铁素体区轧制含磷高强IF钢组织与深冲性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高强度无间隙原子钢(简称HIF)由于其具有优异的深冲性能和较高的强度,它在轿车覆盖件上的使用,可以显著降低汽车重量,降低生产成本,节能环保,近二十年来,受到汽车工业的青睐。高强IF钢在普通IF钢成分的基础上添加了P、Si和Mn等固溶强化元素。有成熟的研究表明,P的固溶强化作用最强,对深冲性能的损害最小。P元素以置换固溶的形式固溶在Fe基体中,由于P原子半径比Fe原子要大,P原子置换固溶时会引起基体晶格畸变,其应力场与位错应力场发生交互作用,阻碍钢板变形时的位错运动,从而提高强度。
     有研究发现,在铁素体区轧制IF钢可以获得较强的可以与冷轧态相媲美的{111}//RD织构类型。铁素体区轧制工艺简化了传统的冷轧深冲钢板的工艺流程,降低了生产成本,从而使热轧板具有深冲性能。因此,铁素体区轧制生产高强IF钢具有明显的技术先进性和显著的经济效益,开展铁素体区轧制高强IF钢的开发研制工作具有重要的理论意义和实用价值。
     本文所用实验钢由宝钢CONSARC500公斤真空感应炉冶炼,并在钢铁研究总院进行铁素体区轧制实验。利用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)、电子背散射衍射(EBSD)、硬度测定以及单向拉伸实验等测试方法,系统深入了研究了冶金因素以及铁素体区轧制工艺参数对含P高强IF钢微观组织和力学性能的影响。
     研究了P元素对铁素体区轧制含P高强IF钢组织性能的影响。结果表明:P元素的加入使钢板深冲性能略有下降,并显著提高了钢板的强度。P元素在钢中以两种形式存在:置换固溶的P原子和形成FeTiP化合物。置换固溶的P原子使Fe基体晶格发生畸变,并阻碍位错运动,这是钢板强度提高的主要因素。退火时FeTiP粒子对有利织构的发展起到抑制作用,同时,FeTiP的形成会消耗钢中用于消除C、N间隙原子的Ti原子,使得钢中的二相粒子除TiN、TiC、TiS和Ti4C2S2外,还有少量的Fe4N、Fe3C、AlN,钢中C、N间隙原子的存在是高强IF钢深冲性能降低的另一个原因。
     铁素体区轧制时设计了不同的开轧温度(ST)、终轧温度(FT)和轧制压下率(RED),通过对不同轧制参数的含P高强IF钢组织、织构和力学性能的对比研究发现,铁素体区轧制温度和压下率对含P高强IF钢的屈服强度(YS)、抗拉强度(TS)、总伸长率(E1)和n值的影响较小。开轧温度为840℃时,钢板深冲性能较差,了<1,开轧温度为700℃和750℃时,钢板深冲性能较好,r>1;终轧温度和轧制压下率对了值影响较大,随终轧温度逐渐上升,r值呈上升趋势;随轧制压下率逐渐增大,r值呈下降趋势;同时,交叉比较发现,当终轧温度较低时,如540℃,可在较小的轧制压下率下获得较高的了值,较好的深冲性能;当终轧温度较高时,如660℃,则可在较大的轧制压下率下获得较高的r值,较好的深冲性能。
     通过对比润滑轧制和不润滑轧制的含P高强IF钢的组织、织构和力学性能发现,良好的润滑条件是使钢板轧后获得较好的深冲性能的必要条件。未润滑轧制使含P高强IF钢沿板厚方向产生严重的不均匀变形,钢板与轧辊的摩擦使钢板表层发生剪切变形产生大量取向为<110>//ND的等轴细晶粒,这些细小的等轴晶在退火后发生晶粒长大,最终形成漫散织构状态,而中心层退火后形成少量{111}再结晶晶粒,表层和中心层晶粒取向差接近随机分布。这种板厚方向上织构的不均匀分布是r值大幅降低的本质原因。润滑轧制使钢板沿厚方向变形均匀,均为压缩变形。表层和中心层均形成长纤维状的{001}、{112}和{111}变形晶粒,退火后形成大量{111}再结晶晶粒,具有优异的深冲性能。因此,热轧IF钢为获得优异的深冲性能,良好的润滑条件是必须的。
As a result of excellent deep drawing properties and high strength of high strength interstitial-free steels (referred to as HIF steels), they can dramatically reduce the weight of vehicles, decrease the product cost, save energy and environment friendly, therefore, the application of HIF steels in automobile industry has attracted much attention in recent twenty years. HIF steels are achieved by adding P, Si, Mn or other solution strengthening elements to traditional IF steels. Among these solution strengthening elements, P has the strongest solid solution strengthening function and the smallest damage to formability. P element exists in Fe matrix in the form of replacement solid solution. As a result of larger radius of P atoms than that of Fe atoms, the replacement of P atoms leads to lattice distortion of the matrix. The interaction of its stress field and the dislocation stress field blocks the movement of dislocations during the deformation of steels, and then results to the improvement of steel strength.
     Studies showed that Ferritic-Rolled-IF steels possessed a strong{111}//RD texture type comparable with cold-rolled-IF steels. The technology of ferritic-rolling simplifies the traditional process of cold-rolled deep drawing steel sheet and reduces production cost, leading to the hot-rolled plate with a good deep-drawing performance. Therefore, producing high-strength IF steel with ferritic-rolling technology is advanced and has significant economic benefits, furthermore, the development of ferritic-rolling technology has importantly theoretical meaning and practical value.
     The steel used in this experiment was smelt in CONSARC500 kg vacuum induction furnace in Baoshan Iron and Steel Company, and the ferritic-rolling test was carried out in Iron and Steel Research Institute. Optical microscope (OM), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Electron Backscattered Diffraction (EBSD), Rockwell Hardness Tester and Uniaxial Tensile Tester were used to investigate the effect of metallurgical factors and ferrite-rolling process parameters on microstructure and mechanical properties of P-added high-strength IF steels.
     The effect of P element on the microstructures and mechanical properties of ferritic-rolled P-added high-strength IF steel were studied. Results showed that after adding P element, the strength of steel was significantly improved and deep drawing performance was decreased slightly. P element exists in the steel in two kinds of forms:P atoms that replace Fe atoms in matrix lattice and P atoms that form FeTiP compounds. The replacement of P atoms to Fe atoms causes lattice distortion of the matrix and impedes dislocation movement, which is a major factor on improving strength steel. FeTiP particles restrain the growth of favorable texture during annealing; meanwhile, the formation of FeTiP in the steel consumes Ti atoms that are supposed to eliminate C and N interstitial atoms, which leads to the existence of Fe4N, Fe3C, AlN, besides TiN, TiC, TiS and Ti4C2S2. The existence of C and N interstitial atoms in the steel is the other reason that the formability of high strength P added IF steel decreases.
     Different rolling parameters such as start-rolling temperatures (ST), finish-rolling temperatures (FT) and the rolling reduction (RED) were designed when ferrite regions were rolled. Comparing the microstructures, textures and mechanical properties between P-added high-strength IF steel sheets rolled with different rolling parameters, it is found that ferritic-rolling temperature and reduction have slight effect on yield strength (Rp), tensile strength (Rm), elongation (e) and n-value, but have significant effect on r-value. When the start-rolling temperature was at 840℃, the steel showed poor of formability,r<1; when the temperatures were at 700℃and 750℃, the steel showed good formability,r<1. Finish-rolling temperature and rolling reduction have great influence on r-value.r-value increases with increasing finish-rolling temperature, in contrast,r-value decreases with increasing rolling reduction. Meanwhile, from cross-comparison, it is found that, when finish-rolling happens at lower temperature, such as 540℃, higher r-value and good formability are obtained at lower rolling reduction; when finish-rolling happens at higher temperature, such as 660℃, higher r-value and good formability are obtained at higher rolling reduction.
     Comparing the microstructures, textures and mechanical properties of the steel sheets that are rolled in lubricate conditions and nonlubricate conditions, it is found that good lubricate condition plays an important role in obtaining good formability. Serious inhomogeneous deformation occured when the steels were rolled in ferrite region without lubricate and large amount of<110>//ND fine grains formed in the surface layer of the steel sheet, which finally leaded to weak texture condition. However, a small amount of{111} recrystallization grains form after annealing in the center layer, and the dis-orientation between surface and center layers is very close to random distribution. This texture in-homogeneity is the essential reason for the decrease of r-value. Lubrication condition leads to the uniformly pressed deformation along thickness direction. Long fibrous{001},{112} and{111} deformed grains were formed in both surface and center layer, and large amount of {111} recrystallized grains were formed after annealing treatment, which have excellent formability. Therefore, good lubricant condition is necessary to obtain excellent formability.
引文
[1]刘景佳,细晶高强IF钢冷轧生产工艺的开发[D],硕士学位论文,辽宁:辽宁科技大学,2008.
    [2]J. A. Elias, R. E. Hook. Mechanical working and steel proceeding [A] IX, TMS of AIME, New York (NY),1970,348-368.
    [3]I. L Dillamore. Factors affecting the rolling recrystallisation textures in F.C.C metals [J]. Acta Metallurgica,1964,12(9):1004-1014.
    [4]张文平.铁素体区轧制IF钢退火过程再结晶规律的研究[D].济南:山东大学,2007.
    [5]康永林.现代汽车板的质量控制与成形性[M].北京:冶金工业出版社,1999.
    [6]王先进等.薄板成形性能[M],北京:北京钢铁学院,1987.
    [7]W. B. Morrison, et al. The Effect of Grain Size on the Stress-Strain Relationship in Low-Carbon Steel[A]. ASM TRANS QUART.1966,59(4),823-846.
    [8]W. T. Lankford, S. C. Snyder, L. A. Bauscher. New criteria for predicting the presperformance of deep drawing sheets [J]. Transactions of American Society of Metals,1950, (42):1197-1208.
    [9]吴文志.塑性各向异性比值r和加工硬化指数n与金属薄板冲压性能的关系[J].钢铁研究.1975,(4):21-38.
    [10]李贺杰,赵劲松等.IF钢(无间隙原子钢)的发展、应用及展望[J].唐山学院学报,2008,21(4):2-8.
    [11]J. Hirsch, K. Luke, M. Hatherly. Mechanism of deformation and development of rolling texture in polycrystalline FCC metals-Ⅲ. The influence of slip in homogenElties and twinning[J]. Acta Metall,1988,36(11):2862-2927.
    [12]W. B. Hutehinson. DeveloPment and control of annealing textures in low carbon steels[J]. International Metals Reviews,1984,29(1):24-39.
    [13]王作成,冶金因素对超低碳高强度IF钢组织及性能影响的研究[D],博士学位论文,北京:北京科技大学,1994.
    [14]王先进,王作成,唐狄等.成分及工艺对加磷高强IF钢成形性能的影响[J].钢铁, 1993,28(3):33-68.
    [15]马衍伟,茹铮,王先进.超深冲IF钢的生产工艺及其技术要点[J].轧钢,1998,(4)2:7-8.
    [16]S. Hashimoto, et al. In:Ⅰ. Tamura ed., Proceedings of the International Conference on Physical Metallurgy of Thermomechanical Processing of Steels and Other metals [A]. Tokyo, Japan:Iron and Steel Institute of Japan,1988:652-659.
    [17]T. Senuma, H. Yada. Texture and formability of low and ultra low carbon treel sheet hot rolled below Ar3 temperature [A]. In:Ⅰ. Tamura ed., Proceedings of the International Conference on Physical Metallurgy of Thermomechanical Processing of Steels and Other metals[C]. Tokyo, Japan:Iron and Steel Institute of Japan, 1988:635-643.
    [18]T. Nakamura, K. Esaka. Development of hot rolled steel sheet with high r-value [A]. In:I. Tamura ed., Proceedings of the International Conference on Physical Metallurgy of Thermomechanical Processing of Steels and Other metals [C]. Tokyo, Japan:Iron and Steel Institute of Japan,1988:644.
    [19]王作成,王仲仁,王先进.具有高r值的热轧IF钢的实验研究[J].材料科学与工艺,1997,5(2):29-31.
    [20]Z. C. Wang, F. Wang. Properties, microstructures and precipitate morphology of hot-rolled interstitial-free steel sheets[J]. Journal of Material Science and Technology,2001,17(1):142-144.
    [21]李文彬,官军.深冲钢(IF钢)的研究与发展概况[J].冶金设备,2005,3:29-31.
    [22]崔德理,王先进,金山同.超低碳钢的历史与发展[J].钢铁研究,1994,(5):4-60.
    [23]Nobuo Ohashi, Toshio Irie, Susumu Satoh, et al. Development of Cold-Rolled High Strength Steel Sheet with Excellent Formability[S].1981,810027.
    [24]N. Fukuda, K. Matsudo, Produetion of deep drawing quality high strength cold rolled steel sheets[J]. Tetsu-to-Hague,1979, (66):83
    [25]Y. Tokunaga, Produetion of super deep drawing quality high strength cold rolled steel sheets[J]. Tetsu-to-Hague,1980, (66):1127.
    [26]张建成.Ti+P-IF钢和Ti-IF钢热变形行为的研究[D].硕士学位论文,鞍山:鞍山科技大学,2006.
    [27]Hiroshi Takechi, Osamu Akisue. Metallurgical consideration on high strength steel sheets for automobiles in Nippon Steel Corportion [A]. Proc. of Conf. on HSLA Steels 85 [C]. BEljing:The Chinese Society of Metals,1985.
    [28]S. I. Kim, S. H. Choi, Y. Lee, Influence of phosphorous and boron on dynamic recrystallization and microstructures of hot-rolled interstitial free steel [J]. Materials Science and Engineering A,2005,406:124-133.
    [29]刘凤娟.微量元素在超低碳钢组织控制与细晶强化中的作用[D].硕士学位论文,沈阳:东北大学,2004.
    [30]傅作宝.冷轧薄钢板生产第2版[M].北京:冶金工业出版社,1996.
    [31]师昌绪等.材料科学与技术丛书(第07卷)[M].北京:科学出版社,1999.
    [32]Nobuo Ohashi, Toshio Irie, Susumu Satoh, et al. Development of Cold-Rolled High Strength Steel Sheet with Excellent Formability[S].1981,810027.
    [33]商建辉,王先进,蒋冬梅等,卷取温度对Ti-IF钢第二相粒子及晶粒尺寸的影响[J].钢铁,2002,37(3):43.
    [34]M. R. Barnett, J. J.Jonas. Influence of ferrite rolling temperature on microst ructure and texture in deformed low C and IF steels[J]. ISIJ Int.1997,37(7): 705-714.
    [35]S. Sanagi, T. Kawano, et al. Effect of hot rolling condition and chemical composition on mechanical properties of extra low carbon continuous annealed steel sheets[C]. Detroit, USA, TMS-AIME,1984:151-167.
    [36]M. P. Butron-Guillen, J. J. Jonas. Effect of finishing temperature on hot band textures in an IF steel [J]. ISIJ International,1996,36(1):68-73.
    [37]刘占英,周满春,王涛等.IF钢铁素体区热轧工艺参数对深冲性能的影响[J].钢铁研究学报,2007,19(4):43-76.
    [38]T. senuma, K. Kawasak. Texture formation in Ti bearing IF steel sheets throughout the rolling and annealing processes in terms of the influence of hot rolling conditions on formability [J]. ISIJ International,1994,34(1):51-60.
    [39]S. Matsuoka, K. Sakata, S. Sotoh, et al. Effect of hot-roling strain rate in the ferrite region on the recrystallization texture of extra-low C sheets steels [J]. ISIJ International,1994,31(1):77-84.
    [40]王作成,关小军,赵罕.多道次热轧温度及压下率对热轧IF钢深冲性能的影响[J].特殊钢,1999,20(3):21-23.
    [41]王作成,关小军,王先进,润滑条件对热轧IF钢的性能及组织的影响[J],钢铁,2000,35(11):44~46.
    [42]鹿岛康弘.铁素体区轧制时的润滑条件对超低碳钢架Ti冷轧钢板r值及织构的影响[J].武钢技术,1992,8:59-66.
    [43]Saiji Matsuoka, Masahiko Morita, Osamu Furukimi. Effect of lubrication condition on recrystallization texture of Ultra-low C sheet steel hot-rolled in ferrite region [J]. ISIJ International,1998,38(6):632-739.
    [44]S. Matsuoka, et al. Development of super deep drawable sheet by lubricant hot rolling in ferrite region [A]. In:W. Bleck ed., Proceedings of International Symposium on Modern LC and ULC Sheet Steels for Cold Forming:Processing and Properties [C]. Aachen, Germany:Institute of Ferrous Metalurgy,1998:84-96.
    [45]H. Zhao, S. C. Rama, G. C. Barber, et al. Exerimental study of formability of hot rolled IF steel [J]. Journal of Materials Processing Technology,2002, 128(1-3):72-89.
    [46]I. L Dillamore. Factors affecting the rolling recrystallisation textures in F. C.C metals[J]. Acta Metallurgica,1964,12(9):1004-1014.
    [47]P.Ghosh, C.Ghosh, R.K.Ray. Precipitation behavior and texture formation at different stages of processing in an interstitial free high strength steel[J], Scripta Materialia,2008,59:275-278.
    [48]P.Ghosh, B. Bhattacharya, R.K.Ray. Comparative study of precipitation behavior and texture formation in cold rolled-batch annealed and cold rolled-continuous annealed interstitial free high strength steels[J]. Scripta Materialia,2007,56:657-660.
    [49]景财年,王作成,韩福涛,IF钢中的析出物[J],材料导报,2005,19(5):50-52.
    [50]商建辉,王先进,初元璋.Ti-IF钢热轧时第二相粒子析出行为研究的最新进展[J].钢铁研究学报,2000,12(6):55-60.
    [51]P.Ghosh, R.K.Ray, B. Bhattacharya. Precipitation and texture formation in two cold rolled and batch annealed interstitial-free high strength steels[J]. Scripta Materialia,2006,55:271-274.
    [52]G. Tither, C. I. Garcia, M. Hua, Precipitation Behavior and Solute Effects in Interstitial-Free Steels[A], Sakuma T eds International Forum for Physical Metallurgy of IF Steels[C], Tokyo:The Iron and Steel Institute of Japan,1994: 292-322.
    [53]M. Hua, C. I. Garcia, A. J. Deardo. Precipitation behavior in Ultra-Low-Carbon steels containing Titanium and Niobium[J]. Metallurgical and materials transactions A.1997,28A:1769-1780.
    [54]N. Himotani, J. Endo, T. Takayama. Isolation and Determination of Sulfide in Ti-bearing Ultra Low Carbon Steel [J], ISIJ, International.1994,34(1):17-23.
    [55]S. Carabajar, J. Merlin, V. Massardier, et al. Precipitation evolution during the annealing of an interstitial-free steel [J]. Materials Science and Engineering A,2000,281:132-142.
    [56]焦书军.利用热模拟技术研究Ti-IF钢热轧过程中二相粒子析出规律,博士学位论文,北京科技大学,1997.
    [57]商建辉,王先进,蒋冬梅.Ti-IF钢第二相粒子在热轧过程中析出行为的热模拟研究[J],钢铁,2002,37(1):55-60.
    [58]王作成,王先进.高强IF钢析出物的析出特征[J],钢铁,1995,30(2):62-68.
    [59]P.Ghosh, P.K.Ray, D. Bhattacharjee. Determination of the crystal structure of FeTiP-type precipitates in a few interstitial-free high-strength steels[J], Scripta Materialia,2007,25:241~244.
    [60]熊道礼,毛卫民,含磷高强IF钢中FeTiP相的脱溶及硬化现象[J].北京科技大学学报,2000,22(4):350~353.
    [61]毛新平.薄板坯连铸连轧铁素体轧制工艺[J].钢铁,2004,39(5):71-74.
    [62]刘正东,杨钢,房听等.铁素体区热轧的研究与应用[J].轧钢,2002,19(2):37-38.
    [63]C. J. Barrett, B. Wilshire. The production of ferritically hot rolled interstitial-free steel on a modern hot strip mill[J]. Journal of Materials Processing Technology,2002,122(1):55-62.
    [64]A. Elsner, R. Kaspar. Deep-drawable steel strip produced by ferritic-rolling[J]. Materials Science Forum,2003,425-432:1349-1354.
    [65]M. R. Barnett, J. J. Jonas. Distinctive aspects of the physical metallurgy of warm roll ing[J]. ISIJ International,1999,39(9):855-873.
    [66]A. D. Paepe, J. C. Herman, V Leroy. Deep drawable ultra low carbon Ti-IF steels hot rolled in the ferrite region[J]. Steel Research,1997,8(11):479-486.
    [67]H. GroBhElm, K. Schotten, W. Bleck. Physical simulation of hot rolling in the ferrite range of steels[J]. Journal of Materials Processing Technology,1996, 60(1-4):609-614.
    [68]H. Langer, W. Bleck, et al. Metallurgical aspect of ferritic hot rolling[A]. In:W. Bleck ed., Proceedings of International Symposium on Modem LC and ULC Sheet Steels for Cold Forming Processing and Properties[C]. Aachen, Germany:Institute of Ferrous Metallurgy,1998:301-312.
    [69]王昭东,郭艳辉,赵忠等.应用铁素体区热轧工艺开发超低碳热轧深冲板[J].东北大学学报(自然科学版),2005,26(8):747-750.
    [70]李四军,曲家惠,王福等.铁素体区热轧IF钢冷轧退火时织构的形成与演变[J].东北大学学报(自然科学版),2007,28(3):344-318.
    [71]张锦刚,蒋奇武,刘沿东等.Ti-IF和Ti+Nb-IF钢铁素体区热轧组织和结构特征[J].东北大学学报(自然科学版),2005,26(10):968-971.
    [72]K. Eloot, K. Okuda, K. Sakata et al., Texture evolution during cold rolling and recrystallization of IF steel with a strong{111} hot band texture[J]. ISIJ International,1998,38(6):602-609.
    [73]L. Kestens, J. J. Jonas. Modeling texture change during static recrystallization of a cold rolled and annealed ultra-low carbon steel previously warm rolled in the ferrite region[J]. ISIJ International,1997,37(8):807-814.
    [74]K. M. Tiitto, C. Jung, P. Wray, et al. Evolution of texture in ferritically hot rolled Ti and Ti+Nb alloyed ULC steels during cold roiling and annealing[J]. ISIJ International,2004,44(2):403-713.
    [75]V. J. Martinez, J. I. Verdeja, J. A. Pero-Sanz. Interstitial free steel: influence of a phase hot rolling and cold rolling reduction to obtain extra deep drawing quality[J]. Materials Characterization,2001,46(1):44-53.
    [76]J. Asensio, G. Romano, V. J. Martinez, et al. Ferritic steel-optimization of hot-rolled textures through cold rolling and anneal ing[J]. Materials Characterization,2001,47(2):119-127.
    [77]杨娜,崔岩,胡劲.高强IF钢的研究进展[J].物理测试,2009,27(3):1-5.
    [78]雍岐龙,钢铁材料中的第二相[M],北京:冶金工业出版社,2006
    [79]吴承建,汤晓丽,铈、钼和磷在钢中的晶界偏聚行为与高温回火脆性[J],钢铁,1991,26(12):31-35.
    [80]赵品,材料科学基础(第二版)[M],哈尔滨:哈尔滨工业大学出版社,2003.
    [81]郭小龙,郑之旺,孙力军.超深冲IF钢的生产技术与发展概况[J],上海金属,2008,30(1):39-43.
    [82]张鹏,汪凌云,任正德.微合金化超深冲-无间隙原子(IF)钢生产技术的进展[J].特殊钢,2005,26(2):1-5.
    [83]Hiroshi Takechi. Metallargical A spects on Interstitial Free Sheet Steel [J]. ISIJ International,1994,34(1),1-8.
    [84]杨娜,崔岩,胡劲.高强度IF钢的研究进展[J].物理测试,2009,27(3),1-5.
    [85]田莳,等.金属物理性能[M].北京:北京航空工业出版社,1994.
    [86]Hao Yua, Yonglin Kanga, Zhengzhi Zhao, et al. Microstructural characteristics and texture of hot strip low carbon steel produced by flexible thin slab rolling with warm rolling technology[J]. Materials Characterization,2006,56(2): 158-164.
    [87]杨弟,王绪,毛卫民等.超深冲IF钢组织对深冲性能的影响[J].钢铁,1995,30(1):60-63.
    [88]S. V. Subramaniam, M. Prikryl, B. D. Gaulin, et al. Effect of precipitate size and dispersion on Lankford values of titanium stabilized interstitial-free steels[J]. ISIJ International.1994,34:61-69.
    [89]C. Huang, E. B. Hawbolt, et al. Precipitation evolution and its effect on static recrystallization in the ferrite region for two Ti-Nb stabilized IF steels[J]. Canadian Metallurgical Quarterly,2000,39(3):369-378.
    [90]S. V. Subramanian, M. Prikryl, B. D. Gaulin, et al. Effect of precipitate size and dispersion on lankford values of titanium stabilized in terstitial-free steels[J]. ISIJ International,1994,34(1):61-69.
    [91]关小军,李云,王作成.铁素体区热轧Ti-IF钢的析出物研究[J].钢铁,2004,39(9):58-60.
    [92]齐俊杰,黄运华,张跃.微合金化钢[M].2006:北京,冶金工业出版社.
    [93]景财年,王作成,韩福涛等.热轧Ti-IF钢析出物的研究[J].金属热处理,2006,31(1):79-82
    [94]宁宇,王昭东,王国栋等.Nb+Ti-IF钢铁素体区热轧工艺实验研究[J].轧钢,2004,21(2):7-9.
    [95]Fusato Kitano, Toshiahi Urabe, Takeshi Fujita, et al. New type of IF-high strength steel with superior secondary work embrittlement [J]. ISIJ International, 2001,41(4):1042.
    [96]韩福涛.冶金因素对热轧深冲无间隙原子(IF)钢板组织性能影响的研究[D],博士学位论文,济南:山东大学,2009.
    [97]赵昆,王昭东,吴景晖等.IF钢铁素体区热轧变形后的静态软化行为[J].钢铁研究学报,1999,11(4):18-21.
    [98]景财年,王作成,韩福涛等.铁素体区热轧Ti-IF钢的组织和性能[J].特殊钢,2006,27(2):22-24.
    [99]李连平,初元璋,谢建新.铁素体区轧制技术的发展与现状[J].河北冶金,2004,142:2-8.
    [100]M. Hillert. On the theory of normal and abnormal grain growth [J]. Acta Metallurgica,1965,13(3):227-238.
    [101]R. Kern, H. J. Bunge, et al. Effects of Interstitial Atoms on Cold Rolling Texture in Pure iron [J]. Steel Research,1986,57(2):5634-5639.
    [102]杨弟,王绪,毛卫民等.冷轧过程中IF钢板织构的ODF分析[J].北京科技大学学报,1994,16(3):250-254.
    [103]S. Hirth, G. GottstEln. Microtexture of discontinuous precipitation in an Al-2.8at%Ag-Ga alloy[A]. In:Proc. Of the 11th Inter on Texture of Mater[C]. Xi'an, China,1996.1339.
    [104]J. K. Mackenzie. Statistics associated with the random disorientation of cubes [J]. Biometrika,1958,45:229-240.
    [105]J. K. Mackenzie. The distribution of rotation axes in a random aggregate of cubic crystals [J]. Acta Metall.,1964(12):223.
    [106]D. Daniel, J. J. Jonas. Measurement and prediction of plastic anisotropy in deep-drawing steels [J]. Metallurgical and Materials Transactions A,1990,21(1): 331-343
    [107]毛卫民,张新明.晶体材料织构定量分析[M].北京:机械上业出版社,1982.
    [108]李锋.深冲镀锌IF钢板生产工艺的研究[D].硕士学位论文,鞍山:辽宁科技大学,2007.
    [108]姜奎华.冲压工艺与模具设计[N].北京:机械工业出版社,1995.
    [110]余勇,潘晓霞,戎咏华.位错热激活滑移的数值模拟[J].固体力学学报,2008,29(4):389-395.
    [111]潘建农.金属与热处理[M].长沙:湖南大学出版社,2008
    [112]刘占英,王涛,刘相华等.IF钢铁素体区热轧工艺参数对深冲性能的影响[J].河北理工学院学报,2005,27(3):23-28.
    [113]F.布赖恩皮克林.钢的组织与性能[M].北京:科学出版社,1999.
    [114]M. R. Barnett, L. Kestens. Formation of{111}<110> and{111}<112> Textures in cold rolled and annealed IF sheet steel[J]. ISIJ International,1999, 39(9):922-929.
    [115]赵辉,王先进,王德城,等.热轧工艺对IF钢析出物析出行为的影响[J].钢铁研究,1994,(1):27-31.
    [116]Y. Z. Liu, J. H. Sun, L. Y. Zhou, et al. Experiment investigation of deep-drawing sheet texture evolution[J]. Journal of Materials Processing Technology,2003,140(1/2/3):509-513.
    [117]H. Zhao, S. C. Rama, G. C. Barber, et al. Experimental study of formability of hot rolled IF steel[J]. Journal of Materials Processing Technology,2002,128 (1/2/3):72-79.
    [118]李伟Nb+Ti-IF钢薄板冷轧工艺及组织性能研究[D].硕士学位论文,重庆:重庆大学,2007.
    [119]张鹏Nb+Ti-IF钢成型工艺及组织性能研究[D].博士学位论文,重庆:重庆大学,2008.
    [120]李艳娇.IF钢冷轧工艺参数与深冲性能关系的研究[D],硕士学位论文,唐山:河 北理工学院,2002.
    [121]M. R. Barnett, Role of In-grain Shear Bands in the Nucleation of<111>//ND Recrystallization Texture in Warm Rolled Steel[J], ISIJ International,1998,38(1): 78-85.
    [122]高毅.Fe+Ti-P钢再结晶组织与性能关系的研究[D].硕士学位论文,鞍山:辽宁科技大学,2007.
    [123]S. Hashinoto, et al. In:I. Tamura ed., Proceeding of the International Conference on Physical Metallurgy of Thermomechanical Processing of Steels and Other Metals [C]. Tokyo, Japan:Iron and Steel Institute of Japan,1988:652-659.
    [124]G. Kim,O. Kown, et al. Effect of friction on texture evolution in ferritic warm rolled IF steel [A]. In:W. Bleck ed., Proceedings of International Symposium on Modern LC and ULC Sheet Steels for Cold Forming:Processing and Properties [C]. Aachen, Germany:Institute of Ferrous Metallurgy,1998:362-370.
    [125]S. Matsuoka, et al. Development of sper deep drawable sheet by lubricant hot rolling in ferrite region [A]. In:W. Bleck ed., Proceedings of International Symposium on Modem LC and ULC sheet Steels for Cold Forming:Processing and Properties [C]. Aachen, Gremany:Institute of Ferrous Metallurgy,1998:85-76.
    [126]S. Matsuoka, M. Morita,0. Furukim, et al. Effect of lubdcmion condition on recrystallization texture of ultra-low C sheet hot-rolled in ferrite region [J]. ISIJ International 1998,33(6):632-739.
    [127]刘志恩.材料科学基础[M].西安:西北工业大学出版社,2007.
    [128]王先进.超低碳汽车钢板[M].北京:北京科技大学,1991.
    [129]王作成,关小军,韦珂等.轧制温度对热轧无间隙原子钢性能及织构的影响[J].山东工业大学学报,1999,29(4):360-365.
    [130]王昭东,郭艳辉,田勇等.Ti-IF钢铁素体区热轧退火板的织构特征和成形性能[J].钢铁研究学报,2006,,18(7):34-36.
    [131]S. Hashimoto, T. Kashimoto, Effect of hot rolling in ferrite phase on r-value of cold rolled and annealed extra-low-carbon steel sheet[J], Kobeleo Technology Review,1992,13:51-55
    [132]胡恒法,裴新华.热轧薄板冲压性能研究[J].轧钢,2004,21(3):3-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700