盒形件拉深的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拉深又称拉延,在板料成形领域,拉深是最常用、最重要的成形方法。目前拉深工艺被广泛应用于生产中成形筒形件、阶梯形件、锥形件、球形件、方盒形件、汽车覆盖件和其它不规则形状的薄壁零件。对于简单形状零件如筒形、圆锥形等的拉深,人们已经进行了大量的研究,并提出了工艺条件相关的极限拉延比(TLDR)来辅助确定拉延的次数。然而,由于传统的拉深工艺采用刚性模具,容易引起起皱、拉裂等缺陷。现在广泛采用在反复试验的基础上控制压边力,调节摩擦的相关输入参数,比如润滑剂、润滑量和改变板材金属的表面微结构,修改模具等方法来避免这些缺陷。这延长了产品的开发周期,增加了生产成本。
    1955年提出的液压拉深技术使用弹性体代替了刚性模具,在拉深成形过程中存在“摩擦保持效果”和“溢流润滑效果”,能有效的提高板材的拉延极限和拉深件的表面质量,相比传统拉深工艺获得的工件厚度分布也更均匀。此外,还可以避免因制造非对称的、几何形状复杂的模具带来的困难,降低模具生产成本、缩短产品的试制周期。目前此工艺在日本、美国、瑞士等工业发达国家已经获得了应用。
    对于大多数提出的液压拉深技术,人们只是简单介绍了其在成形筒形件上的优势,而对其在非轴对称件上的应用研究相对较少。而在实际工业生产中的拉深件多是盒形件、汽车覆盖件等非轴对称件。对盒形件和覆盖件的研究及成形分析,有助于指导生产、工艺的制定。目前人们对于盒形件拉深的变形特点、应力状态等成形机理有了一定的了解。然而,对于盒形件的拉深仍未能提出类似于轴对称壳形零件拉延极限比的确定公式。针对盒形件的传统拉深工艺过程,研究者已经提出了压边力大小对成形的影响的规律和新的压边力控制和装置方法;研究者还提出了采用神经网络、专家系统等来实现传统盒形件拉深工艺的参数选定。然而现在基本上还没有针对盒形件液压拉深技术的专门的研究。
    
    从力学角度而言,板材成形是一个同时存在几何非线性(大位移、大应变)、物理非线性(弹塑性、弹粘塑性、各向异性)、接触和摩擦的非常复杂的力学过程。随着计算机的应用和发展和有限元方法的成熟,使得可以利用计算机的强大的计算能力进行板材成形的有限元分析。无凹模液压拉深技术,是由丹麦的Aalborg大学提出的一种新的液压拉深技术,他们已经针对筒形件的拉深作了实验和分析,证明此方法能提高盒形件的拉延极限比。另外,在此方法中由于没有下压边圈,所以不用考虑法兰部位的液体流动及压强变化。这种简单的边界条件使得可以对此工艺进行比较准确的数值模拟。本文使用动态显式有限元算法LS-DYNA对盒形件的传统拉深过程及无模液压拉深过程进行了模拟。为了证明本模拟中使用的材料参数及有限元程序的正确性。在传统拉深模拟中使用了NUMISHEET’93提出的盒形件及模具等,对压边力为19.6KN、10.4KN、5.3KN的模拟结果和Joachim Danckert的实验结果相吻合。通过液压拉深模拟结果和传统拉深工艺模拟结果的对比,证实了液压拉深应用于盒形件的拉深同样能获得更好的厚度分布的工件。然而,部分模拟结果也显示了使用无凹模液压拉深时,拐角处变形的抗力较大,如果液体压强变化曲线设置不当,在盒形件口部拐角处易出现褶皱。在传统拉深、充液拉深和液压机械拉深中的刚性凹模拐角能对拐角处产生很大的法向抗力,冲头的压力将促使其变形。无模液压拉深技术没有凹模,这种抗力是由液体压力来实现的,而过大的液体压强会导致直边处的材料不流动,造成侧壁拉裂。
    在液压拉深过程中,成形效果同样受多种工艺参数的影响。和传统拉深过程一样,其拉深效果受冲头速度、毛坯外形、压边力等参数的影响。这些参数对成形的效果的影响和传统拉深工艺中的规律是基本相同的。此外,在液压拉深过程还受液体压力、冲头与毛坯之间的距离大小、冲头与上压边圈内圈之间的侧隙大小的影响。论文作者做了大量的有限元模拟分析以探讨这些参数对成形效果影响的基本规律,并从模拟中得出以下的结论:当预胀形的高度较大(即初始时冲头与毛坯的距离较大)时,初始的预胀形阶段就相当于一次浅拉深,而随后的拉深则是反拉深阶段了。这样,在冲头下压拉深阶段金属材料的流动方向与预胀形阶段时的材料流动方向相反,有利于抵消拉深成形的残余应力。此外,预胀形后靠近冲头处的毛
    
    
    坯表面积增大,有利于在较小的液体压力下实现毛坯紧贴冲头加大盒形件内壁与冲头之间的摩擦力,减小已变形的盒形件的底部和角部的变形。成形过程中的液体压强对成形效果影响较大,如果液体压强太小会造成起皱,而压强过大则会造成侧壁拉裂。
    本论文,在我的导师宋玉泉教授的发明专利“精冲模架”的基础上,依据几种不同的液压拉深工艺,增设了盒形件液压拉深的工装和模具。此装置的特点是:无需液压和气压源,便能施加背压和压边力的气液结合弹力结构,而且弹力的大小及弹力变化的陡度或平稳度均可调。因此,具有结构简单、造价低和使用寿命长的优点,可在单动液压机上实现液压拉深,这也证实了“精冲模架”专利的创新性和科学性。
Deep drawing is one of the most used and a very important sheet metal forming process. Deep drawing is widely used in the forming of cylinder cups, ladder-shaped cups, conical cups, rectangular cups, auto-body panel and the other irregular shapes thin-walled works, etc. Now, many researches have been done to study the deep drawing process of cylinder cups and conical cups etc. TLDR(Technological Limiting Drawing Ratio) has been developed to assistant the determination of stages needed in traditional deep drawing process. However, wrinkle and crack often occurr during the traditional process for the using of rigid tools. Trial and error is used to avoid the defaults. Controling the blank holder force, adjusting the input parameters such as lubricate and changing the microstructure on the sheet metal surface, reworking the tools, all these are needed during the tial and error process, which prolonging the lead time and increasing the cost.
    Hydroforming deep drawing (HDD) was first brought forward in 1955. In this process the rigid tool is replaced by flexible tools. There are friction-holding effect and friction-reducing effect during the hydroforming deep drawing process. These effects can improve the LDR, improve the quality of the surfaces. we can get more uniform thickness through this process than the traditional deep drawing process. Furthermore, it can reduce the cost of the manufacture of the mold, decrease the lead time, for that we can avoid the difficulties brought by the manufacture of anisomerous and complex-shaped mould.
    To most of the hydroforming deep drawing process, researchers only introduce the advantages in the forming of cylinder cups. But there are fewer
    
    
    researches on the non-axisymmetric parts. Those most used in industry product are rectangular cups, auto-body panel and other non-axisymmetric parts. The research on the deep drawing process and the analysis on forming of rectangular box and auto-body panel will help to instructing the production and the working-out of work process. Now, researchers have some knowleges about the mechanism of deformation such as the characteristic of deformation, stress state etc. Howerver, there is no formula like that of axisymmetric shell has been proposed for the LDR of rectangular box. To the forming of rectangular box by traditional deep drawing process, researchers have found the rule for the effect of BHF on forming product, and proposed the new control methods for BHF and new equipments. Researchers proposed to apply neural network and expert system in the choice of parameters in the deep drawing process. But until now, there is no special research on the forming of rectangular box using hydroforming deep drawing process.
    In terms of mechanics, sheet forming process is a complicate process including geometrical non-linear (large displacement, large deformation), physical non-linear (elastoplasticity, elastic viscous plasticity, anisotropy), contact problem, and friction problem. Along with the application and development of the computer science and the development of FEM simulation, sheet metal forming process can be simulated by FEM code. Hydromechanical deep drawing without draw die, which was proposed by Aalborg University in Danmark, is a new HDD process. The researchers of Aalborg University have done some experiments and analysis about this process on cylinder cups, which show that LDR can be increased by using this process. There is no lower ring in this method, so it is not needed to consider the flow of the liquid and the pressure changing at the flange area. For the simple boundary condition, exact FEM simulation on this process can be carried out. In this thesis, explicit dynamic code LS-DYNA is used to simulate the process of both traditional deep drawing and HDD. To verify the correctness of the material and other parameters, the balnk and tools used in this thesis are NUMISHEET’93
    
    
    benchmark geometries. The simulation results under the BHF of 19.6KN, 10.4KN and 5.3KN is consistent with the experiments directed by Jo
引文
李硕本. 冲压工艺学. 北京:机械工业出版社,1982.103~104
    肖景容,姜奎华. 冲压工艺学. 北京:机械工业出版社,1990.73~121
    朱东波,孙琨,李涤尘,卢秉恒. 板料成形回弹问题研究新进展. 塑性工程学报,2000,7(1):11~17
    徐丙坤,施法中. 拉延筋约束阻力的一种解析计算方法. 锻压技术,2001,6:11~13
    徐丙坤,施法中. 板料冲压成形数值模拟中等效拉延筋模型的建立与实现. 锻压技术,2000,6:24~27
    朱勇建,那景新,闫亚坤,胡平. 应用直接法求解拉延筋约束力. 吉林大学学报(工学版),2003,33(1):92~97
    李淑慧,林忠钦,包友霞,郭瑞泉,吴华. 改进的等效拉延筋阻力模型及其应用. 中国机械工程,2002,13(7):558~563
    邓陟,王先进. 薄板单向拉伸与双向拉伸应力应变关系分析. 北京科技大学学报(英文版),1994,1(1~2):70~75
    郭乃成,罗子健,吴建军. 变薄拉延过程的上限模型及其应用. 西北工业大学学报,1994,12(l):123~128
    王东哲,杨曦,何丹农,娄臻亮,张永清. 圆筒件极限拉延比影响因素研究. 锻压机械,2000,3:30~32
    谭晶,赵振铎,孙胜. 液压成形技术的最新进展. 锻压机械,2001,2:11~15
    王保华,唐景林,李群. 薄板充液拉深法兰起皱失稳研究. 锻压技术,2003,2:18~20
    李东升,周贤宾. 双曲度覆盖件拉延回弹研究. 金属成形工艺,2003,21(3):30~33
    陈炜,林忠钦,徐伟力,陈关龙. 覆盖件拉延模型面的特征组装配建模技术. 上海交通大学学报,2001,35(1):123~127
    余雷,袁国定,陈炜,岳陆游,仲志刚. 基于特征的拉延模具结构参数化建模方法研究. 电加工与模具,2002,2:34~37
    Deng Zhi, Wang Xianjin. General Computer Model for Sheet Metal Deep-drawing
    
    
    Process. Journal of University of Science and Technology Beijing, 1995, 2(1): 35~43
    邱仲杰,文先忠. 八角形盒的拉伸工艺. 模具工业,1994,12:23
    谭建周,吴伯杰. 应用UGII设计汽车覆盖件的拉延件. 现代制造工程,2002,1:29~30
    张扬,张连洪,李双义,王洪志. 三维CAD环境下汽车覆盖件拉延工艺设计.锻压机械,2002,4:54~58
    张扬,张连洪,李双义,王洪志,丁晓东. 汽车覆盖件拉延工艺CAD设计. 汽车工艺与材料,2000,11:25~29
    李东升,黄小明,胡世光. 汽车覆盖件拉延筋的单元模拟试验研究. 北京航空航天大学学报,1995,21(2):66~71
    李东升,黄小明,胡世光. 汽车覆盖件成形中拉延筋约束力的模拟计算. 塑性工程学报,1994,1(3):59~65
    徐丙坤,施法中,徐国艳. 确定拉延筋约束阻力的一种数值模拟方法. 中国机械工程,2002,13(12):24~27
    王光辉,刘评. 球面形状零件含拉深筋拉延的计算机模拟. 计算机辅助工程,1999,3:75~78
    胡金华,史艳国,张涛,孙惠学. 半球形件冲压成形拉深筋影响研究. 塑性工程学报,2001,8(1):43~46
    张立文,陈磊,王富岗. 板材超塑性拉延过程的数值模拟. 金属成形工艺,2002,20(1):29~31
    王立东,阮雪榆,胡世光. 复合板拉延成形的计算机仿真. 计算机辅助设计与制造,1997,4:48~49
    王立东,阮雪榆. 双金属板材拉延成形的计算机辅助设计. 计算机辅助工程,1998,3:60~63
    邵鹏飞,倪向贵,王秀喜,车玫,吴胜华. 金属板料拉延二次成形的有限元法模拟. 应用力学学报,2001,18(1):104~110
    朱谨,王学文,阮雪榆. 轴对称拉延工艺规划的专家系统设计技术. 上海交通大学学报,1994,28(3):135~138
    高凯祁,胡世光. 专家系统技术在覆盖拉延件工艺设计中的应用研究. 中国机械工程,1998,9(3):35~40
    高凯祁,胡世光. 人工神经网络在覆盖拉延件要领设计中的应用. 中国机械工程,1999,10(1):52~55
    
    高凯祁,胡世光. 遗传算法在覆盖件拉延筋参数优化中的应用. 中国机械工程,2002,13(11):43~46
    关明,李天佑,林华. 液压拉深工艺参数的优化研究. 太原重型机械学院学报,1997,18(3):238~243
    王立东,阮雪榆. 双金属板拉延成形的有限元分析. 计算力学学报,1998,15(4):503~507
    谭晶,赵振铎,孙胜. 抛物面零件拉延成形的工艺参数研究. 锻压机械,2001,5:13~16
    刘罡,包友霞,徐伟力,林忠钦. 压边间隙对圆柱杯反向深拉延成形质量的影响. 锻压技术,2000,5:21~24
    陈吉平,丁智平. 不对称拉延零件成形工艺及模具设计. 锻压装备与制造技术,2003,38(2):26~27
    刘鲁镅. 板料轴对称拉延中的应变预测. 锻压技术,1994,l:21~27
    刘罡,包友霞,徐伟力,林忠钦. 薄板拉延成形的固定压边间隙控制方式研究.金属成形工艺,2000,18(5):6~10
    邓明,罗静. 板料拉延中的润滑. 锻压机械,2001,1:15~17
    杨占尧,翟德梅. 发热升温使拉延件产生划伤缺陷的探讨. 锻压机械,2001,5:18~20
    陈关龙,包友霞,林忠钦,刘罡. 行李箱盖板大变形区域的压延筋结构研究. 上海交通大学学报,1998,32(11):10~13
    朗利辉,Joachim Danckert, Karl Brian Nielsen. 板液压成形及无模充液拉深技术. 塑性工程学报,2002,9(4):29~34
    陈舜玲. 杯形件拉延模的设计. 机械开发,1998,2:63~64
    陈永琴,苏三买. 薄壁零件冲压机构优化设计. 现代制造工程,2002,7:42~44
    张松青,杨占尧. 板料拉深模压边装置的设计探讨. 机械设计与制造工程,2001,30(4):59~60
    秦泗吉. 常压边力液压拉深模设计. 液压气动与密封,2001,5:28~29
    杨连发,李泉永,田玲,伍世荣,恽志东. 拉延成形中的压边技术. 桂林电子工业学院学报,2001,21(4):51~55
    于维,仲春祥. 拉延模理想压边方式的设计. 机车车辆工艺,2002,3:12~14
    秦金莲,杨秀莲. 伺服式液压压边拉延模具的设计. 山西机械,1996,3:25~27
    罗亚军,郑静风,张永清,何丹农. 板料拉深成形过程中的变压边力技术. 锻压
    
    
    技术,2003,2:21~24
    康达昌,郎利辉,孟晓峰. 通用充液拉深模架型式的充液拉深装备. 塑性工程学报,1997,4(3):21~24
    李天佑,陈宝玉. 液压拉深中液体压力控制的研究. 塑性工程学报,1997,4(4):38~43
    郭斌, 中村和彦, 李硕本. 圆筒形件充液拉深成形精度. 塑性工程学报,1997, 4(3):92~97
    K. Siegert, M. Ziegler, S. Wagler. Close loop control of the friction force. Deep drawing process. Journal of Material Processing Technology, 1997, 71: 126-133
    Anwar Kandil. An experimental study of hydroforming deep drawing. Journal of Materials Processing Technology, 2003, 134: 70-80
    S.H. Zhang, J. Danckert. Development of hydro-mechanical deep drawing. Journal of Materials Processing Technology, 1998, 83: 14-25
    K Nakamura, T Nakagawa. Sheet metal forming with hydraulic counter pressure in Japan. Annal. CIRP, 1987, 36: 191~194
    T G Johannisson. Low Volume production of sheet metal parts. Papers of International Conference of Hydroforming, 2001, Nov. 5-6, Stuttgart, Germany: 159-180
    Syossifon, J.Tirosh. The maximum drawing ratio in hydroforming process. J. Eng. Ind. Tans. ASMEF. 1990, 112:47-62
    Tirosh J.,Ashirizly, S.Yoss. On recent progress in deep drawing process by fluid pressure assisted methods. ICTP5, Columbus, Ohio, USA, October 7.10, 1996: 707-782
    Vollertsen, F. Breede, R. Lange. Method for deep drawing with multiple elastomer membranes. CIRP Annals - Manufacturing Technology, 1999, 48( 1): 221-226
    T G Johannison, Flexforming-high-pressure sheet metal forming, ABB rev. 1990, 5: 25-30
    M Kleiner, etc. New 100000kN press for sheet metal hydroforming. Papers of Internetional Conference on Hydroforming. Stuttgart. Germany. Nov.5-6, 2001: 351~362
    吴有生,夏巨谌,胡国安. 板料液压成形技术的发展动态及应用. 金属成形工艺, 2002,20(4):1~4
    S. Thiruvarudchelvan, F.W. Travis. Hydraulic-pressure-enhanced cup-drawing
    
    
    processes-an appraisal. Journal of Materials Processing Technology, 2003, 140: 70–75
    Takeo Nakagawa, Kazubiko Nakamura, Hiroyuki Amino. Various applications of hydraulic counter-pressure deep drawing. Journal of Materials processing Technology , 1997, 71: 160~167
    H Amino, et al. Counter-pressure deep drawing and its application in the forming of automobile parts. Journal of Materials Processing Technology, 1990, 23:243~265
    K.Nakamura, T.Nakagawa. Reverse Deep Drawing with Hydraulic Counter Pressure Using the Peripheral. Annals of the CIRP 1986, 35(1): 173~176
    Lihui Lang, Joachim Danckert, Karl Brian Nielsen. Study on hydromechanical deep drawing with uniform pressure onto the blank. International Journal of Machine Tools&Manufacture 2004, 44: 495~502
    P. Hein, F. Vollertsen. Hydroforming of sheet metal pairs. Journal of Materials Processing Technology , 1999, 87, 154~164
    S. Novotny, P. Hein. Hydroforming of sheet metal pairs from aluminium alloys. Journal of Materials Processing Technology, 2001, 115: 65~69
    Mustafa Ahmetoglu, Jiang Hua, Srikanth Kulukuru, Taylan Altan. Hydroforming of sheet metal using a viscous pressure medium. Journal of Materials Processing Technology , 2004, 146: 97–107
    Junhua Liu, Bert Westhoff, Mustafa A.Ahmetoglu, Taylan Altan. Application of viscous pressure forming (VPF) to low volume stamping of difficult-to-form alloys - results of preliminary FEM simulations. Journal of Materials Processing Technology, 1996, 59: 49~58
    邢晓冬,郭斌,罗荣华,杨玉英. 板材粘性压力成形技术研究进展. 中国机械工程,2001,12(12):231~235
    Leonid B. Shulkina, Ronald A. Posterarob, Mustafa A. Ahmetogluc, Gary L. Kinzeld, Taylan Altanc, Blank holder force (BHF) control in viscous pressure forming (VPF) of sheet metal. Journal of Materials Processing Technology, 2000, 98: 7–16
    郭斌,罗荣华,戴护民,邢晓冬. 粘性压力成形专用设备的研制. 塑性工程学报,2000,7(3):61~64
    戴美云,张和兴. 橡皮囊液压成形零件常见缺陷分析. 航空制造工程,1997,2:27~28
    吕冬,何丹农,张永清. 板料拉深性能评价指标TLDR的预测计算. 模具技术,
    
    
    1999,5:29~33
    吕冬,何丹农,张永清,阮雪榆,程惊雷,蒋镜昱. 修正的板料拉深性能评价指标. 上海交通大学学报,2000,34(3):310~313
    杨玉英. 盒形件成形机理的探讨. 锻压技术,1989,6:13~17
    杨玉英,张小平. 盒形件壁裂极限的探讨. 锻压技术,1989,3:26~30
    孙景芳,赵庭良. 盒形零件一次拉深成形极限的研究. 农业机械学报,1994 ,25(4):102~104
    郑晓丹,汪锐,何丹农. 应用专家系统进行盒形件拉深成形极限的分析. 锻压机械,2000,5:49~50
    熊志卿. 筒盒拉深的应力通解. 塑性工程学报,1995,2(2):9~17
    朱谨. 凸缘拉延中的“应变松弛效应”分析. 锻压技术,1996,5:20~24
    倪向贵,吴恒安,王宇,王秀喜. 各向异性本构关系在板料成形数值模拟中的应用. 计算力学学报,2003,20(2):231~234
    柳泽,傅沛福,李运兴,寇淑清. 平面各向异性金属盒形件拉深过程的有限元模拟. 塑性工程学报,1997,4(4):44~51
    Y.Q. Liu, J.C.Wang, P. Hu. The numerical analysis of anisotropic sheet metals in deep-drawing processes. Journal of Materials Processing Technology, 2002, 120: 45-52
    孙惠学,胡金华,李春科,姚宝军. 方盒形件拉深弹塑性有限元分析. 燕山大学学报,1998,22(3):210~213
    J.W.Yoona, D.Y.Yangb, K. Chungc, F.Barlatd. A general elasto-plastic finite element formulation based on incremental deformation theory for planar anisotropy and its application to sheet metal forming. International Journal of Plasticity , 1999, 15: 35-67
    王凤琴,赵军,官英平. 毛坯外形对盒形件拉深成形的影响. 中国机械工程,2003,13(7):619~622
    郑晓丹,汪锐,何丹农,阮雪榆. 方盒件拉深摩擦状况的分析与控制. 锻压技术,2001,2:40~43
    秦泗吉. 盒形件多点常力压边拉深模设计. 金属成形工艺,2002,20(5):55~59
    杨玉英,徐伟力,邢忠文. 球面压料面对方盒形件成形的影响. 塑性工程学报,1997,4(3):28~32
    杨建华,潘伟,何丹农,彭颖红. 板料成形过程中拉延筋抗力的实验测试. 上海交通大学学报,2002,36(4):456~458
    
    郑晓丹,汪锐,何丹农. 基于成形极限的盒形件选材专家系统. 锻压技术,2001,3:35~37
    Yasuo Marumo, Hiroyuki Saiki. Evaluation of the forming limit of aluminum square cups. Journal of Materials Processing Technology, 1998, 427-432
    陈中奎,施法中,黄迪民. 板料冲压成形过程有限元分析原型系统的开发. 计算机辅助设计与制造,1999,6:44~46
    Seung Ho Kim, Se Ho Kim, Hoon Huh. Finite element inverse analysis for the design of intermediate dies in multi-stage deep-drawing processes with large aspect ratio. Journal of Materials Processing Technology, 2001, 113: 779-785
    Se-Ho Kim, Seung-Ho Kim, Hoon Huh. Design modification in a multi-stage rectangular cup drawing process with a large aspect ratio by an elasto-plastic finite element analysis. Journal of Materials Processing Technology, 2001, 113: 766-773
    Se-Ho Kim, Seung-Ho Kim, Hoon Huh. Tool design in a multi-stage drawing and ironing process of a rectangular cup with a large aspect ratio using finite element analysis. International Journal of Machine Tools & Manufacture, 2002, 42: 863–875
    T.W. Ku, B.K. Ha, W.J. Song, B.S. Kang, S.M. Hwang. Finite element analysis of multi-stage deep drawing process for high-precision rectangular case with extreme aspect ratio. Journal of Materials Processing Technology, 2002, 130-131: 128-134
    Eiji Sato, Toru Shimizu, Toshio Sano and Sadakatsu Fuchizawa. Square cup deep drawing of thick plate by multi-axial loading, Part 1- Finite element analysis. Journal of Materials Processing Technology, 1995, 48: 69-74
    Eiji Sato, Toru Shimizu, Toshio Sano and Sadakatsu Fuchizawa. Square cup deep drawing of thick plate by multi-axial loading, Part 2- Experimental study. Journal of Materials Processing Technology, 1995, 48: 75-80
    杜忠友. 确定大盒形件拉深毛坯的实用方法. 机械工程师,1997,4:29
    王凯华,肖祥芷,肖景容. 确定拉深合理毛坯形状理论方法的发展现状. 模具技术,1995,4:3~8
    X .Chen, R.Sowerby. The development of ideal blank shapes by the method of plane stress characteristics. Int.J.Mech.Sci. 1992,2: 159-166
    X .Chen, R.Soweby. Blank development and the Prediction of earing in cup drawing. Int.J.Mech.sci. 1996, 8(5): 509-516
    Toshihiko Kuwabara, WH.SI. PC-based blank design system for deep-drawing
    
    
    irregularly shaped Prismatic shells with arbitrarily shaped flange. J. Mater Proc. Technol., 1997,63 :89-94
    肖作义. AUTOCAD在确定盒形件毛坯尺寸时的应用. 锻压技术, 2000,4:14~17
    岳陆游,袁国定. 椭圆盒形拉延件合理毛坯的研究. 金属成形工艺, 2001,19(6):11~13
    K .CHUNG, F.BARLAT, etc. Blank shape design for a planar anisotropic sheet based on ideal forming design theory and FEM analysis. International Journal of Mechanical science , 1997,39:105-120
    S.H. Park, J.W. Yoon, D.Y. Yang, Y.H. Kim. Optimum blank design in sheet metal forming by the deformation path iteration method. International Journal of Mechanical Sciences ,1999, 41: 1217-1232
    朱谨,王学文,阮雪榆. 方盒形带凸缘件的板料形状优化设计. 塑性工程学报,1994,1(2):57~64
    Hyunbo Shim. Determination of optimal shapes for the stampings of arbitrary shapes. Journal of Materials Processing Technology, 2002,121:116-122
    徐国艳,施法中. 板料冲压成形盒形件的毛料计算. 中国机械工程,2003,14(9):788~790
    Guo Y Q, Batoz J L. Finite Element Procedures for Strain Estimations of Sheet Metal Forming Parts. Ini .J .Num. Meth .Enging., 1990, 30(2):1385-1401
    Lee CH, Huh H. Blank Design and strain Prediction of Automobile Stamping Parts by an Inverse Finite Element Approach. J. Mat .Proc .Tech. 1997, 63(l):645-650
    Lee CH, Huh H. Blank Design and strain Estimates for Sheet Metal Forming Processes by a Finite Element Inverse Approach with Initial Guess of Linear Deformation . J. Mat . proc . Tech. 1998, 82(l):145-155
    姚华,陈军. BP神经网络在盒形件坯料外形预测中的应用. 模具技术,1999,5:15~20
    姚华,罗仁平,陈军. 盒形件毛坯外形预测中BP网络结构的确定. 模具技术,1999, 6:26~30
    Kichan Son, Hyunbo Shim. Optimal blank shape design using the initial velocity of boundary nodes. Journal of Materials Processing Technology, 2003, 134: 92-98
    丘宏扬,谢嘉生,孙延明. 盒形件拉延过渡毛坯智能化计算机辅助设计方法. 锻
    
    
    压机械,2001,3:50~53
    霍同如,徐秉业,宋军. 板材成形有限元数值模拟的研究进展. 力学进展,1996,26(3):379~388
    李晓星. 板材成形模拟的研究和应用. 金属成形工艺,2003,21(2):6~9
    Joachim Danckert. Experimental investingation of a squre-cup deep-drawing process. Journal of Materials Processing Technology, 1995, 50: 375-384
    嘉木工作室. UG18实体建模实例教程. 北京:机械工业出版社,2002:3~4
    张士宏,尚彦凌. 用动态显式有限元法对板材成形进行计算机模拟. 塑性工程学报,2001,8(1):19~24
    Engineering Technology Associates, Inc. DYNAFORM-PC User’s Manual. 1999. 7~10
    John O. Hallquist. LS-DYNA THEORETICAL MANUAL. Livemore Software Technology Corporation, 1998: 16.59-16.65
    刘罡,林忠钦,张卫刚. 薄板成形仿真动力显式算法的虚拟凸模速度分析. 上海交通大学学报,2000,34(10):1046~1049
    宋玉泉. 精冲模架. 中国专利,03127639.3,2004.02.11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700