任意形状工件体积及板件面积测量仪的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的机械制造已有很久的历史,它对人类的生产和物质文明起了极大的作用。随着科学技术的不断进步,传统的机械制造向先进制造方向发生了巨大的转变,未来先进制造技术发展的总趋势是向精密化、柔性化、智能化、集成化、全球化方向发展。精密成形技术是先进制造技术的一个重要内容。该项技术包括近净形铸造成形、精确塑性成形、精确连接、精密热处理、表面改性等专业领域,是新工艺、新材料、新装备以及各项新技术成果的综合集成技术。当前精密成形技术已在较大程度上实现了近净成形,发展趋势是实现净成形。
    金属塑性成形按照毛坯的特点分类,可分为体积成形和板料成形两大类,每类又包括多种加工方法、形成各自的工艺领域。在锻造工艺设计过程中,通常需要根据零件图留加工余量并绘制锻件图,再根据锻件尺寸(包括飞边部分),计算锻件重量及所需坯料的尺寸。如果锻件形状比较复杂,按传统方法进行计算就显得十分费时费力,且容易出错。对于形状复杂的锻件或钣金件,其坯料尺寸通常需要经过多次试模才能确定,因而成本较高。板材成形中同样存在着计算坯料尺寸的问题,如弯曲件展开尺寸的计算,轴对称拉深件坯料尺寸的确定等。对于这类问题,通常需要计算工件的表面积,再按面积相等的原则确定坯料的尺寸。尽管已有不少文献给出了一些比较实用和比较可靠的经验公式,但计算起来仍然相当繁琐。
    众所周知,坯料尺寸的确定对于节省原材料、降低产品成本、提高经济效益至关重要。而且,对于闭式模锻工艺而言,坯料尺寸直接影响模锻工艺的顺利进行。本论文研究的目的尚不在于此,而是为了确定板成形和体积成形的不同工序中金属材料体积变化与工艺的关系,必须精确测量复杂形状工件的体积变化乃至工件某部分的体积变化,这是当前金属塑性精密成形亟待解决的问题。
    
    本论文既是我的导师宋玉泉教授关于“超塑性与塑性精密加工中的仪器、仪表及测量技术”研究方向的一个组成部分,也是吉林大学超塑性与塑性研究所承担的国家科技攻关计划项目“汽车连杆辊压塑性精成形的新设备和新工艺”的一个组成部分。本文是以我的导师宋玉泉教授的两项专利“任意形状工件体积测量仪”和“任意形状板件面积测量仪”为依据。研究的主要内容为:任意形状工件整体体积及其局部体积测量仪,并完成相应的控制数据采集和处理系统的设计;任意形状板件面积测量仪,并完成相应的控制数据采集和处理系统的设计;通过应用范例来进一步说明体积和面积测量在塑性精密成形的重要意义。
    任意形状板件面积测量仪属于现代板材加工制造的仪器仪表测量领域,它是由主机、控制系统、测量系统、检测系统、数据处理系统和结果显示系统组成,它能够测量任意复杂形状板件的面积和材料的密度。测量方法是把板件悬挂于空气中,在显示器中就可显示出板件的重量,再将其浸入水中,又可显示出板件在水中的重量或浮力,据此便可测得板件的面积及其材料的密度;任意形状板件面积测量仪的优点是仪器结构简单,造价低,易于加工制造,市场需求量大,测量精度高,对环境无污染,操作简便。
    任意形状工件的体积测量仪属于现代制造和材料科学的仪器仪表测量领域,它是由主机、步进电机、步进电机驱动电路、拉力传感器、传感器信号放大电路、A\D转换电路、单片机、数据采集处理系统和结果显示记录系统组成。其测量方法是先将待测工件悬挂于空气中,在显示记录系统中就直接显示出待测工件的重量,再将其悬挂于盛水的容器中,又可在显示记录系统中显示出待测工件在水中的重量,最后显示出待测工件的体积和密度。任意形状工件的体积测量仪的优点是:仪器结构简单、易于加工制造、投资小、效益大、测量精度高、操作简便、对环境无污染、对操作人员无很高的技术要求,而且既可以测量比重大于水的任意形状工件的体积和密度,又可以测量比重小于水的任意形状工件的体积和密度,还可以
    
    
    测量工件局部的体积。
Traditional machine manufacturing has a long history, which plays an important role in production and material civilization in the world. With the continuous development of science and technology, traditional machine manufacturing brings great change towards advanced manufacturing technology. Future advanced manufacturing technology is developing into sophistication, flexibility, intellectualized, integration and globalization. Precise forming, a main part of advanced manufacturing technology, includes net shape cast form, precision plastic form, precision joining, precision heat treatment, surface modification etc. It is a comprehensive technology of new technology, new material, new equipment etc. At present precise forming technology has fulfilled near net shape towards a great extent, and its goal is net shape.
    According to billet’s characteristic, metal plastic forming may be divided into bulk forming and sheet forming, and each forming has many processing methods. During the course of the design of forging technology, usually the forging envelope and forged piece drawing are determined by part drawing, and so forged piece weight and size of blank are computed according to the size of forged piece (including flash). If forged piece is complicated, it will take time and arduous, and liable to make a mistake compared with the conventional computing method. Billet size of forged piece and plate work piece with complicated shape are often confirmed by many die settings, so its cost is high. The similar problem on computing blank size also exists in sheet forming, such as spreading size of bending piece, blank size of axial symmetry parts by deep drawing. To solve the problem, the surface area of workpiece is needed to be
    
    
    computed and blank size is determined according to the principal of Equal Square. But it is hard to compute, even some applied and credible empirical formulas have been given in lots of literatures.
    It is well known that the determination of billet dimension is very important for saving material, reducing cost and increasing economic benefit. And as for the closed die forging, billet size will affect the process directly. But the main purpose of this thesis is to ascertain the relation of volume change with technology in different working procedures of bulk forming and sheet forming, and the whole or part volume change of complicated shape billet should be measured, which is an urgent problem of plastic forming.
    The thesis is an important component of overall research about instrument, meters and measuring technique of superplastic and plastic precise forming which is researched by my supervisor, Professor Song Yu Quan, and also a part of Key technologies R&D Programme”New equipment and new technology on rolling plastic precision forming of automobile connecting rod” assumed by superplastic and plastic research institute of Jilin university. According to his two patents, “the Volume measuring instrument of arbitrary shape workpiece” and “the area measuring instrument of arbitrary shape sheet part”, this thesis mainly solve the following problems: instrument for measuring the whole and local volume of the pieces with arbitrary shape and fulfilling collection of corresponding control data and design of processing system; instrument for measuring the area of the sheets with arbitrary shape and collection corresponding control data and designing processing system; explaining the value of measuring bulk and area during plastics precise forming.
    The area measuring instrument of arbitrary shape sheet part belongs to the field of instrument and meter measurement of modern sheet forming, which consists of mainframe, control system, measuring system, detection system,
    
    
    data processing system and result displaying or printing system. The instrument can measure the square and density of arbitrary complicated shape blank. The measuring method is as follows: hang the blank in the air, the weight of blank is displayed on the screen and then immerge it into the water and the square and
引文
[1] Michael H.Small,Mahmoud M.Yasin.Advanced manufacturing technology:Implementation policy and performance.Journal of Operations Management 1997(15):349~370
    [2] 张伯鹏,汪劲松,郑力,冯之敬.先进制造技术基础研究现状及发展趋势.中国机械工程,1997,8(2):59~63
    [3] 盛晓敏,邓朝晖.先进制造技术.北京:机械工业出版社,2000.10~11
    [4] 颜永年.先进制造技术.北京:化学工业出版社,2002.1~12
    [5] Magdy G.Abdel-Kader,David Dugdale.Investment in advanced manufacturing technology: a study of practice in large U.K.companies.Management Accounting Research,1998(9):261~284
    [6] 陈世平,曹建国.论先进制造技术与机械制造业.制造技术与机床,2002(2):5~7
    [7] M.Kakati.Strategic evaluation of advanced manufacturing technology,Int.J.Production Economics,1997(53):141~156
    [8] K.Abdul Ghani,V.Jayabalan.Advanced manufacturing technology and planned organizational change.The Journal of high technology management research,2000(11):1~18
    [9] J.Batlle.Advanced technologies in manufacturing.Microprocessors and Microsys-
     tems,1999(23):59~60
    [10] 房贵如,刘维汉.先进制造技术的总体发展过程和趋势.中国机械工程,1995,6(3):7~10
    [11] 王秀彦,费仁元.先进制造技术的发展趋势综述.锻压机械,2002,1:1~6
    [12] 杨家宽,樊自田,黄乃瑜.从“夕阳工业”到先进制造技术.自然辩证法研究,1998,14(4):59~62
    [13] 孙大涌.先进制造技术.北京:机械工业出版社,2000.23~26
    [14] 张洪博,韩新民,屈贤明.21世纪制造业企业的发展战略──先进制造技术的发展趋势.新技术新工艺,1999(3):2~5
    [15] Hongyi Sun.Current and future patterns of using advanced manufacturing technologies.Technovation,2000(20):631~641
    
    [16] 李敏贤,闵乃燕,安桂华,陈世兴.精密成形技术发展前沿.中国机械工程,1999,11(1~2):183~186
    [17] 皇甫骅,李社钊,王焱山.先进制造技术和精密成形技术.汽车工艺与材料,1996,12:1~4
    [18] 徐滨士,马世宁,刘世参等.先进制造技术与表面工程.机电产品开发与创新,1999,5:11~13
    [19] Kurt Lange.Modern metal forming technology for industrial production.Journal of Materials Processing Technology,1997(71):2~13
    [20] 周贤宾.塑性加工技术的发展——更精、更省、更净.中国机械工程,2003,14(1):87~91
    [21] 海锦涛.塑性成形技术的新思路.中国机械工程,2000,11(1~2):180~182
    [22] Hyoji Yoshimura,Katsuhisa Tanaka.Precision forging of aluminum and steel,Journal of Materials Processing Technology,2000(98):196~204
    [23] J.C.Choia,Y.Choib.Precision forging of spur gears with inside relief,International Journal of Machine Tools & Manufacture,1999(39):1575–1588
    [24] Richard Douglasa,David Kuhlmannb.Guidelines for precision hot forging with applications,Journal of Materials Processing Technology,2000(98):182~188
    [25] Shinsaku Onodera.ISO9000 conformance in respect of precision cold forging manufacturing. Journal of Materials Processing Technology,1997(71):71~75
    [26] R.Kopp.Some current development trends in metal-forming technology,Journal of Materials Processing Technology,1996(60):1~9
    [27] The precision forming of pin parts by cold-drawing and rotary-forging,Journal of Materials Processing Technology,1999(86):252~256
    [28] L.M.H.Brito,J.M.C.Rodrigues,P.A.F.Martins,M.J.M.Barata Marques.Precision forging of industrial battery terminals:an analysis of the preform geometry,Journal of Materials Processing Technology,1995(52):289~300
    [29] A.G.Mamalis,D.E.Manolakos,A.K.Baldoukas.Simulation of the precision forging of bevel gears using implicit and explicit FE techniques,Journal of Materials Processing Technology,1996(57):164~171
    [30] K.Siegert,M.kammerer,Th.Keppler-Ott,D.Ringhand.Recent developments on high precision forging of aluminum and steel,Journal of Materials Processing Technology,1997(71):91~99
    
    [31] 杜金榜,王跃科.仪器仪表技术的发展趋向.仪器仪表学报,2002,23(5):228~230,236
    [32] 李玲玲.网络化智能仪表是仪器仪表的发展方向.自动化与仪器仪表,2002,6:1~3
    [33] 黎永前,朱名铨.现代精密测量技术现状及发展.航空工艺技术,1999,3:13~18
    [34] 李运华.机电控制.北京航空航天大学出版社,2003:1~2
    [35] 浦昭邦,何正叔,张善锺.几何量精密计量仪器.哈尔滨工业大学出版社,1988:1~13
    [36] 王同海,孙胜,肖白白.实用冲压设计技术.北京:机械工业出版社,1995:45~63
    [37] 李硕本.冲压工艺学.北京:机械工业出版社,1982:120~121
    [38] 熊火轮,胡世光.板料成形中的计算机辅助设计.北京:北京航空航天大学出版社,1994:160
    [39] 邓陟.金属薄板成形技术.北京:兵器工业出版社,1993:132
    [40] 王江.现代计量测试技术.中国计量出版社,1990,1:522~524
    [41] 迟善武.一种实现小体积测量的精确方法.化工自动化及仪表,1996,23(2):44~47
    [42] 张冬梅,王辰,朱晓燕.不规则形状小物体体积计.仪器仪表与分析监测,2002,4:24
    [43] 李正群,计欣华,秦玉文.一种智能式非接触体积测量系统.计量技术,1999,1:25~27
    [44] 日藤正.工业测量方法手册.中国标准出版社,1987,1:390
    [45] 莫婉玲,刘晓红.测量任意形状固体体积的一种新方法.南昌大学学报(工科版),1995,17(4):12~18
    [46] 海国廷,张海涛.测量不规则物体体积的实验方法.宁夏大学学报(自然科学版),1998,19(2):133~134
    [47] 吕炎.锻造工艺学.北京:机械工业出版社,1995:75~84,151~165
    [48] 兰箭,董湘怀,陈志明等.板料成形毛坯展开方法研究.锻压技术,2000,4:21~25
    [49] 王烨,沈启彧,王玉国等.反向方法在板料成形工艺设计中的应用研究.金属成形工艺,2000,18(5):11~13
    
    [50] 栾贻国.基于UBET和FEM的模锻件预成形设计.塑性工程学报,2000,7(3):7~9
    [51] 詹艳然,吴乐尧,王仲仁.数值方法在坯料尺寸计算中的应用.金属成形工艺,2002,20(2):25~27
    [52] 徐新成,刘淑梅,赵中华,纪静.棒料剪切模刀板失效对锻造成形的影响.锻压技术,2003,4:5~7
    [53] 吴键,李先禄.等重下料技术及其工程化应用.金属成形工艺,2002,20(4):55~57
    [54] 郝滨海,夏霄红.棒料剪切机理与提高剪切精度的方法.锻压技术,2000,5:7~9
    [55] 郝滨海.精密剪切下料毛坯体积自动控制法.模具技术,2000,3:32~33,85
    [56] 肖景容.精密模锻.北京:机械工业出版社,1985,1:1~39
    [57] 夏巨谌.精密塑性成形工艺.北京:机械工业出版社,1999,1:1~5
    [58] 陈慧琴,王全聪,郭会光,王云峰.闭塞成形技术及应用.太原重型机械学院学报,2002,23(1):35~37
    [59] 张正修.无废料与少废料冲裁模.电子工艺技术,1995,5:37~41
    [60] 黄春峰.冲压工艺中的少无废料冲裁技术.模具技术,1998,2:62~67
    [61] 刘岩,吕建斌,李天佑.冲裁参数计算、排样及板材下料的优化设计.太原重型机械学院学报,1995,16(3):252~257
    [62] Kuwabara Toshiko,SIWen-hua.PC-based design system for deep-drawing irregularly shaped prismaticshells with arbitrarily shaped flange,Journal of Materials Processing Technology,1997,63(1):89-94
    [63] 宋玉泉.任意形状工件的体积测量仪.中国专利,ZL 01271958.7,2002,9
    [64] 宋玉泉.任意形状板件面积测量仪.中国专利,ZL 01272259.6,2002,10
    [65] 苏伟斌.8051系列单片机应用手册.北京:科学出版社,1997:1~3
    [66] 王田苗,丑武胜.机电控制基础理论及应用.清华大学出版社,2003:57~61
    [67] 张振荣,晋明武,王毅平.MCS-51单片机原理及实用技术.人民邮电出版社,2000:223~224

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700