FVS0812薄板半球形零件拉深成形研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耐热铝合金(FVS0812)在423K至623K的温度范围内具有优良的力学性能因而受到广泛关注。本文对耐热铝合金(FVS0812)薄板半球形零件的拉深成形理论及工艺进行了研究。
     采用喷射沉积一轧制工艺制备FVS0812薄板。FVS0812板的冲压成形性测定结果显示:板材具有较小的延伸率和塑性应变比,较大的屈强比,因此FVS0812板的拉深成形性能差。此外,零件的相对厚度仅为0.2%且形状复杂、冲压过程中零件的加热和保温困难使得FVS0812薄板半球形零件的拉深成形困难。
     针对上述问题本文作者提出了一种新的拉深成形工艺,取名为包覆拉深,包覆拉深特点在于:将坯料夹于两块厚度大、强度高、塑性好的板料之间,使三块板料一起冲压成形。包覆板料的厚度大可以防止皱曲的产生,由于“摩擦保持效果”及“零摩擦效果”使得板料的变形均匀分散,极大地提高板料的冲压成形性能,在温拉深或者热拉深中包覆板料对于冲压件板料的保温作用也很明显,实验表明包覆拉深是一种行之有效的方法。
     本文在Hill分叉点失稳的能量法则的基础上建立了半球形零件拉深成形的皱曲模型,该模型是分析内皱及外皱的理论依据。利用板壳理论中板屈曲的能量法建立了半球形零件冲压成形防内皱压边力模型,通过该模型可以计算出半球形件冲压成形防内皱压边力。依据所建立的压边力模型,设计了单动油压机的压边力调节装置,实验证明该装置对于防止内皱有重要意义。
     作者以所建立的模型为理论基础,采用包覆拉深工艺拉深成形耐热铝合金(FVS0812)薄板半球形零件获得了成功。
The heat-resistant Al-Fe-V-Si alloy (FVS0812) has drawn wide attention due to its excellent high-temperature properties over the range of 423K to 623K on a specific strength basis. In the present study, the forming theory and technology of the FVS0812 sheet as hemisphere-shaped workpiece were investigated.
    The FVS0812 sheet was prepared by spray deposition- rolling process. The tests on the drawing-ability of the sheet showed that the coefficient of elongation and plastic strain ratio were low and yield ratio .was high, which meant that the drawing-ability of FVS0812 sheet was bad. At the same time, there were other factors which made the drawing of FVS0812 hemisphere-shaped workpiece a difficult task, such as a low relative-thickness coefficient about 0.2%, a complex shape of the product and the difficulty in maintenance of an uniform temperature in workpiece during drawing.
    The author developed a novel drawing technology named as "packed -layer drawing" The characteristics of packed - drawing technology lay in that the FVS0812 sheet was coated by two layers of thicker metal sheets with high strength, good elongation. The three-layer sheets were darwed together. The thicker packing sheets could prevent wrinkling of FVS0812 sheet. The drawing-ability of FVS0812 sheet was improved greatly by "the effect of friction preservation" and "the effect of zero frictional resistance" which made the deformation in sheet scattered uniformly. Moreover, the packed sheets could reduce the heat loss of FVS0812 sheet in warm drawing or heat drawing. Experiences showed "packed -layer drawing" was a successful method in drawing of FVS0812 sheet.
    The winkling model in the process of drawing was developed on the base of Hill's bifurcation-point bulking theory, which became the theoretical basis of the analysis of flange wrinkle and side-wall wrinkle. In addition, a critical side-wall wrinkle BHF(blank holding force) model of the hemispherical workpieces in the drawing process was established on the basis of the energy method in the shell theory. Critical side-wall wrinkle BHF of hemispherical workpieces during the drawing process could be calculated according to this model. An apparatus to adjust BHF on single-acting hydromechanical press was designed by the author based on the BHF model Experimental results showed that this device was useful in avoiding wrinkling during drawing.
    
    
    Based on the winkling model and the BHF model the FVS0812 sheet as hemisphere-shaped workpiece was drew successfully by "packed -layer drawing".
引文
[1] Suryanarayana C, Froes F H, Krishamurthy S etal. Development of light alloys by solidification processing, Int. J. Powder Metall. 1990,26(2): 117—129
    [2] Bunk W G J. Alumium RS metallurgy , Mater .Sci. Eng. 1991, A134:1087—1097
    [3] havemia E J ,Ayers J D, Srivatsan T S. Rapid solidification processing with specific application to aluminum alloys, Inter. Mater. Rep. 1991, 37 (1): 1—44
    [4] Vasudevan V K ,Fraser H L. The microstructure of rapidly solidified and heat-treated Al-8Fe-V-Si alloys, Mater. Sci. Eng. 1998, 88: 131—136
    [5] 汤亚力.快速凝固高温铝合金韵显微组织结构及凝固过程研究,清华大学博士学位论文.1997
    [6] D.J. Skinner, R.L. Rye, D. Raybould, etc. Dispersion strengthened Al-Fe-V-Si alloy, Scripta Metall. 1986, 20: 867—872
    [7] P.S. Gilman, M.S. Zedalis, J.M. Peltier, etc. Rapidly solidified aluminum-Transition metal alloys for aerospace application, AIAA/AHS/ASEE Aircraft Design, Systerms and Operations conference, Sept, 7-9, Atlanta, Georgia.
    [8] 崔成松.喷射沉积快速凝固技术发展概况,宇航材料工艺.1995,6:1—6
    [9] S. Hariprasad, S.M.L. Saotry, etc. Microstructure and mechanical properties of dispersion-strengthened high-temperature Al-8.5Fe-1.2V-1.7Si alloys produced by atomizedmelt deposition process, Matall. Trans. A. 1993, 24A:865—869
    [10] 袁武华.多层喷射沉积制备了大尺寸耐热铝合金管坯的研究,中南大学博士学位论文。2001
    [11] 袁武华.多层喷射沉积技术的研究及进展,材料导报。2000,1:17—21
    [12] [日]中川威雄.板料冲压加工,天津科技出版社.1982
    [13] E.Doege etc. Optimierung der niederhalterkraft beim tiefziehen rechteckiger teile. Stabl Eisen, 1983, 3: 139—142
    [14] 王东哲、杨曦、包向军等.压边力优化控制研究,模具技术.2000,2:47—51
    [15] 李春峰、杨玉英、李硕本.半球形零件冲压变形失稳点分析,塑性工程学报.1995,1:37—41
    
    
    [16] 聂绍珉、李硕本.球形件防内皱临界拉深力的研究,燕山大学学报.2000,4:283—289
    [17] S. Yossifon etc. On the acceptable blank-holder force range in the deep-drawing process. J. Mater. Pro. Tech. 1992,33:175-194
    [18] 赵军.拉深过程智能化控制中的法兰起皱临界条件,燕山大学学报.1998,3:199—201
    [19] K. Manable. Artificial intelligence identification of process parameters and adaptive control system for deep-drawing process, J. Mater. Pro. Tech. 1998, 80:421—426
    [20] M.A. Ahmetoglu, T. Alan etc. Improvement of part quality in stamping by controlling BHF and pressure, J. Mater. Pro. Tech. 1994, 33: 195—214
    [21] T.B. Stonghto. Model of drawbead forces in sheet metal forming, Proc. of 15th Biennial IDDR6 congress. 1998, 205-214
    [22] 雷君相.球面形零件冲压成形皱曲和破裂三极限的预报与控制,塑性工程学报.1999,3:63—68
    [23] 雷君相.圆锥形零件冲压成形皱曲和破裂三极限的预报与控制,钢铁研究学报.1999,3:19—24
    [24] 孙惠学、史艳国、胡金华.圆锥形零件拉深纬向应力分布,锻压技术.1998,2:20—22
    [25] Joao pedro de Magalhaes Correia. Wrinkling predictions in the deep-drawing process of anisotropic metal sheets, J. Mater. Pro. Tech. 2002, 128: 178-190
    [26] Z.Q. Xiong etc. Study on the theory and applicationof the energy method for analyzing compressive in sheet forming. J. Mater. Pro. Tech. 2002, 129: 255—260
    [27] 陈光南.板料拉伸成形中损伤,失稳,与成形极限曲线的建立,塑性工程学报.1994,1:31—35
    [28] 王祖唐.板料拉延成形极限理论,塑性工程学报.1996,2:4—6
    [29] 刘腾喜、傅依铭.正交各向异性金属板料的成形极限,固体力学学报.2000,2:179—181
    [30] 梁炳文.材料强化指数n值与极限压延系数m_k值的关系,塑性工程学报.1994,2:41—56
    [31] 吕冬、何丹农、张永清等.板料拉深性能评价指标TLDR的预测计算,模具技术.1999,5:29—33
    [32] 夏琴香、祝听.复合层板的拉深成形性能研究,航空工艺技术.1996,3:30—32
    [33] 李硕本.锻压手册-冲压分册,机械工业出版社.2002
    
    
    [34] 朱东波.板料成形回弹问题研究新进展,塑性工程学报.2000,3:11—17
    [35] 余同希.塑性弯曲理论及其应用,科学出版社.1992
    [36] Sietert. K. etc. Development and manufacture of carbody parts, Annls of the CIRP. 1997, 2:535-543
    [37] 宋黎.板料弯曲成形的回弹与工程控制综述,锻压技术.1996,1:18—22
    [38] 邓陟.金属薄板成形技术,兵器工业出版社.1993
    [39] 崔令江.冲压板材的成形性,锻压机械.1997,3:23—25
    [40] 李硕本.曲面形状零件冲压成形机理与成形极限,第二次日中冲压学术会议论文集.1992
    [41] 李硕本.冲压工艺理论与新技术,机械工业出版社.2002
    [42] 李春峰.球面零件冲压成形的研究,哈尔滨工业大学博士论文.1993
    [43] 李春峰、李硕本.压边力对球面零件防皱机理的研究,电子工艺技术.1995,2:23—24
    [44] 谭险峰等.垫层拉深工艺的实验研究,南昌航空工业学院学报.1996,1:83-86
    [45] Y. Marumo. Effect of lab-sheets on deep drawing of metallic foil cups. J. Mater. Pro. Tech. 2001, 119:48-51
    [46] Liu J H, etc. Application of viscous pressure forming to low volume stamping of diffcult-to-form alloys -results of preliminary FEM simulation, J. Mater. Pro. Tech. 1996, 59: 49—58
    [47] Liu jun. Ahmetog Lu M, AltanT. Evaluation of sheer Metal formability, Viscous Process Technol. 2000,98:1—6
    [48] Fu wangming, LUAQ, Huang Maocheng. Hghg-precision sheet-metal Workpieces Manufactured by Flexihle-die Forming USinga Visco-plastic pressure-Carrying Medium ,J.Mater. Pro. Tech. 1996,62:70-75
    [49] 刑晓冬、郭斌、杨玉英等.板材粘性压力成形技术研究进展,中国机械工程.2001,2:28-31
    [50] Liu Ming Zhe, Liu Yu Hong etal .Multi-Point forming :a flexible manufacturing methool for a 3-d surface sheet, J. Mater. Pro. Tech. 1999,87:277-280
    [51] 李广权.板材无模多点成形过程数值模拟研究,吉林工业大学博士学位论文.1997
    [52] 李冬平.板材多点成形技术研究综述,塑性工程学报.2001,8:45-49
    [53] K kitarawa. In cremental Sheez metal stretch-Expanding with CNC Machine Toosl. Prco of the 4th ictp Beijing:internatisnal A cademic Press. 1993:1899-1904
    [54] H iseki, K kato and Sakamoto. Forming Limit with a spherical roller.
    
    Proc of the 4th ICTP. Bejing:international adclemic Press 1993:1635-1640
    [55] ZR Wang, Dai kun, etal. A study of sheef metal CNC incremental Expanding Forming. proc of 5th ictp, 1996:963—965
    [56] 陆辛、海锦涛、杨鲁义等.复合冲压技术发展前景,锻压技术.2001,6:23—25
    [57] K. siegert, etc. Influencing the Friction in Metal Forming Processes by Superimposing Ultrasonic Waves, Annals of the CIRP. 2001,1:195—200
    [58] F. Vollersen etc. Enhancement of Drawability by Local Heat Treatment, Annals of the CIRP. 1998, 1: 253—257
    [59] A. Hofmann. Deep drawing of process optimized blanks, J. Mater. Pro. Tech. 2001,119: 127-132
    [60] P. Groche, R. Huber. Hydromechanical Deep-Drawing of Aluminum-Alloy at Elevated Temperatures, Annals of the CIRP. 2002, 1:215—218
    [61] 尚建勤.钛合金TCl隔热板成形工艺研究,金属成形工艺.2000,2:37—38
    [62] 杨曦、王东哲、阮雪榆等.板料拉深成形关键性技术研究,汽车工艺与材料.2001,2:42—44
    [63] 陆辛、海锦涛.电液成形工艺试验研究,锻压技术.2002,3:29—31
    [64] 邱惠中.铝合金超塑成形技术的发展及其在航空航天领域的应用,宇航工艺材料.1994,6:38—43
    [65] Junxiang Lei. Prediction and Control of Both Wrinkle Limit and Fracture Limit on Cylindrical Cup Deep-Drawing, Journal of University of Science and Technology Beijing. 1998, 5:237—241
    [66] 黄世清.正交各向异性金属板材的弹塑性屈曲及后屈曲分析,湖南大学硕士论文.2002,5
    [66] 李春峰、李硕本.曲面零件冲压成型极限判据,中国机械工程.1994,5:54—56
    [67] 李春峰.球、锥面零件起皱极限解析,材料科学与工艺.1994,2:75—79
    [68] 韦德骏.材料力学,机械工业出版社.1996
    [69] 刘鸿文.板壳理论,浙江大学出版社.1987
    [70] 汪大年.金属塑性成形原理,机械工业出版社.1986
    [71] [美]C.P.汉斯.实用薄板理论,人民交通出版社.1982
    [72] G.M.Goodwin. Society of autoinative engineers paper ,1968. No. 680093

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700