基于机器视觉的板料成形性能分析关键技术及系统实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着制造业的高速发展,采用工程应变比例软尺或者工具显微镜的手工应变测量方法在板料成形性能分析中逐渐暴露出测量效率低、精度差等弊端。为了克服手工应变测量方法的各种局限,满足板料冲压成形领域的技术发展要求,本论文系统而深入地开展了基于机器视觉的板料成形性能分析关键技术的研究,包括图像处理技术、相机标定技术、大变形下的位移跟踪技术、图像匹配技术、三维重建技术、板料成形性能参数的计算方法以及系统软、硬件实现技术等,自主研发了基于双目立体视觉的板料成形性能参数测量系统BOSAS(国家软件著作权2010SR008153),以及基于数码相机自由拍摄的复杂板件成形性能分析系统MOSAS(国家软件著作权2010SR025573)。
     本文的主要内容和创新点总结如下:
     1、详细讨论了双目立体视觉中的相机标定和三维重建技术;为了提高图像立体匹配和时序匹配的效率和稳定性,提出了基于区域生长法的初始匹配(RGIM);详细实验和分析了数字图像相关(DIC)方法中各种参数选择对重建精度的影响,并得出相应的结论;针对板料处于临界破裂状态下的大变形/大应变的测量难点,提出了时序图像匹配的分段位移传递法FDT。FDT方法可根据变形程度自动分段,对因分段而需要像素圆整所带来的像素精度损失,利用连续介质的变形连续性概念进行精度补偿。实验证明,在局部变形高达170%的情况下,时序图像匹配仍然稳定可靠,能够很好地实现板料成形过程中三维大变形的跟踪。
     2、对比分析了实验力学领域和计算机视觉领域中三种基于迭代优化的亚像素匹配算法——DIC,IGGA(Iterative Gray-Gradient Algorithm)和LSM(Least Square image Matching),并从理论上证明了这几种方法在数学上的一致性。这一结论不仅加深了对这几种方法的理解,也为不同学科的研究成果相互借鉴相互转换提供了有力的理论支持和技术指导。
     3、在深入研究了多视图几何理论的基础上,结合编码元识别技术和光束平差优化技术,实现了各次拍摄时相机的相对位置和姿态的精确定位,并提出了多视图几何约束下的三维重建方法,实验证明了该方法对提高重建精度的作用;针对自由拍摄的网格图像中网格节点准确识别和稳健匹配的难点问题,提出了网格节点的初、精两次定位法,并通过对网格节点进行编号同时利用网格拓扑关系和极线几何约束,实现了图像间同名网格节点的自动稳健匹配。在全面实现相机位姿确定、同名网格节点的准确匹配、多视图约束下的网格节点三维重建的基础上,给出了复杂板件网格三维重建的实例并进行了精度验证。
     4、对板料成形性能参数的测量与分析方法进行了研究和实现。在坐标网格技术中常用的方网格-三角形节点应变计算方法基础上,提出将其与面内形变梯度张量相结合,消除了初始网格边长不正交带来的应变计算误差。针对基于动态应变测量技术进行成形极限曲线FLC测定的问题,提出了根据破裂前应变分布的连续性剔除伪极限应变以及根据应变梯度的变化率选取破裂前临界状态应变分布的数据处理方法;利用动态应变测量技术的特点和优势,提出了一种新的测量塑性应变比r值的方法。该方法利用动态应变的计算结果,自动判断变形试件是否处于均匀塑性变形,并根据处于均匀塑性变形范围的最大/最小主应变计算r值。
     5、在基础理论和关键算法研究的基础上,分别构建了基于双目立体视觉的板料成形性能参数测量系统BOSAS和基于数码相机自由拍摄的复杂板件成形性能分析系统MOSAS。基于Visual C++平台实现了文中提出的所有算法。将BOSAS系统用于多种板料极限成形曲线和塑性应变比r值的测量,将MOSAS系统用于车门外板某复杂区域的成形性能分析,均取得了良好的测量和分析结果。
With high speed development in manufacturing, the traditional manual strain measurement methods which used mylar tape and tool microscope have gradually exposed some disadvantages such as low efficiency and poor accuracy in most sheet metal stamping situations. In order to overcome various limitations of the manual strain measurement methods and meet the requirements of strain measurement in the filed of sheet metal stamping, theory and application researches on non-contact steel strain measurement based on computer vision are deeply and systematically carried out in this thesis. The key techniques include image analysis, camera calibration, displacement tracking under large deformation, image matching, 3D reconstruction, strain calculation, software & hardware im-plementation, etc. The thesis’s main contributions are as follows.
     1. Key techniques of dynamic strain measurement based on binocular stereo vision have been studied. Binocular calibration and 3D reconstruction in stereo vision theory have been comprehensively discussed. In order to improve efficiency and stability in stereo image matching and tempo-ral-sequential matching, a new technique with Region Growth Initial Matching (RGIM) is proposed. Detailed results and analysis are figured out which demonstrate the effect of different interpolation method, shape function and size of subset on 3D reconstruction accuracy. The premise of DIC(Digital Image Correlation) is that these is no significant difference between two images, aim-ing at this limitation of DIC, a new algorithm call Fractionized Displacement Transfer (FDT) is proposed which can effectively and robustly implement image matching and tracking under large deformation. Experiment demonstrates that even local deformation has reached 170%, the sub-pixel matching still maintains accurate and stable.
     2. A detail comparative study is carried out on three representative iterative-optimization-based image registration methods, namely DIC using Newton-Raphson iteration, iterative gray-gradient algo-rithm and least square image matching, which are originated and developed in the fields of optical experimental mechanics and stereo vision respectively. The mathematical consistency of the three algorithms is demonstrated. This conclusion not only gives advanced understanding of these meth-ods, but also provides potent theoretical support and technical instruction when the research achievements among these different fields are used for reference and transferred for each other.
     3. Key techniques of large-scale complex sheet metal forming analysis based on digital camera free-dom taken have been studied. Accuracy 3D reconstruction under multi-view constraint in multiple view geometry theory is proposed. Camera poses calibration is carried out with the combination of coded targets identification and bundle adjustment. On the basis of improvement on the present grid image pre-processing, a coarse-to-fine algorithm is carried out so that the sub-pixel image coordi-nates of grid nodes are extracted and the topological relationship of each node is established. Aim-ing at particularity of grid matching, an automatic matching algorithm for establishing correspon-dence among the grid nodes in multiply images is proposed according to the topological relation and epipolar constraint on the basis of knowing camera position and orientation of every image shot. Experimental results show that the average epipolar distance of all matching points is approxi-mately 0.17 pixel, and the matching method is stable and reliable. Finally, 3D coordinates of grid nods are constructed with the combination of multiple view geometry theory and the proposed grid nodes matching algorithm.
     4. Determination of sheet mental forming parameters is researched and implemented. A strain calcula-tion with combination of deformation gradient tensor and Green deformation tensor is proposed, and grid node strain is introduced in order to decrease effect of noise. Aiming at FLC determination with dynamic strain measurement, some data-processing skills are proposed,such as elimination of pseudo limit strain according to continuous strain distribution before fracture and selection of criti-cal deformation stage before fracture according to strain gradient change rate. A new technique to determine plastic strain ratio (r value) of sheet metal is proposed utilizing the characteristics of dy-namic strain measurement. With major and minor strain, r value is calculated with conversion of strain in length and width direction be performed by using the property of approximately equality of local strains in the same time of deformation during uniform plastic deformation.
     5. Dynamic strain measurement system, namely BOSAS (binocular strain analysis measurement sys-tem) based on the binocular stereo vision and strain analysis system, namely MOSAS (monocular strain analysis system) based on multiple view geometry theory are designed and implemented re-spectively. BOSAS has been used for the determination of Forming Limit Curves (FLC) and plastic strain ratio (r value) of aviation aluminum sheet and favorable results have been obtained. MOSAS has been used for the sheet formability analysis of outer plate of the vehicle door, and reliable con-clusion has been achieved.
引文
[1]陈文亮.板料成形CAE分析教程.北京,机械工业出版社, 2005.
    [2]梁炳文,陈孝戴,王志恒.板料成形性能.北京,机械工业出版社, 1999.
    [3]胡世光,陈鹤峥,李东升.钣料冷压成形的工程解析(第2版).北京,北京航空航天大学出版社, 2009.
    [4]梁炳文,胡世光.板料成形塑性理论.北京,机械工业出版社, 1987.
    [5]胡世光,陈鹤峥.板材冷压成形原理.北京,国防工业出版社, 1989.
    [6]韩非,万敏,吴向东.板料成形极限理论与实验研究进展.塑性工程学报, 2006, 13(5): 80-86.
    [7] F.Ozturk. Analysis of forming limits using ductile fracture criteria. Journal of Materials Processing Technology, 2004, 147(3): 397-404.
    [8]吕雪山,王先进,苗延达.薄板成形与制造.北京,中国物资出版社, 1993.
    [9] S. P. Keeler, W. A. Backofen. Plastic instability and fracture in sheets stretched over rigid. Punches Trans. ASM, 1965, 56: 25-48.
    [10] S. P. Keeler. Determination of forming limits in automotive stamping. Society of Automotive En-gineers, 1965, No.650535. 42: 683-690.
    [11] S. P. Keeler. Understanding sheet metal formability. Machinery, 1968:124-130.
    [12] G. M. Goodwin. Application of strain analysis to sheet metal forming problems in the press shop. SAE Trans, 1968, No.680093: 380-397.
    [13]翟妮芝.数值模拟在板材成形极限分析中的应用[硕士学位论文].西安,西北工业大学, 2007.
    [14]薛玉雷.基于成形极限应力图判据的DYNAFORM的应用程序开发[硕士学位论文].南京,南京航空航天大学, 2006.
    [15]邱晓刚,卢国清,陈文龙,唐晖.坐标网分析技术与成形极限图的应用.理化检验-物理分册, 2002, 38(7): 292-296.
    [16] Z.Buchar. Circle grid analysis applied to the production problems of the car body panel. Journal of Materials Processing Technology. 1996, 60: 205-208.
    [17]卢国清,邱晓刚,唐建伟,张晓华.应变分析方法在金属薄板拉深成形中的应用.钢铁钒钛, 2001, 22(2): 60-64.
    [18] R. Arrieux. Determination and use of the forming limit stress surface of orthotropic sheets, Journal of Materials Processing Technology, 1997, 54: 25-32.
    [19] A. Haddad, P. Vacher, R. Arrieux. Numerical determination of forming limit diagrams of orthotropic sheets using the‘3G’theory of plasticity, Journal of Materials Processing Technology, 1999, 92-93: 419-423.
    [20] W. M. Sing, K. P. Rao. Study of sheet metal failure mechanisms based on stress-state conditions, Journal of Materials Processing Technology, 1997, 67: 201-206.
    [21] T. B. Stoughton, A general forming limit criterion for sheet metal forming. Int.J.Mechanical Sci-ences, 2000, 42: 1-27.
    [22] M.Stranno, Y.Aue-u-lan, G.Aiello, L.Gao. Determination of the forming limits for tubular materi-als. Internal report, THF/ERC/NSM-00-R-29, 2000.
    [23]陈明和.应力成形极限在板料成形分析中的应用基础研究[博士学位论文].南京,南京航空航天大学, 2008.
    [24]陈劼实,周贤宾.板料成形极限的理论预测与数值模拟研究.塑性工程学报, 2004. 2(11): 13-17.
    [25]王先进,焦书军,魏上云.深冲钢板值在线检测技术评述.钢铁, 1995, 30(10): 75-78.
    [26]毛卫民等.冲压铝板塑性应变比的在线检测技术.中国有色金属学报, 2006, 16(7):1149-1154.
    [27]毛卫民.冲压钢板塑性应变比r值的在线检测技术.钢铁, 2006, 41(11): 37-41.
    [28]吕庆功等.深冲钢板的主要织构对塑性应变比的影响.钢铁研究, 2000, (5): 40-43.
    [29]《工具显微镜》编写组编著.工具显微镜.北京,机械工业出版社, 1978.
    [30] R. C. Gonzalez, E. W. Richard. Digital image processing (2nd ed). Englewood Cliffs, NJ: Pren-tice-Hall, 2002.
    [31] Q.C.Hsu. Comparison of different analysis models to measure plastic strains on sheet metalform-ing parts by digital image processing. International Journal of Machine Tools & Manufacture, 2003, 43(5): 515-521.
    [32]吕晓东,万敏.板料网格应变显微测量系统应用研究.锻压技术, 2007, 32(4): 101-104.
    [33] S. Barone, M. Berghini, L. Bertini. Grid pattern for in plane strain measurement by digital image processing. Journal of strain analysis. 2001, 36(1): 51-59.
    [34] D.Marr.视觉计算理论.姚国正,刘磊,汪云九.北京,科学出版社, 1988.
    [35] O. Faugeras. Three-Dimensional Computer Vision: a Geometric Viewpoint. The MIT press, Cam-bridge, MA , 1993.
    [36]吴立德.计算机视觉.上海,复旦大学出版社, 1993.
    [37]高文,陈熙霖.计算机视觉-算法与系统原理.北京,清华大学出版社, 1998.
    [38]徐光祐.计算机视觉.北京,清华大学出版社, 1999.
    [39]马颂德,张正友.计算机视觉-计算理论与算法基础.北京,科学出版社, 2003.
    [40]贾云德.机器视觉.北京,科学出版社, 2000.
    [41]张广军.机器视觉.北京,科学出版社, 2005.
    [42]张广军.视觉测量.北京,科学出版社, 2008.
    [43] J. H. Vogel, D. Lee. An automated two-view method for determining strain distributions on de-formed surfaces, J. Mater. Shaping Technol. 1989, 6(4): 205-216.
    [44] D. W. Manthey, D. Lee. Vision-based surface strain measurement system. JOM, 1995, 47(7): 46-49.
    [45]魏红芹,于德弘.基于立体视觉的坐标网格分析法.塑性工程学报, 2002, 9(2): 52-54.
    [46]魏红芹.板料成形中三维圆形网格的图像处理与分析[硕士学位论文].西安,西安交通大学, 2000.
    [47]魏红芹,于德弘.板料应变视觉测量系统研究.机床与液压, 2002, (6): 241-242.
    [48]吴向东,万敏,李盛.便携式板料应变测量系统GMAS.锻压技术, 2005, z1, 208-210.
    [49]张祖勋,张剑清,张力.数字摄影测量发展的机遇与挑战.武汉测绘科技大学学报. 2000, 25(1): 7-11.
    [50]张祖勋.论摄影测量与工程测量的结合.地理空间信息. 2004, 2(6): 1-4.
    [51]张祖勋.数字摄影测量的发展与展望.地理信息世界. 2004, 2(3): 1-5.
    [52]张祖勋.由数字摄影测量的发展谈信息化测绘.武汉大学学报. 2008, 33(2): 111-115.
    [53]张祖勋.数字摄影测量与计算机视觉.武汉大学学报. 2004, 29(12):1035-1039.
    [54]张永军,张祖勋,张剑清.基于序列图像的工业钣金件三维重建与视觉检测.清华大学学报, 2004, 44(4): 534-537.
    [55]王之卓.摄影测量原理.北京,测绘科技出版社, 1979.
    [56] T. B. Stephen, M. A. Fischler. Computational stereo. ACM Computing Surveys, 1982, 14(4): 553-572.
    [57] U. R. Dhond, J. K. Aggarwal. Structure from stereo - a review. IEEE Transactions on Systems, Man, and Cybernetics, 1989, 19(6): 1489-1510.
    [58] S. D. Cochran, et al. 3-D surface description from binocular stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(10): 981-994.
    [59] R. Klette, A. Koschan, K. Schluns. Computer vision: three-dimensional data from images. Singa-pore. 1998.
    [60] J. Mulligan, et al. Trinocular stereo: a real-time algorithm and its evaluation. International Journal of Computer Vision, 2002, 47(1-3): 51-61.
    [61] M. Brown, Z. Burschka, G. D. Hager. Advances in computational stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(9): 993-1008.
    [62]游素亚,徐光祐.立体视觉研究的现状与进展.中国图像图形学报, 1997, 2(1): 17-24.
    [63] I. Yamaguchi. A laser-speckle strain gage. Journal of Physics (E). 1981, 14(5): 1270-1273.
    [64] W. H. Peters, W. F. Ranson. Digital imaging techniques in experimental stress analysis. Optical Engineering, 1982, 21(3): 427-431.
    [65] T. C. Chu, W. F. Ranson, M. A. Sutton, et al. Applications of digital image correlation techniques to experimental mechanics. Experimental Mechanics, 1985, 25(3): 232-245.
    [66] W. Z. Zhao, G. C. Jin. An experimental study on measurement of Poisson’s ratio with digital speckle correlation method. J. Appl. Polym. Sci. 1996, 60: 1083-1088.
    [67] J.U. Gi. Experimental investigation on the mechanical properties of paper material using image correlation analysis [Doctoral dissertation]. New York, State University of New York, 2003.
    [68] K. Ohkyung. State UNY.Analysis of multilateral internal deformation in wood utilizing the en-hanced digital image correlation technique [Doctoral dissertation]. New York, State University of New York, 2005.
    [69]高建新.数字散斑相关方法及其在力学测量中的应用[博士学位论文].北京,清华大学, 1989.
    [70]邢冬梅.数字散斑相关测量方法及其在细观力学中的应用[博士学位论文].天津,天津大学, 2002.
    [71]张军.数字散斑相关方法的研究及其在生物力学中的应用[博士学位论文].北京,清华大学, 2003.
    [72]马少鹏.数字散斑相关方法在岩石破坏测量中的发展与应用[博士学位论文].北京,清华大学, 2003.
    [73]王怀文.自适应数字散斑相关方法与铜箔材料断裂中的尺寸效应研究[博士学位论文].天津,天津大学, 2004.
    [74]潘兵.数字图像相关方法及其在实验力学中的应用[博士学位论文].北京,清华大学, 2007.
    [75]孙伟.数字图像相关及其混合法的理论研究与应用研究[博士学位论文].南京,东南大学, 2007.
    [76] M. A. Sutton, S. R. McNeill, J. D. Helm, Y. J. Chao. Advances in Two-Dimensional and Three-Dimensional Computer Vision. P.K Rastogi, ed. Topics in Applied Physics, Springer Verlag, 2000, 77: 323-372.
    [77] J. J. Orteu. 3D computer vision in experimental mechanics. Optics and Lasers in Engineering.2009, 47: 282-291.
    [78] M. A. Sutton, J. J Orteu, H. W. Schreier. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. Springer, 2009.
    [79] M. A. Sutton, J. H. Yan, X. M. Deng. Three-dimensional digital image correlation to quantify de-formation and crack-opening displacement in ductile aluminum under mixed-mode I/III loading. Optical Engineeing, 2007, 46(5): 051003-1-051003-16.
    [80] P. F. Luo. Measurement of three-dimensional crack tip deformation by digital image processing [Doctoral dissertation]. South Carolina, University of South Carolina, 1997.
    [81] J. D. Helm. Use of three-dimensional digital image correlation for the experimental characteriza-tion of buckling in large, thin, 2024-T3 aluminum, middle-crack tension specimens [Doctoral dis-sertation]. South Carolina, University of South Carolina, 1999.
    [82] H. W. Schreier. Investigation of two and three-dimensional image correlation techniques with ap-plications in experimental mechanics [Doctoral dissertation]. South Carolina, University of South Carolina, 2003.
    [83] J. S. Lyons, J. Liu, M. A. Sutton. Deformation Measurements at 650C with Computer Vision. Ex-perimental Mechanics, 1996, 36(1): 64-70.
    [84] P. F. Luo, Y. J. Chao, M. A. Sutton. Application of stereo vision to 3-dimensional deformation analyses in fracture experiments. Optical Engineering, 1994, 33(3): 981-990.
    [85] S. R. McNeill, M. A. Sutton, Z. Miao, et al. Measurement of Surface Profile Using Digital Image Correlation. Experimental Mechanics, 1997, 37(1): 13-20.
    [86] P. F. Luo, F. C. Huang. Application of stereo vision to the study of mixed-mode crack-tip. Optics and Laser in Engineering, 2000, 33(5): 349-368.
    [87] J. D. Helm, M. A. Sutton, S. R. McNeill. Deformations in wide, center-notched, thin panels, part I: three-dimensional shape and deformation measurements by computer vision. Optical Engineering, 2003, 42(5): 1293-1305.
    [88] P. F. Luo, F. C. Huang. An experimental study on the mixed-mode crack tip deformation fields in polymethyl methacrylate. The Journal of Strain Analysis for Engineering Design, 2003, 38(4): 313-328.
    [89] D. Garcia, J. J. Orteu, L. Penazzi. A combined temporal tracking and stereo-correlation technique for accurate measurement of 3D displacements: application to sheet metal forming. Journal of Materials Processing Technology, 2002, 125: 736-742.
    [90] D. Garcia, J. J. Orteu. 3D Deformation measurement using stereo-correlation applied to experi-mental mechanics. The 10th FIG International Symposium on Deformation Measurements, 2001, Session II: 50-60.
    [91] P. Vachera, A. Haddada, R. Arrieuxa, Determination of the forming limit diagrams using image analysis by the correlation method, CIRP Annals - Manufacturing Technology, 1999, 48(1): 227-230.
    [92]张德海,梁晋,唐正宗,张晓强,郭成.板料变形三维数字散斑应变测量分析系统研究.锻压技术, 2010, 35(4):27-31.
    [93] Z. Z. Tang, J. Liang, Z. Z Xiao, C. Guo, H Hu.Three-dimensional digital image correlation system for deformation measurement in experimental mechanics. Optical Engineering, 2010, 49(10), 103601.
    [94]郭龙源.计算机视觉立体匹配相关理论与算法研究[博士学位论文].南京,南京理工大学, 2008.
    [95] J. Weng, P. Cohen, M. Herniou. Camera calibration with distortion models and accuracy evalua-tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(10): 965-980.
    [96] G. Q. Wei, S. D. Ma. Implicit and explicit camera calibration: theory and experiments. IEEE Transactions on Pattern and Machine Intelligence, 1994, 16(5):469-480.
    [97] E. Trucco, A. Verri. Introductory techniques for 3D computer vision. New Jersey, Prentice Hall, 1998.
    [98] R. Y. Tsai. A versatile camera calibration technique for high-accuracy 3D machine vision metrol-ogy using off-shelf TV cameras and lenses. IEEE Journal of Robotics and Automation, 1987, 3(4): 323-344.
    [99] R. K. Lenz, R. Y. Tsai. Techniques for calibration of the scale factor and image center for high ac-curacy 3-d machine vision metrology. IEEE Transactions on Pattern Analysis and Machine Intel-ligence, 1988, 10(5): 713-720.
    [100]G. Wei, S. Ma. A complete two-plane camera calibration method and experimental comparisons. Proceedings of 4th International Conference on Computer Vision, Berlin, Germany, 1993: 439-446.
    [101]Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.
    [102]J. Heikkila, O. Silven. A four-step camera calibration procedure with implicit image correction. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, 1997, 1106-1112.
    [103]J. Salvi, X. Armangue, J. Batlle. A comparative review of camera calibrating methods with accu-racy evaluation. Pattern Recognition, 2002, 35(7): 1617-1635.
    [104]邱茂林,马颂德等.计算机视觉中摄像机定标综述.自动化学报, 2000, 26(1): 43-55.
    [105]S. J. Maybank, O. D. Faugeras. A theory of self-calibration of a moving camera. The International Journal of Computer Vision, 1992, 8(2): 123-152.
    [106]O. D. Faugeras, Q. T. Luong, S. J. Maybank. Camera self-calibration: theory and experiments. Proceedings of Compuer Vision– ECCV’92, Second European Conference on Computer Vision, Santa Margherita Ligure, Italy, 1992, 321-334.
    [107]R. I. Hartley. An algorithm for self calibration from several views. Proceedings of the IEEE Con-ference on Computer Vision and Pattern Recognition, Seattle, WA, 1994, 908-912.
    [108]Q. T. Luong, O. D. Faugeras. Self-calibration of a moving camera from point correspondences and fundamental matrices. The International Journal of Computer Vision, 1997, 22(3): 261-289.
    [109]Z. Zhang. Camera calibration with one-dimensional objects. IEEE Transactions on Pattern Analy-sis and Machine Intelligence, 2004, 26(7): 892-899.
    [110]张辉,张丽艳,陈江,赵转萍.基于平面模板自由拍摄的双目立体测量系统的现场标定.航空学报, 2007, 28(3): 695-701.
    [111]张辉,张丽艳,韦虎.双目立体测量系统标定的三步法.中国机械工程, 2009, 20(16): 1899-1903.
    [112]G. Q. Wei, S. D. Ma. Two plane camera calibration: a unified model. Proc of IEEE Conference of Computer Vision and pattern recognition, 1991, 133-138.
    [113]H. W. Schreier, M. A Sutton, Systematic errors in digital image correlation due to undermatched subset shape functions. Experimental Mechanics, 2002, 42(3): 303-310.
    [114]W. Tong, An evaluation of digital image correlation criteria for strain mapping applications. Strain, 2005, 41(4): 167-175.
    [115]B. Pan, H. M. Xie, Z. Q. Guo, H. Tao. Full-field strain measurement using two-dimensional Savitzky-Golay digital differentiator in Digital Image Correlation. Optical Engineering, 2007, 46(3): 033601.
    [116]H. A. Bruck., S. R. McNeil, M. A. Sutton, W. H. Peters. Digital image correlation using New-ton-Raphson method of partial differential correction. Experimental Mechanics, 1989, 29(3): 261-267.
    [117]G. Vendroux, W.G. Knauss. Submicron deformation field measurements: part2. improved digital image correlation. Experimental Mechanics, 1998, 38(2): 86-92.
    [118]H. W. Schreier, J. R. Braasch, M. A. Sutton. Systematic errors in digital image correlation caused by intensity interpolation. Optical Engineering, 1999, 39(11): 2915-2921.
    [119]朱心雄.自由曲线曲面.北京,科学出版社, 2000.
    [120]潘兵,谢惠民,续伯钦,戴福隆.应用数字图像相关方法测量含缺陷试样的全场变形.实验力学, 2007, 22(3-4): 379~384.
    [121]侯振德,高勇丽,徐莲云,秦玉文.图像相关方法中采用多种子区进行位移测量.天津大学学报, 2005, 38(4): 298-302.
    [122]H. Lu, P. D. Cary. Deformation Measurement by Digital Image Correlation: Implementation of a Second-order Displacement Gradient. Experimental Mechanics, 2000, 40(4): 393-400.
    [123]孙伟,何小元.数字图像相关方法在土木测试领域中的实验研究.南京航空航天大学学报, 2009, 41(2): 271-275.
    [124]G. C. Jin, Z. Wu, N. K. Bao. Digital speckle correlation method with compensation technique for strain field measurement. Optics and Laser in Engineering, 2003, 39: 457-464.
    [125]金观昌,孟利波,陈俊达,马少鹏,张军.数字散斑相关技术进展及应用.实验力学, 2006, 21(6): 689-702.
    [126]B. Pan, H. M. Xie, B.Q. Xu, et al. Performance of sub-pixel registration algorithms in digital im-age correlation”, Measurement Science & Technology, 2006, 17(6): 1615-1621.
    [127]L. B. Meng, G. C. Jin, X. F. Yao. Application of iteration and finite element smoothing technique for displacement and strain measurement of digital speckle correlation. Optics and Lasers in En-gineering, 2007, 45(1): 57-63.
    [128]孟利波.数字散斑相关方法的研究和应用[博士学位论文].北京,清华大学, 2005.
    [129]D. G. Lowe. Distinctive image features form scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2):91-101.
    [130]V. Srinivassan, H. C. Liu, et al. Automated phase measuring profilometry of 3D diffuse object. Applied Optics, 1984, 23(18): 3105-3108.
    [131]X. Y. Su, W. J. Chen. Fourier transform profilometry: a review. Optics and Lasers in Engineering, 2001, 35(5): 263-284.
    [132]D. Scharstein, R. Szekiski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Comptuer Vision, 2002, 47(1/2/3): 7-42.
    [133]A. Gruen. Adaptive least-squares correlation - a powerful matching technique. J Photogramm Remote Sens, 1985, 53(2): 167-187.
    [134]A. Gruen, E. Baltsavias. Geometrically constrained multiphoto matching. Photogrammetric Engi-neering and Remote Sensing, 1988, 54(5): 633-641.
    [135]E. Baltsavisa. Multiphoto geometrically constrained matching [Doctoral dissertation]. Institut fur Geodasie und Photogrammetrice, der Eidgenossischen Technischen Hochschule, Zurich, 1991.
    [136]陈鹰.遥感影像的数字摄影测量.上海,同济大学出版社, 2003.
    [137]张辉.基于随机光照的双目立体测量关键技术及其系统研究.南京,南京航空航天大学, 2009.
    [138]K. Yoon, I. Kweon. Adaptive support-weight approach for correspondence search. IEEE Transac-tions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 650-656.
    [139]陈银莉,余伟,黄秀声.数字图像处理技术进行方形网格应变测量.塑性工程学报, 2009, 16(3): 182-186.
    [140]张福生.基于CCD的板料变形检测及应用研究[硕士学位论文].北京,北方工业大学, 2009.
    [141]J. J. Orteu, V. Garric, M. Devy. Camera calibration for 3D reconstruction: application to the measure of 3D defromations on sheet metal parts. Proceedings of European Symposium on Lasers, Optics and Vision in Manufacturing, Munich, Germany, June 16-20, 1997.
    [142]S. Barone, M. Berghini, L. Bertini. Grid pattern for in plane strain measurements by digital image processing. Journal of Strain Analysis, 2001, 36(1): 51-59.
    [143]周玲,张丽艳,郑建冬.近景摄影测量中标记点的自动检测.应用科学学报. 2007, 25(3): 288-294.
    [144]K. Forbes, A. Voigt, N. Bodika. An inexpensive, automatic and accurate camera calibration method. Proceedings of the Thirteenth Annul Symposium of the Pattern Recognition Association of South Africa (PRASA 2002), 2002.
    [145]R. Hartley, A. Zisserman. Multiple View Geometry in Computer Vision(韦穗,杨尚骏,章权兵等译).合肥,安徽大学出版社, 2002.
    [146]P. H. S. Torr, A. Zisserman. MLESAC: A new robust estimator with application to estimating im-age geometry. Computer Vision and Image Understanding, 2000, 78(1): 138-156.
    [147]张春,李建军,肖祥芷.板料成形应变计算机视觉测量中的网格应变计算方法.塑性工程学报, 2004, 11(5): 21-24.
    [148]李灏,陈树坚编译.连续体力学.武汉,华中工学院出版社, 1982: 77-88.
    [149]陈光南,胡世光.成形极限曲线(FLC)的新概念.北京航空航天大学学报, 1994, 4: 48-53.
    [150]梁炳文,胡世光.弹塑性稳定理论.北京,国防工业出版社, 1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700