究对于提高舰船的生命力及战斗力具有重要的军事意义。目前,此类问题的研究通常采用实验与有限元仿真相结合的方法开展。
     金属薄壁管是一种有效的吸能防护元件,并且在吸能体系中得到了广泛应用。本文借助有限元软件ANSYS/LS-DYNA,首先对轴向冲击下的简单直壁和锥壁薄壁管结构的吸能特性进行了研究,分析了接触摩擦系数对仿真结果的影响,然后基于提高结构的吸能能力的考虑,提出了几种锥形薄壁组合结构和具有引发机制的直壁组合结构,并进行了相应的吸能特性数值仿真分析。最后从初始峰值载荷、平均压溃载荷、比吸能几个方面对各种结构进行了综合对比分析,数值计算结果表明薄壁组合结构的吸能能力较之原始结构有了显著的提高。
     本文接着借助有限元软件ANSYS/LS-DYNA,对爆炸载荷下平面舱壁的响应进行了数值仿真,计算结果与经验公式吻合良好。然后提出在平面舱壁后一定距离处放置两根十字交叉排列的挡杆,组成一种新型挡杆式组合舱壁结构。本文进一步从最大残余挠度、吸能特性、极限承载能力几个方面研究了冲击系数与挡杆形式对新型组合舱壁结构抗爆炸性能的影响。最后将平面舱壁结构与组合舱壁结构的抗爆炸性能进行了对比分析,研究表明新型挡杆式组合舱壁结构较传统平面舱壁结构的抗爆炸性能有了较大地提高。
Warship Survivability is a key performance indicator. As for modern military, there is a great demand for study on the destructive power of anti-ship weapons capabilities and anti-blast and anti-blast performance of warships. The research of the development in the new pattern ship protective structures has some important military significance in order to improve the vitality and combat ability. Currently, experiment and finite element simulation and their combination are usually adopted to investigate such problems.
     Metallic thin-walled tube is a sort of effective energy absorbed structure and is widely applied in energy absorbed systems. The energy absorbed characteristic of the simple square straight and tapered tubes subjected to axial impact were studied firstly in this thesis. The effect of contacting friction factors on the simulation results was then analyzed. Then several tapered built-up structures and straight built-up structures with triggering were introduced from the view of energy absorption capability. Finally, a comprehensive comparative analysis of all the structures was carried out from initial peak load, mean crush load, specific energy absorption. The numerical results have indicated that the absorption capability of built-up thin-walled structures is significantly improved compared with that of the original structures.
     In the thesis, the numerical simulation on the response of plate bulkhead subject to explosive load was studied by using finite element software ANSYS/LS-DYNA. The simulation results fit very well with the theory formulas. Then a new pattern of built-up bulkhead structure, which is composed of two cross-arranged barriers laid at certain distance after the plate bulkhead and the common plate bulkhead is developed. The anti-blast performance of such new pattern bulkhead structure is further studied from permanent deformation, energy absorption and ultimate bearing capacity. In the analysis, the effects of impact factors and form of barrier structures on anti-blast performance of the structures are analyzed. A comprehensive comparative analysis of the plate bulkhead and built-up bulkhead was carried out from the anti-blast performance. Numerical results show that the anti-blast performance of this new pattern of built-up bulkhead has been greatly improved compared with that of the traditional plate bulkhead structure.
引文
[1]汪玉,华宏星.舰船现代冲击理论及应用.北京:科学出版社, 2005.
    [2] Alexander JM. Approximate analysis of the collapse of thin cylindrical shell under axial loading. Quarterly Journal of Mechanics and Applied Mathematics, 1960, (13): 10-15.
    [3]余同希.结构塑性动力响应的研究进展.冲击动力学.合肥:中国科技大学出版, 1994.
    [4]顾红军,赵国志,陆廷金等.薄壁圆柱壳轴向动力屈曲的实验研究.南京理工大学学报(自然科学版), 2003, 27(2): 141-143.
    [5]贾宏波,黄金陵,谷安涛等.车辆典型薄壁梁结构碰撞模拟研究与参数选择.农业机械学报, 1998, 29(1): 24-28.
    [6]赵桂范,王伟东.车体结构中圆管撞击吸能特性的有限元研究.机械科学与技术, 2005, 24(4): 498-501.
    [7] Nagel GM, Thambiratnam DP. A numerical study on the impact response and energy absorption of tapered thin-walled tubes. International Journal of Mechanical Sciences, 2004, 46(2): 201-216.
    [8] Nagel GM, Thambiratnam DP. Dynamic simulation and energy absorption of tapered thin-walled tubes under oblique impact loading. International Journal of Mechanical Sciences, 2006, 32(10): 1595-1620.
    [9] Langseth M, Hopperstad OS, Clausen AH. Axial crushing of thin-walled high-strength steel sections. International Journal of Impact Engineering, 2006, 32(5): 847-882.
    [10] Hanssen AG, Langseth M, Hopperstad OS. Static and dynamic crushing of square aluminum extrusions with aluminum foam filler. International Journal of Impact Engineering, 2000, 24(4): 347-383.
    [11] Kim Heung-Soo. New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency. Thin-Walled Structures, 2002, 40(4):311-327.
    [12] Lee Sunghak, Hahn Changsu, Rhee Meungho. etal. Effect of triggering on the energy absorption capacity of axially compressed aluminum tubes. Materials and Design, 1999, 20(1):31-40.
    [13]库尔.水下爆炸.北京:国防工业出版社, 1960.
    [14] Mindlin RD, Bleich HH. Response of an elastic cylindrical shell to a transverse, step shock wave. Journal of Applied Mechanics, 1953, 20: 189-195.
    [15] Geers TL. Residual potential and approximate methods for three-dimensional fluid-structure interaction problems. The Journal of the Acoustical Society of America, 1971, 49: 1505-1510.
    [16] Geers TL. Doubly asymptotic approximations for transient motions of submerged structures. The Journal of the Acoustical Society of America, 1978, 64(5): 1500-1508.
    [17] Dike CT, Ingelez RP, Kirbyz GC. Stabilizing the retarded potential method for transient fluid-structure interaction problems, International Journal for Numerical Methods in Engineering, 1997, 40(20): 3767-3783.
    [18] Nurick GN, Martin JB. Deformation of thin plates subjected to impulsive loading–a review: Part I theoretical considerations/Part II experimental studies. International Journal of Impact Engineering, 1989, 8(2): 159-186.
    [19]张涛,刘土光,周晶晶等.低速冲击载荷下加筋板弹塑动力响应分析.应用力学学报, 2004, 4(21): 28-33.
    [20]吴成,金俨,李华新.固支方板对水中爆炸作用的动态响应研究.高压物理学报, 2003, 4(12): 275-282.
    [21]谌勇,唐平,汪玉.刚塑性圆板受水下爆炸载荷时的动力响应.爆炸与冲击, 2005, 25(1): 90-96.
    [22]李玉节,赵本立.水下爆炸压力测量中的若干问题.实验力学, 1992, 7(1): 17-22.
    [23]顾文彬,叶序双,刘文华.界面对浅层水中爆炸冲击波峰值压力影响的研究.解放军理工大学学报(自然科学版), 2001, 2(5): 61-63.
    [24]高勇军,王伟策,陈小波.浅层水中爆炸冲击波压力的测试与分析.爆破, 1999,16(1): 9-13.
    [25]王建灵,赵东奎,郭炜.水下爆炸能量测试中炸药入水深度的确定.火炸药学报, 2002, (2): 30-31.
    [26]顾文彬,叶序双,张朋祥.浅层水中爆炸水底影响的试验研究.解放军理工大学学报(自然科学版), 2001, 2(2): 55-58.
    [27] John MB, George Y, Paul J. Time resolved measurement of the deformation of submerged cylinders subjected to loading from a nearby explosion. International Journal of Impact Engineering, 2000, 24(9): 875-890.
    [28] Olson MD, Nurick GN, Fagnan JR. Deformation and rupture of blast loaded square plates–predictions and experiments. International Journal of Impact Engineering, 1993, 13(2): 279-291.
    [29] Nurick GN, Olson MD, Fagnan JR. etal. Deformation and tearing of blast loaded stiffened square plates. International Journal of Impact Engineering, 1995, 16(2): 273-291.
    [30] Nurick GN, Shave GC. Deformation and tearing of thin square plates subjected to impulsive loading–an experimental study. International Journal of Impact Engineering, 1996, 18(1): 99-116.
    [31] Ramajeyathilagam, K,Vendhan,CP. Deformation and rupture of thin rectangular plates subjected to underwater shock. International Journal of Impact Engineering, 2004, 30(6): 699-719.
    [32]古和今,恽寿榕,洪兵.水中爆炸加载金属板变形的实验研究,爆炸与冲击, 1990, 10(3): 226-232.
    [33]刘润泉,白雪飞,朱锡.舰船单元结构模型水下接触爆炸破口试验研究.海军工程大学学报, 2001, 13(5): 41-46.
    [34]李国华,李玉节,张效慈.浮动冲击平台水下爆炸冲击谱测量与分析,船舶力学, 2000, 4(2): 51-60.
    [35] Li Yujie, Pan Jiangqiang, Li Guohua. Experimental study of ship whipping induced by underwater explosion bubble. Journal of Ship Mechanics, 2001, 5(6): 75-83.
    [36] Zilliacus S. Fluid-structure interaction and ADINA, Computers and Structures, 1983, 17(5): 763-773.
    [37] Haxton RS. Eldeeb KM. Royles R. etal. Further assessment of numerical procedures for the study of fluid-structure interaction. Strain, 1995, 31(3): 107-112.
    [38] Jiang J, Olson MD. Nonlinear transient analysis of submerged circular plates subjected to underwater explosions. Computer Methods in Applied Mechanics and Engineering, 1996, 134(1-2): 163-179.
    [39]张振华,朱锡,冯刚等.船舶在远场水下爆炸载荷作用下动态响应的数值计算方法研究,中国造船, 2003(4): 36-42.
    [40]张效慈,李玉节,赵本立.深水爆炸水动力压力场对潜体结构的动态影响.中国造船, 1997, 4: 61-67.
    [41]姚熊亮,陈建平.水下爆炸二次脉动压力下舰船抗爆性能研究.中国造船, 2001, 42(2): 48-55.
    [42]刘建湖,吴有生,赵本立.玻璃钢结构在水下爆炸冲击波作用下的动响应研究.船舶力学, 2000, 4(3): 51-58.
    [43]姚熊亮,侯健,王玉红等.水下爆炸冲击载荷作用时船舶冲击环境仿真.中国造船, 2003, 44(1): 71-74.
    [44]温华兵,王国治.带有浮筏隔振系统的船舶结构冲击响应的数值模拟.华东船舶工业学院学报(自然科学版), 2003, 13(5): 1-5.
    [45]陈永念,尹群,胡海岩.水中爆炸冲击波载荷作用下舰船结构动态响应的数值模拟.爆炸与冲击, 2004, 24(3): 201-206.
    [46]姚熊亮,许维军,梁德利.水下爆炸时舰船冲击环境与冲击因子的关系.哈尔滨工程大学学报, 2004, 25(1): 6-12.
    [47]梅志远,朱锡,刘润泉.船用加筋板架爆炸载荷下动态响应数值分析.爆炸与冲击, 2004, 24(1): 80-84.
    [48]姚熊亮,许维军.水面舰船的冲击环境与相关参数分析.哈尔滨工程大学学报, 2005, 26(1): 24-29.
    [49]李晓彬,杜志鹏,夏利娟.空中爆炸下舰船桅杆结构动态响应的数值模拟.船舶力学, 2006, 10(4): 133-139.
    [50]许维军,姚熊亮,梁德利.水下爆炸冲击载荷作用下潜艇冲击环境仿真研究.哈尔滨工程大学学报, 2006, 27(3): 372-376.
    [51]姚熊亮,梁德利,许维军.双层壳结构抗冲击性能仿真研究.哈尔滨工程大学学报, 2004, 25(3): 267-273.
    [52]朱锡.水面舰船舷侧防雷舱结构模型抗爆试验研究.爆炸与冲击, 2004, 24(2): 133-139.
    [53]朱锡,张振中.舰船装甲防护的研究与进展.武汉造船, 2000, (5): 5-12.
    [54]朱锡,张振华,刘润泉等.水面舰船舷侧防雷舱结构模型抗爆试验研究.爆炸与冲击, 2004, 24(2): 133-139.
    [55]朱锡,冯文山.大型水面舰船舷侧水下防雷舱吸能结构论证设计.海军工程大学学报, 2000, (3): 61-65.
    [56]姜金辉,王自力.一种基于IFP的单壳舷侧耐撞结构.船舶力学, 2004, 8(5): 80-85.
    [57]王自力,顾永宁. LPG船的一种新型舷侧耐撞结构研究.船舶工程, 2001, (2): 12-15.
    [58]王自力,顾永宁.提高VLCC侧向抗撞能力的一种新式双壳结构.船舶力学, 2002, 6(1): 27-36.
    [59]孙杰,王飞,谢文.玻璃钢蜂窝夹层复合材料在抗爆结构设计中的应用.玻璃钢/复合材料, 2001, (2): 19-25.
    [60] Boha JW, Loucab LA, Choo YS. Numerical assessment of explosion resistant profiled barriers. Marine Structures, 2004, 17(2): 139-160.
    [61] Liang Cho-Chung, Yang Ming-Fang, Wu Pin-Wen. Optimum design of metallic corrugated core sandwich panels subjected to blast loads. Ocean Engineering, 2001, 28(7): 825-861.
    [62] Boha JW, Loucab LA, Choo YS. Energy absorbing passive impact barrier for profiled blastwalls. International Journal of Impact Engineering, 2005, 31(8): 976-995.
    [63] Nagel GM, Thambiratnam DP. Computer simulation and energy absorption of tapered thin-walled rectangular tubes. Thin-Walled Structures, 2005, 43(8): 1225-1242.
    [64] Rudrapatna NS, Vaziri R, Olson MD. Deformation and failure of blast-loaded square plates. International Journal of Impact Engineering, 1999, 22(4): 449-467.
    [65] Ramajeyathilagam K,Vendhan CP. Deformation and rupture of thin rectangular plates subjected to underwater shock. International Journal of Impact Engineering, 2004, 30(6): 699-719.
    [66]白金泽. LS-DYNA3D理论基础与实例分析.北京:科学出版社, 2005.
    [67]赵海欧. LS-DYNA动力分析指南.北京:兵器工业出版社, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700