纳米二氧化钛光催化降解有机磷农药的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机磷农药废水浓度高,毒性大,所含有毒物质抑制细菌繁殖,使生物处理效果受到影响,而光催化法能有效地将有机污染物降解为无机离子,无二次污染,为有机磷农药废水处理提供了一条新的、有潜力的途径。
     甲胺磷在TiO_2表面预先吸附对甲胺磷光催化降解影响很大;根据实验结果,得出TiO_2吸附甲胺磷的Langmuir吸附等温方程C_e/q_e=0.1095 C_e+0.06347;红外光谱分析表明,甲胺磷在TiO_2表面吸附时通过磷酰基P=O中的氧与TiO_2中的钛形成配位键:根据实验结果,提出了光催化降解过程。
     研究了甲胺磷光催化降解影响因素,TiO_2的最佳用量;酸性及碱性介质均有利于甲胺磷的降解:随着甲胺磷起始浓度的减小、光强的增大、通入空气量的增大,甲胺磷降解率均增大。加入少量的电子接受体H_2O_2或Fe~(3+)均能大幅度地提高降解率。
     推导出用有机物降解最终产物表示反应速率的公式;甲胺磷起始浓度在7.06~70.56mg.L~(-1)范围内时,其光催化降解为零级反应。用气质联用仪检测到CH_3-SO_2-SCH_3及CH_3S-SCH_3中间产物:用离子色谱法检测到SO_4~(2-)、NH_4~+、NO_3~-,其中甲胺磷中的氮首先光催化生成NH_4~+,再进一步氧化为NO_3~-,据此,提出了甲胺磷光催化降解的可能途径。探讨了用太阳光作光源,太阳光光强为18.2W.m~(-2)时,反应速率常数为0.02132mg.L~(-1).min~(-1)。光催化降解甲胺磷和水胺硫磷结果表明,硫代磷酰胺类的甲胺磷较硫逐磷酸酯类的水胺硫磷容易降解。
     TiO_2加入Fe(OH)_3胶体中制得复合Fe_2O_3/TiO_2,DRS研究表明TiO_2与Fe_2O_3复合以后,光的吸收性能提高了,且激发波长红移。XRD分析表明铁进入TiO_2晶格取代Ti,XPS分析也说明形成了Ti-O-Fe,故本研究提出TiO_2与Fe_2O_3复合的同时也进行了掺杂。光照Fe_2O_3/TiO_2时,光生电子从TiO_2表面向Fe_2O_3转移,同时晶格中缺陷作为电子的陷阱,使TiO_2表面电子—空穴对有效分离,从而提高了TiO_2的活性。存在Ti~(3+)表面态使活性降低,Fe_2O_3/TiO_2光催化活性并不与表面羟基含量成正比。粒径及比表面积并不是影响Fe_2O_3/TiO_2活性的主要因素,光生电子—空穴对得到有效分离才是主要原因。
The organophosphorous pesticides wastewater is thick and poisonous. The toxicants inhibit the reproduction of bacterium, so the pollutant degradation by microbe is poor. The organic pollutants can be effectively degraded into inorganic ions by photocatalysis, and there is no secondary' pollution. The photocatalysis is a potential treatment for organophosphorous pesticides wastewater.The photocatalytic degradation of methamidophos is influenced greatly by the adsorption of methamidophos on the TiO_2 surface. The Langmuir adsorption isotherm equation of methamidophos on the TiO_2 surface C_e/q_e = 0.1095 C_e +0.06347 is put forward on the basis of the experimental results. A phosphoryl oxygen-titanium bond is formed via O of P=O with TiO_2 when methamidophos is adsorbed on the TiO_2 surface. According to the experimental results, the process of photocatalytic degradation is proposed.The influence factors on the photocatalytic degradation of methamidophos are investigated, such as the optimum amount of TiO_2. The degradation of methamidophos is more efficient in acidic medium and basic medium. The degradation efficiency of methamidophos increases with a decrease of the initial concentration of methamidophos or an increase of the light intensity and airflow. The degradation efficiency of methamidophos increases greatly when the electron acceptor H_2O_2 or Fe~(3+) is added.The kinetic equation, which is expressed by the products of organic pollutant degradation, is given. The photocatalytic degradation is a zero order reaction when the initial concentration of methamidophos is in the range of 7.06-70.56 mg.L~(-1) . CH_3-SO_2-SCH_3 and CH_3S-SCH_3 are detected by GC-MS during the photocatalytic degradation of methamidophos. SO_4~2- NH_4~+ NO_3~- ion are determined by ion-chromatography. N in methamidophos is photocatalyzed into NH_4~+ , and then NH_4~+ is oxidized into NO_3~- . The proposed pathway of photocatalytic degradation of methamidophos is put forward on the basis of experimental results. The reaction rate constant of zero order of methamidophos is 0.02132 mg.L~(-1) .min~(-1) when the sunlight intensity is 18.2W.m~(-2) . It is showed that the photocatalytic degradation of methamidophos is easier than that of isocarbophos by the experimental results.
    Fe2O3/ TiO2 is prepared by adding TiO2 in Fe(OH)3 colloid. DRS shows that the absorption property of light is improved and the red shift of excitation wavelength occurs after TiO2 is coupled with Fe2O3. According to XRD results, iron enters the TiO2 lattice;The Ti-O-Fe is confirmed by XPS, so ion doping is existing when TiO2 is coupled with Fe2O3. When the light illuminates Fe2O3/ TiO2, the electron moves from TiO2 to Fe2O3. At the same time, the defect in the crystal lattice acts as the trap, so the electron-hole pair on the TiO2 surface is separated effectively and the activity of Fe2O3/ TiO2 increases. Ti3+ surface state decreases the activity of Fe2O3/ TiO2, and the photocatalytic activity of Fe2O3/ TiO2 isn't proportional to the amount of surface hydroxyl radical. The particle size and specific surface area aren't the main influence factors on the activity of Fe2O3/ TiO2, and the effective separation of electron-hole pair is the main reason.Nano-sized TiO2 with good dispersion, high purity and high activity in the aqueous solution is prepared by the improved hydrolysis. The optimum preparation conditions are investigated. The degradation efficiency of photocatalytic degradation of methamidophos for 1 h is 61.3% by prepared TiO2, and 35.9% by TiO2 made in Japan. The characterization of nano-sized TiO2 is studied using TEM, XRD, TG, DTA, BET, IR and XPS, indicating that the photocatalytic activity of the photocatalyst must be evaluated by crystallite patterns, crystallinity, crystal size, specific surface area, surface state and surface hydroxyl radical. The single parameter is not proportional to the photocatalytic activity. The main reasons influencing the photocatalytic activity are the crystallite patterns and crystallinity.
引文
[1] 李圭白,“水的社会循环和水资源可持续利用”,给水排水,1998,24(9):1
    [2] 于忠民,“当代水污染防治的特点及发展”,中国给水排水,1997,13(3):26-27
    [3] 孟楠,王珂,“环境保护的国际考察”,复旦学报(社会科学版),1998,4:46-49,74
    [4] 张晶心,“城市污水再生与农业再用”,重庆环境科学,1994,16(2):35-37
    [5] 张坤民,“可持续发展与中国的行动”,复旦学报(社会科学版),1998,3:1-5
    [6] Terzian R, Serpone N, Minero C et al, "kinetic studies in heterogeneous photocatalysis. 4. The photomineralization of a hydroquinone and a catechol", J Photochem Photobiol A:Chem, 1990, 55:243-249
    [7] Linsebigler A L, Guangquan L, Yate J T, "photocatalysis on TiO_2 surfaces: principles, mechanisms, and delected results", Chem Rev, 1995, 95: 735-75
    [8] Izumi I, Dunn W W, Wllboum K O et al, "heterogeneous photocatalytic oxidation of hydrocarbons on platinized TiO_2 powders", J Phys Chem, 1980, 84: 3207-32108
    [9] Bard A. S., "photoelectrochemistry and heterogeneous photocatalysis on semiconductors", J. Photochem. 1979, 10: 59-75
    [10] Izumi I, Fan F F, Bard A J, "heterogeneous photocatalytic decomposition of benzoic acid and adipic acid on platinized titanium dioxide powder", J Phys Chem, 1981, 85: 218-223
    [11] Kormann C, Bahnemann D W, Hoffmann M R, "photolysis of chloroform and other organic molecules in aqueous titanium dioxide suspensions", Environ Sci Technol, 1991, 25:494-500
    [12] Hoffmann M R, Martin S T, Wonyong C et al, " environmental applications of semiconductor photocatalysis", Chem Rev, 1995, 95: 69-96
    [13] 唐振宁,钛白粉的生产与环境管理,北京,化学工业出版社,2000,p4
    [14] Hsiao C Y, Lee C L, Ollis D F, "heterogeneous photocatalysis: degradation of dilute solutions of dichloromethane(CH_2Cl_2), chloroform(CHCl_3), and carbon tetrachloride(CCl_4) with illuminated photocatalvst", J Catal, 1983,82:418-423
    [15] 张梅,杨绪杰,陆路德等,“纳米TiO_2——一种性能优良的光催化剂”,化工新型材料,2000,28(4):11-13,34
    [16] Brus L E, "electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state", J Chem Phys, 1984,80:4403-4409
    [17] Brus L E, "a simple model for the ionization potential, electron affinity and aqueous redox potentials of small semiconductor crystallites", J Chem Phys, 1983,79:5566-5571
    [18] 符小荣,张校刚,宋世庚等,“退火气氛对掺银TiO_2薄膜结构和光催化性能的影响”,化学学报,1998,56(6):521-526
    [19] Serpone N, Borgarello E, Barbeni M et al, "photochemical reduction of gold (Ⅲ) on semiconductor dispersions of TiO_2 in the presence of CN~- ions: disposal of CN~- by treatment with hydrogen peroxide", J Photochem, 1987, 36: 373-388
    [20] 李凤生等编著,超细粉体技术,北京,国防工业出版社,2000,p318
    [21] 李玉铭,李山东,林鸿溢,“纳米半导体及其应用”,物理化学学报,1997,13(11):1052-1055
    [22] Morooka S, Yasutakae T, Kobata A et al, "A mechanism for the production of ultrafine particles of TiO_2 by a gas-phase reaction", International Chemical Engineering, 1989,29(1): 119-126
    [23] 胡黎明,李春忠,姚光辉等,“化学气相沉积反应器中的超细粒子的形态控制”,华东化工学院学报,1992,18(4):417-422
    [24] Okuyama K, Kousaka Y, Wu Jin Jwang et al "production of ultrafine metal oxide aerosol particles by thermal decomposition of metal alkoxide vapors", AICHE Journal, 1986, 32(12): 2010-2019
    [25] 施利毅,李春忠,房鼎业等,“气相合成二氧化钛超细粒子光催化活性艳红X-3B脱色的研究”,太阳能学报,2000,21(1):100-105
    [26] 王晓慧,王子忱,李颐等,“胶溶法合成超微粒子”,材料科学进展,1992,6(6):533-537
    [27] Harris M T, Byers H, "effect of solvent on the titania by titanium ethaxide hydrolysis", J Non-Crystalline Solids, 1988, 103:49-64
    [28] Kominami H, Jun-ichi K, Shin-ya M et al, "synthesis of titanium (Ⅳ) oxide of ultra-high photocatalytic activity: high-temperature hydrolysis of titanium alkoxides with water liberated homogeneously from solvent alcohols", J Mole Cata, 1999,144:165-171
    [29] Gao Y M, Lee W, Trehan R et al, "improvement of photocatalytic activity of titanium (Ⅳ) oxide by dispersion of Au on TiO_2", Mat. Res. Bull, 1991,26: 1247-1254
    [30] Wang Ch-M, Heller A, Gerischer H, "palladium catalysis of O_2 reduction by electrons accumulated on TiO_2 particles during photoassisted oxidation of organic compounds", J. Am. Chem. Soc., 1992,114: 5230-5234
    [31] 姚晓斌,马颖,姚建年,“贵金属对TiO_2悬浮液光照过程中H_2O_2形成的促进作用”,感光科学与光化学,1999,17(2):159-162
    [32] Choi W, Termin A, Hoffmann M R, "the role of metal ion dopants in quantum-sized TiO_2: correlation between photoreactivity and charge carrier recombination dynamics", J. Phys. Chem., 1994, 98:13669-13679
    [33] 岳林海,“稀土元素掺杂二氧化钛催化剂光降解久效磷的研究”,上海环境科学,1998,17(9):17-19
    [34] Palmisano L, Augugliaro V, Sclafani A et al, "activity of chromium-ion-doped titania for the dinitrogen photoreduction to ammonia and for the phenol photodegradation", J Phys Chem, 1988, 92: 6710-6713
    [35] 张彭义,余刚,蒋展鹏,“半导体光催化剂及其改性技术进展”,1997,5(3):1-10
    [36] Jimmy C Y, Lin Jun, Kwok R W M, "enhanced photocatalytic activity of solid solution on the degradation of acetone", J. Photochem. Photobiol. A:Chem 1997, 111: 199-203
    [37] Jimmy C Y, Lin Jun, Raymund W M K, "Ti_(1-x)Zr_x O_2 solid solutions for the photocatalytic degradation of acetone in air". J Phys. Chem., 1998, 102: 5094-5098
    [38] 岳林海,“锌铜复合氧化物光催化降解甲基对硫磷”,上海环境科学,1999,18(6):277-279,282
    [39] Sclafani A., Herrmann J. M. "comparison of the photoelectronic and photocatalytic activity of various anatase and rutile forms of titania in pure liquid organic phase and in aqueous solutions", J. Phys. Chem., 1996,100:13655-13661
    [40] 韩英哲,文学洙,朱在京等,“用WO_3为基质的催化剂处理含Cr_2O_7~(2-)离子废水的研究”,环境科学,1984,5:20-22
    [41] Vogel R, Hoyer P, Weller H, "quantum-sized PbS, CdS, Ag_2S, Sb_2S_3, and Bi_2S_3 particles as sensitizers for various nanoporous wide-bandgap semiconductors". 1994, J Phys Chem, 98:3183-3189
    [42] Idriss B, Prashant V K, "capped semiconductor colloids: synthesis and photoelectrochemical behavior of TiO_2-capped SnO_2 nanocrystallites". J Phys Chem, 1995, 99: 9182-9188
    [43] Matthews R W, "photooxidation of organic impurities in water using thin films of titanium dioxide", J. Phys. Chem., 1987, 91: 3328-3333
    [44] 陈士夫,赵梦月,陶跃武,“太阳光TiO_2薄层光催化降解有机磷农药的研究”,太阳能学报,1995,16(3):234-239
    [45] 王怡中,符雁,汤鸿霄,“二氧化钛悬浆体系太阳光催化降解甲基橙研究”,环境科学学报,1999,19(1):63-67
    [46] 陈士夫,梁新,陶跃武等,“空心玻璃微球附载TiO_2光催化降解有机磷农药”,感光科学与光化学,1999,17(1):85-91
    [47] 张志成,包志军,王克欧等,“二氧化钛催化下的氯代二苯并-对-二恶英光解反应”,环境化学,1996,15(1):47-51
    [48] 魏宏斌,李田,严熙世,“水中有机污染物的光催化氧化”,环境科学进展,1994,2(3):50-57
    [49] Carole K G, Marie J, Michael G, "decomposition of organophosphorus compounds on photoactivated TiO_2 surfaces", J. Mole Cata, 1990, 60: 375-387.
    [50] Abdullah M, Lew G K C, Matthews R W, "effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide", J. Phys. Chem., 1990, 94:6820-6825
    [51] Crittenden J C, Zhang Y, Hand D W, "solar detoxification of fuel-contaminated groundwater using fixed-bed photocatalysts", Wat Environ Res, 1996, 68:270-278
    [52] 王怡中,“二氧化钛悬浆体系中八种染料的太阳光催化氧化降解”,催化学报,2000,21(4):327-331
    [53] Goswami D Y, "a review of engineering developments of aqueous phase solar photocatalytic detoxification and disinfection processes", J of Solar Energy Engineering, 1997, 119: 101-107
    [54] Pruden A L, Ollis D F, "degradation on chloroform by photoassisted heterogeneous catalysis in dilute aqueous suspensions of titanium dioxide", Environ Sci Techol, 1983,17(10): 628-631
    [55] Pruden A L, Ollis D F, "photoassisted heterogeneous catalysis: the degradation of trichloroethylene in water", J of Catal, 1983, 82(2): 404-417
    [56] Ollis D F, Pelizzetti E, "heterogeneous photoassisted catalysis: conversions of perchloroethylene, dichloroethane, chloroacetic acids and chlorobenzenes", J of Catal, 1984, 88(1): 89-96
    [57] Matthews R W, "photooxidation of organic material in aqueous suspensions of titanium dioxide", Wat Res, 1986, 20(5): 569-578
    [58] Mattews R W, "photocatalytic oxidation of chlorobenzene in aqueous suspensions of titanium dioxide", J of Catal, 1986, 92(2): 565-569
    [59] Mattews R W, "solar-electric water purification using photocatalytic oxidation with as a stationary phase", Solar Energy, 1987, 30(6): 405-417
    [60] 李琳,“多相光催化在水污染治理中的应用”,环境科学进展,1994,6(2):24-30
    [61] 陈士夫,赵梦月,陶跃武等,“光催化降解有机磷农药的研究”,环境科学,1995,16(5):61-63
    [62] 李庆霖,席婵娟,金振声,“多相光催化的一个分支——气固相光催化及其在环境治理方面的应用”,太阳能学报,1994,15(3):279-282
    [63] Chen Feng, "preparation and photocatalytic properties of a novel kind of loaded photocatalyst of TiO_2/SiO_2/γ-Fe_2O_3". Catal. Lett., 1999, 58(4): 245-247
    [64] 李田,严熙世,黄伟星,“固定膜光催化氧化反应器深度净化自来水研究”,中国给水排水,1996,12(3):7-10
    [65] 陈士夫,梁新,陶跃武等,“空心玻璃微球TiO_2光催化降解有机磷农药”,感光科学与光化学,1999,17(1):85-91
    [66] Modestov A, Olezer V, Marjasin I et al., "photocatalytic degradation of chlorinated phenoxyacetic acids by a new buoyant titania-exfoliated graphite composite photocatalyst". J. Phys. Chem., 1997,101:4623-4629
    [67] Nicola J P, Hoffmann M R, "development and optimization of a TiO_2-coated fiber-optic cable reactor: photocatalytic degradation of 4-chlorophenol". Environ Sci. Technol., 1995, 29: 2974-2981
    [68] Nicola J P, Hoffmann M R, "chemical and physical characterization ofa TiO_2-coated fiber-optic cable reactor". Environ Sci Technol, 1996, 30: 2806-2812
    [69] 张一宾,孙晶,“国内外有机磷农药的概况及对我国有机磷农药发展的看法”,农药,1999,38(7):1-3
    [70] 胡笑形,“我国农药工业的现状与发展方向”,农药,1998,37(6):7-10
    [71] Lu Ming-Chun, Roam Gwo-Dong, Chen Jong-Nan et al. "microtox bioassay of photodegradation products from photocatalytic oxidation of pesticides", Chemosphere, 1993, 27(9): 1637-1647.
    [72] 岳林海,周永秋,“Ag/ZnO光催化降解甲基对硫磷研究”,环境污染与防治,1998,20(3):5-8
    [73] Doong Reuy-an, Chang Wen-huei. "photoassisted titanium dioxide mediated degradation of organophosphorous pesticides by hydrogen peroxide", J. Photochem Photobiol. A., 1997,107: 239-244.
    [74] Matthews R W, "purification of water with near-UV illuminated suspensions of titanium dioxide", Wat Res, 1990, 24:653-660
    [75] 赵梦月,陈士夫,陶跃武,“光催化及生物降解法处理有机磷农药废水”,化工环保,1995,15(2):115-116。
    [76] Kurtz R L, Stockbauer R, Madey T E et al, "synchrotron radiation studies of H_2O adsorption on TiO_2 (110)", Surf Sci, 1989,218:178-200
    [77] Beck D D, White J M, Racliffe C T, "catalytic reduction of CO with hydrogen sulfide. 3. Study of adsorption of O_2, CO and CO coadsorbed with H_2S on anatase and rutile using auger electron spectroscopy and temperature-programmed desorption". J Phys Chem,1986,90:3132-3136
    [78] Martin S T, Kesselman J M, Perk D S et al, "surface structures of 4-chlorocatechol adsorbed on titanium dioxide", Environ Sci Technol, 1996, 30: 2536-2542
    [79] 董庆华,董玉琳,“半导体悬浮体系光催化分解有机磷化合物”,感光科学与光化学,1992,10(1):71-76
    [80] Herrmann J M, Guiilard C, Arguello M et al, "photocatalytic degradation of pesticide pirimiphos-methyl determination of the reaction pathway and identification of intermediate products by various analytical methods." Catalysis today, 1999,54:353-367
    [81] 胡春,王怡中,汤鸿霄,“多相光催化氧化的理论与实践”,环境科学进展,1995,3(1):55-64
    [82] 陈洁,宋启泽,有机波谱分析,北京,北京理工大学出版社,1997,p55
    [83] 荆熙瑛,陈式棣,么恩云,红外光谱使用指南,天津,天津科学技术出版社,1992,p146
    [84] 沈阳化工研究院环保室,农药废水处理,化学工业出版社,2000,p31
    [85] Tomin, C. The Pesticide Manual, a World Compendium. British Crop Protection Council, Croydon, UK, 1994, p98
    [86] 曹志方,王银善,“甲胺磷农药的微生物降解”,环境科学进展,1996,4(6):32-35
    [87] 李淑彬,钟长英,“B-82细菌的筛选及降解甲胺磷的实验研究”,上海环境科学,1999,18(12):564-567。
    [88] 刘玉焕,钟长英,“甲胺磷降解真菌的研究”,中国环境科学,1999,19(2):172-175。
    [89] 张嗣炯,许炉生,黄新文等,“甲胺磷农药废水絮凝处理的生物可降解性”,环境进展,1998,6(4):87-89
    [90] 王怡中,李忠,胡克源,“农药废水中有机硫、磷污染物湿式空气氧化反应的研究”,环境化学,1993,12(5):415-419
    [91] 高明华,梁载琪,周湘梅,“甲胺磷生产废水处理试验研究”,化工环境,1999,19(2):69-73
    [92] Parrilla P., Martinez Vidal J L, Martinez Galera M, et al, "degradation of fenamiphos and folpet in water", Intern J Environ Anal Chem, 1996, 63: 137-145
    [93] Harada K, Hisanaga T, Tanaka K, "photocatalytic degradation organophosphorous insecticides in aqueous semiconductor suspensions", Wat. Res, 1990,24(11): 1415-1417
    [94] Zhang Hua, Zhu Manping, Xu Zongfeng et al. "titanium dioxide mediated photocatalytic degradation of monocrotophos", Wat Res, 1995,29(12): 2681-2688
    [95] Hung S T, Mak M K S, "titanium dioxide photocatalytic degradation of organophosphate in a system simulating the natural aquatic environment", Environ Technol, 1993, 14: 265-269
    [96] Mak M R S, Hung S T, "degradation of neat and commercial samples of organophophate pesticides in illuminated suspensions", Toxic Environ Chem, 1992, 36: 155-168
    [97] Malato S, J Blanco, C Richter et al. "Pre-industrial Experience in Solar Photocatalytic Mineralization of Wastewater. Application to Pesticide Container Recycling", Wat. Sci. Tech., 1999, 40(4-5): 123-130.
    [98] Gratzel C K, Uirousek M, Gratzel M, "decomposition of organophosphorous compounds on photoactivated TiO_2 surfaces", J Mol Cat, 1990, 60:375-387
    [99] 魏宏斌,彭海清,“有机物分子结构与光催化氧化反应活性的关系”,上海环境科学,1998,17(11):43-45
    [100] Wei Tsong-Yang, Wen Yung-Yun, Wu Chi-Chao, "photocatalytic oxidation of phenol in the presence of hydrogen peroxide and titanium dioxide powders", J Photochem Photobiol A:Chem, 1990, 55:115-126
    [101] Turchi C S, Ollis D F, "photocatalytic degradation of organic water contaminants mechanisms involving hydroxyl radical attack", J of Cat, 1990, 122: 178-192
    [102] Gorischer H, Hellor A. "The role of oxygen in photooxidation of organic molecules on semiconductor particles", J Phys Chem, 1991,95(13): 5261-5267
    [103] Peterson M W, Turner I A, Nozik A J, "mechanistic studies of the photocatalytic behavior of TiO_2. particles in a photoelectrochemical slurry cell and the relevance to photodetoxification reactions", J Phys Chem. B 1991, 95: 221-225
    [104] Malato S., Blanco J, Richter C et al. "solar photocatalytic mineralization of commercial pesticides: methamidophos", Chemosphere, 1999, 38(5): 1145-1156
    [105] Sclafani A., Palmisano L., Davi E, "Photocatalytic Degradation of Phenol in Aqueous Polycrystalline TiO_2 Dispersions: the influence of Fe~(3+), Fe~(2+) and Ag~+ on the Reaction Rate". J.Photochem.Photobiol.A: Chem.,1991, 56(1): 113-123
    [106] Pramauro E, Vincentl M, Augugllaro V et al, "photocatalytic degradation of monuron in aqueous TiO_2 dispersions", Environ Sci Technol, 1993,27:1790-1795
    [107] 江滕永念,有机磷农药的有机化学与生物化学。北京,化学工业出版社,1981,p53
    [108] Serpone N, Ah-You Y K, Tran T P et al, "aml simulated sunlight photoreduction and elimination of Hg(Ⅱ) and CH_3Hg(Ⅱ) chloride salts from aqueous suspensions of titanium dioxides", Solar Energy, 1987, 39(6):491-498
    [109] 张池明,姜月顺,刘旺等,“TiO_2超微粉光催化还原Cr_2O_7~(2-)的研究”,太阳能学报,1991,12(2):176-180
    [110] 余锡宾,“TiO_2微粒的掺杂改性与催化活性”,上海师范大学学报,2000,20(1):75-82
    [111] 王连生,韩朔睽著,有机污染化学进展,北京,化学工业出版社,1998,P247-252
    [112] 菅盘铭,夏亚穆,李德宏等,“掺杂TiO_2纳米粉的合成、表征及催化性能研究”,2001,22(2):161-163
    [113] 唐有祺著,唐有祺文集,自发单层分散原理及应用,北京,北京大学出版社,1998,P31-48
    [114] 刘维桥,孙桂大,固体催化剂实用研究方法,北京,中国石化出版社,2000,p214
    [115] 刘世宏,王当憨,潘承璜,X射线光电子能谱分析,北京,科学出版社,1988,p94
    [116] Sanjines R, Tang H, Berger H et al. "Electronic structure of anatase TiO_2 oxide", J Appl. Phys 1994, 75(6): 2945-2951
    [117] 曹亚安,陈咏梅,管自生等,“TiO_2纳米粒子膜的表面态性质及其光催化活性的研究”,感光科学与光化学,1999,17(2):100-102
    [118] Keith M G, James R C, "structural and electronic properties of titanium dioxide", Phys Rev, 1992,46(3): 1284-1298
    [119] Hasselbarth A, Eychmuller A, Eichberger R et al, "chemistry and photophysics of mixed CdS/HgS colloids", J Phys Chem, 1993, 97:5333-5340
    [120] Lifshitz E, Porteanu H, Gtozman A, "optically detected magnetic resonance study of CdS/HgS/CdS Quantum dot quantum wells", J Phys Chem, 1999, 103:6870-6875
    [121] Martin S T, Morrison C L, Hoffmann M R, "photochemical mechanism of sized-quantized vanadium-doped TiO_2 particles", J Plays Chem, 1994, 98:13695-13704
    [122] 高濂,陈锦元,黄军华等,“醇盐水解法制备二氧化钛纳米粉体”,无机材料学报,1995,10(4):423-427
    [123] 黄军华,高濂,陈锦元等,“纳米粉体制备过程中结晶度的控制”,无机材料学报,1996,11(1):51-57
    [124] 李芳柏,改性二氧化钛的制备、表征及其光催化处理染料废水中的应用,华南理工大学博士学位论文,1998,p28
    [125] Sun Yin, Yuichi I, Uchida S et al, "Crystallization of titania in liquid media and photochemical properties of crystallized titania", J Mater Res, 1998, 13(4): 844-847
    [126] Iwasaki M, Hara M, Ito S, "The facile synthesis of nanocrystalline anatase particles from titanyl sulfate", J Mater Sci Lett, 1998,17:1769-1771
    [127] Gopal M, Moberly Chan W J, De Jonghe L C, "room temperature synthesis of crystalline metal oxides", J Mater Sci, 1997, 32:6001-6008
    [128] Cao Huizheng, Ruckeustein F, "a new type of hydrous titanium oxide adsorbent", J Colloid and Interface Science, 1991,145(2): 581-591
    [129] 沈钟,王果庭,胶体与表面化学,北京,化学工业出版社,1997,p12
    [130] F E 卢博斯基博士,非晶态金属合金,北京,冶金工业出版社,1989,p203
    [131] 水淼,徐铸德,岳林海,“纳米掺铁二氧化铁的sol-gel法制备与表征—(Ⅱ)纳米掺铁二氧化铁的微晶特性与晶体生长”,无机化学学报,2001,17(1):32-36
    [132] Hagfeldt A, Gratzel M, "light-induced redox reactions in nanocrystalline systems", Chem Rev, 1995, 95(1): 49-68
    [133] Ohtani B., Nishimoto S., "effect of surface adsorptions of aliphatic alcohols and silver ion on the photocatalytic activity of suspended in aqueous solutions", J. Phys. Chem. 1993,97:920-926.
    [134] 赵青南,余家国,赵修建等,“溶胶—凝胶法制备釉面砖表面TiO_2涂层的XPS研究及其光催化性能”,中国陶瓷,1999,35(1):16-18
    [135] 余家国,赵修建,“多孔TiO_2光催化纳米薄膜的制备和微观结构研究”,无机材料学报,2000,15(2):347-355
    [136] Zanoni R, Righini G, Montenero A, et al, "XPS analysis of sol-gel processed doped and undoped TiO_2 films for sensors", 1994,22:376-379
    [137] 侯纪蓉,张雨风,“我国农药工业三废治理方法”,化工环保,1998,18(1):15-19
    [138] 中国农业科学院植物保护研究所,农牧渔业部农药检定所,商业部农业生产资料局,农药分析,北京,化学工业出版社,1988,p74

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700