非晶Al-Mg-B超硬薄膜材料制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代制造业的快速发展,人们对切削刀具、磨具及耐磨零部件的硬度、耐磨性和使用寿命等性能提出了更高的要求。因此,超硬材料逐渐向低密度、低摩擦系数、低成本等方向发展。由于硼化物材料具高硬度和低摩擦系数等特性,在切、磨工具应用上都有着优异的表现。因此,超硬硼化物材料的研究与开发受到了各国研究人员的重视。
     在硼化物材料中,三元金属硼化物AlMgB14因其具有高硬度、低摩擦系数等优点而备受关注。前人通常采用粉末高温烧结方法制备大块晶体材料并予以使用。近年来,薄膜材料因为具有用量少、可附着在形状复杂的工具表面并能赋予基体新特性等优点,在国民经济的诸多领域中发挥着重要的作用。另一方面,非晶材料通常具有高强度、高韧性和极强的耐腐性能等特点,可在环境复杂及恶劣的条件下稳定工作。因此,制备非晶Al-Mg-B薄膜材料,不仅可以进一步提高该材料的使用性能,还将在三元系金属硼化物(XYB14)的研究和开发方面取得突破性进展。然而,至今缺乏对高性能非晶Al-Mg-B薄膜材料的制备和硬化机理的研究,从而制约了非晶Al-Mg-B薄膜材料性能的提升,影响了该材料的进一步开发与应用。
     针对这个问题,本论文使用磁控溅射镀膜系统,采用多靶共溅射方法,以提高非晶Al-Mg-B薄膜材料的力学性能为目的,分别对薄膜的制备工艺(溅射功率、沉积温度、沉积气压及负偏压)进行优化,并对影响薄膜性能的关键工艺参数进行分析。研究发现,随硼靶溅射功率的增大,薄膜内硼元素含量逐渐增多,薄膜硬度呈先上升后下降的变化趋势,薄膜摩擦系数却一直在逐渐减小;随着薄膜制备沉积温度和沉积气压的升高,薄膜硬度也随之增大,同时其摩擦系数在逐渐减小;随着负偏压的增大,薄膜硬度呈先上升后下降的变化趋势。在成分优化方面,室温下制备非晶A1-Mg-B薄膜,当硼含量约为93.1at.%时,薄膜具有最高硬度(37.1GPa),此时摩擦系数也仅为0.15。而具有近似晶体成分的Al-Mg-B薄膜其硬度为31.1GPa,与晶体AlMgB14(28GPa)材料相当。对于具有近似晶体成分的Al-Mg-B非晶薄膜,其优化的制备工艺为沉积温度600℃、沉积气压0.9Pa、沉积负偏压80V。
     在此基础上,应用优化的薄膜制备工艺参数,在YG6X硬质合金刀具(20GPa-30GPa)表面沉积制备非晶Al-Mg-B薄膜,该薄膜与硬质合金具有很好的结合强度。制备的涂层刀具拥有44.6GPa的高硬度和0.11的低摩擦系数。与未涂层刀具相比,其切削性能得到明显提高。
     在非晶Al-Mg-B薄膜成功制备基础上,本论文对非晶Al-Mg-B材料的硬化机理进行了分析,提出非晶Al-Mg-B薄膜中保留了晶体材料中的B12二十面体的短程有序结构,这个结构对非晶薄膜的硬度有决定性影响。这一结论首先通过第一性原理计算AlMgB14和α-B的维氏硬度,从电子结构角度阐明了B12二十面体是决定AlMgB14材料具有高硬度的主要因素。随后,通过元素掺杂非晶Al-Mg-B薄膜,发现Ti、Si元素掺杂后的非晶Al-Mg-B薄膜仍具有较高的硬度,且B12二十面体依然稳定存在,但Cr、N元素掺杂却阻碍(或破坏)薄膜内B12二十面体的形成及稳定存在,进而降低了薄膜的力学性能。这一结果验证了B12二十面体在非晶薄膜高硬度性质中的作用。
     基于B12二十面体在非晶薄膜高硬度性质中的作用,通过掺杂选择能够稳定B12二十面体结构的新元素种类,进而应用[团簇](连接原子)结构模型,可以实现开发具有更高性能的新型金属硼化物。
     本论文研究结果为Al-Mg-B (?)非晶薄膜涂层刀具提供制备工艺参考,还可推动新型硼化物的研究与开发。
With the rapid development of modern manufacturing industry, higher properties are requested for cutting tools, grinding tools and wear parts, such as the higher hardness, the better wearing resistance, the longer service life. Therefore, super-hard materials are gradually developed to achieve low density, low friction coefficient, low cost et al. Due to the boride material possesses excellent hardness and wearing resistance, it shows excellent performance as the production of cutting tools and grinding tools. Consequently, the research and development of super-hard boride material have attracted much attention.
     In boride material, ternary metal boride AlMgB14has beed widely investigated due to its advantages of high hardness and low friction coefficient. Bulk crystalline materials prepared by high-temperature sintering of powder are generally used in previous investigation. However, in practical application, the thin film material plays an important role in the national economy in many fields. This is because the thin films can be attached to the surface of the complex tools by using fewer amounts and consequently endued the substrate material with new properties. On the other hand, due to the characteristics of high strength, high toughness and strong corrosion resistance of the amorphous materials, it has the good performance in many complex and harsh work environment. Therefore, amorphous Al-Mg-B thin film can further improve the performance, and promote the research and development of ternary metal boride (XYB14). However, the study of deposition process and hardening mechanism is still lack, which constrains performance optimization of the amorphous Al-Mg-B thin film materials and further development and application.
     To address this problem, in this present work, the magnetron sputtering technology and multi-target sputtering scheme are employed to prepare amorphous Al-Mg-B thin films. The process parameters, including the sputtering power, deposition temperature, deposition pressure and negative bias, were optimized. The critical proress parameters which could affect the film properties were analyzed. It was found out that the hardness of the films increases at first and then decrease with the increase in boron sputtering power but the surface roughness and friction coefficient of the film decreased gradually; the hardness of the film increased and the friction coefficient decreased with the increase in deposition temperature and deposition pressure; the hardness of films increased firstly and then decreased with the increase in negative bias. In the case of composition optimization, the highest hardness37.1GPa appeares at a composition of boron93.1at.%, while the friction coefficient was only0.15. On the other hand, amorphous Al-Mg-B thin film with a similar composition as that of crystalline AlMgB]4material has a comparative hardness comparing with crystal AlMgB14material (28GPa), the nano-hardness was31.1GPa. Moreover, the optimized deposition conditions corresponding to this film are deposition temperature600℃, deposition pressure0.9Pa. and negative bias voltage80V.
     Based on these results, high performance Al-Mg-B amorphous films were deposited on the surface of YG6X cemented carbide cutting tools by applying these optimized deposition conditions. The film shows relatively high bond strength with the YG6X alloy. The hardness of YG6X was44.6GPa and the friction coefficients was0.11. Moreover, he coated cutting tool shows better cutting performance.
     According to the deposition and characterization results, the hardening mechanism of Al-Mg-B amorphous film was analyzed. It was suggested that the short-range orderd Bl2icosahedron structure in the crystalline materials was reserved in the amorphous film, and the existence of this structure dominantes the hardness of the amorphous film. This suggestion was first demonstrated by first principle simulation of the hardness of AlMgB14and a-B. The determinant effect of B12icosahedron structure on the hardness was elucidated by electronic structure simulation. Then, the Al-Mg-B amorphous films were doped by four different elements. It was found out that the amorphous Al-Mg-B films doped by Ti and Si still have a high hardness, and B12icosahedron still exists with a steady state. However, the doping of Cr and N blocked or damaged the formation and existence of B12icosahedron, and. hence, the mechanical performance of Al-Mg-B films was decreased. This result further confirms the role of B12icosahedron structure in the high hardness of Al-Mg-B amorphous films.
     According to the effect of B12icosahedron structure on the high hardness of Al-Mg-B amorphous films, elements that can stabilized the B12icosahedron structure can be selected by doping. Then, a [cluster](connecting atoms) model can be used for developing new metal borides materials with high performance.
     The results of this work provide a reference of deposition proress for industrial manufacture of coated cutting tools. Moreover, they can promote the development of new metal borides materials with high performance.
引文
[1]马廷灿,冯瑞华,姜山,等.美国能源部未来工业材料研究进展[J].新材料产业,2007,(10):45-50.
    [2]Jiang X, Zhao J J, Wu A M, et al. Mechanical and electronic properties of B12-based ternary crystals of orthorhombic phase [J]. Journal of Physics:Condensed Matter, 2010,22(31):1-8.
    [3]Ma Y Z, Charles T P, Zou G T, et al. High-pressure high-temperature X-ray diffraction of β-boron to 30 GPa [J]. Physical Review. B,2003,67(17):174116-174121.
    [4]Giese Jr R F, Economy J, Matkovich V I. Interstitial derivatives of β boron [J].Zeitschrift fur Kristallographie,1965,122(1-2):144-147.
    [5]Brazhkin V V, Taniguichi T, Akaishi M, et al. Fabrication of β-boron by chemical-reaction and melt-quenching methods at high pressures [J].Journal of Materials Research,2004,19(6):1643-1648.
    [6]Sanz D N, Loubeyre P, Mezouar M. Equation of state and pressure induced amorphization of β-Bboron from X-ray measurements up to 100 GPa [J]. Physical Review Letters, 2002,89(24):245501-245504.
    [7]Larbalestier D C, Cooley L D, Rikel M 0, et al. Strongly linked current flow in polycrystalline forms of the new superconductor MgB; [J].Nature, 2001,410(6825):186-189.
    [8]Liu A Y, Mazin I I, Kortus J. Beyond Eliashberg superconductivity in MgB2: anharmonicity, two-phonon scattering, and multiple gaps [J]. Physical Review Letters, 2001,87(8):087005-1-087005-4.
    [9]Kenji U, Michio N. As-grown superconducting MgB2 thin films prepared by molecular beam epitaxy [J]. Applied Physics Letters,2001,79(13):2046-2048.
    [10]Paranthaman M, Cantoni C, Zhai H Y, et al. Superconducting MgB; films via precursor postprocessing approach [J].Applied Physics Letters,2001,78(23):3669-3671.
    [11]Buzea C, Yamashita T. Review of the superconducting properties of MgB2 [J]. Superconductor Science and Technology,2001,14(11):115-146.
    [12]Kasper J S, Vlasse M, Naslain R. The a-AlB12 structure [J]. Journal of Solid State Chemistry,1977,20(3):281-285.
    [13]Vlasse M, Naslain R, Kasper J S, et al. Crystal structure of tetragonal boron related to a-AlB12 [J]. Journal of Solid State Chemistry,1979,28(3):289-301.
    [14]Higashi Ⅰ. Crystal Chemistry of α-AlB12 and γ-AlB12 [J]. Journal of Solid State Chemistry,2000,154(1):168-176.
    [15]Okada S, Atoda T. Growth condition, oxidation, hardness and density of alpha-AlB12 single crystal [J].Journal of the Ceramic Society of Japan,1980,88(9):547-553.
    [16]Bairamashvili I A, Kekelidze L I, Golikova 0 A, et al. The preparation of α-AlB12 and AlMgB14 samples and an investigation of their electrothermal properties [J].Journal of the Less Common Metals,1979,67(2):461-464.
    [17]郑学家.硼化合物生产与应用[M].北京:化学工业出版业,2007.
    [18]全跃.硼及硼产品研究与进展[M].大连:大连理工大学出版社,2008.
    [19]郑学家.硼化合物手册[M].北京:化学工业出版社,2010.
    [20]许喆.磁控溅射法制备硼薄膜和硼纳米线[D].秦皇岛:燕山大学,2005.
    [21]Wakatsuki M, Ichinose K, Aoki T. Synthesis of polycrystalline cubic BN [J]. Materials Research Bulletin,1972,7 (9):999-1003.
    [22]Wentorf R H. Preparation of Semiconducting Cubic Boron Nitride [J]. Journal of Chemical Physics,1962,36(8):1990-991.
    [23]Jiang Q C, Wang H Y, Ma B X, et al. Fabrication of B4C particulate reinforced magnesium matrix composite by powder metallurgy [J]. Journal of Alloys and Compounds, 2005,386(1-2):177-181.
    [24]Champagne B, Angers R. Properties of hot-pressed B-B4C materials [J]. Mechanical Journal of the American Ceramic Society,1979,62(3-4):149-153.
    [25]Heian E M, Khalsa S K, Lee J W, et al. Synthesis of dense, high-defect-concentration B4C through mechanical activation and field-assisted combustion [J]. Journal of the American Ceramic Society,2004,87(5):779-783.
    [26]Matkovich V I, Economy J. Structure of MgAlB14 and a brief critique of structural relationships in higher borides [J].Acta Crystallographica B,1970,26(5):616-621.
    [27]Tian Y, Constant A, Lo C C H, et al. Microstructure evolution of Al-Mg-B thin films by thermal annealing [J]. Journal of Vacuum Science and Technology A, 2003,21 (4):1055-1063.
    [28]Higashi I, Ito T. Refinement of the structure of MgAlB14 [J]. Journal of the Less Common Metals,1983,92(2):239-246.
    [29]Cook B A, Harringa J L, Lewis T L, et al. A new class of ultra-hard materials based on AlMgBn [J].Scripta Materialia,2000,42(6):597-602.
    [30]Hilla J M, Johnston D C, Cook B A, et al. Magnetization study of the ultra-hard material MgAlB,4 [J].Journal of Magnetism and Magnetic Materials,2003,265(1):23-32.
    [31]Russell AM, Cook B A, Harringa J L, et al. Coefficient of thermal expansion of AlMgB14 [J]. Scripta Materialia,2002,46(9):629-633.
    [32]Lewis T L, Cook B A, Harringa J L, et al. Al12MgO4, Fe3O4, and FeB impurities in AlMgB14 [J]. Materials Science and Engineering A,2003,351 (1-2):117-122.
    [33]Roberts D J, Zhao J F, Munir Z A. Mechanism of reactive sintering of MgAlB14 by pulse electric current [J]. International Journal of Refractory Metals and Hard Materials, 2009,27(3):556-563.
    [34]Okada S, Shishido T, Mori T, et al. Crystal growth of MgAlB14-type compounds using metal salts and some properties [J]. Journal of Alloys and Compounds, 2008,458:297-301.
    [35]Tian Y, Bastawros A F, Lo C C H, et al. Superhard self-lubricating AlMgB films for microelectromechanical devices [J]. Applied Physical Letters, 2003,83(14):2781-2783.
    [36]Cherukuri R, Womack M, Molian P, et al. Pulsed laser deposition of AlMgB14 on carbide inserts for metal cutting [J]. Surface and Coatings Technology, 2002,155(2-3):112-120.
    [37]Yan C, Zhou Z F, Chong Y M, et al. Synthesis and characterization of hard ternary AlMgB composite films prepared by sputter deposition [J].Thin Solid Films, 2010,518(19):5372-5377.
    [38]Brenner D W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films [J]. Physical Review B,1990,42(15):9458-9471.
    [39]Hampden-Smith M J, Kodas T T. Chemical vapor deposition of metals:Part 1. An overview of CVD processes [J]. Chemical Vapor Deposition,1995,1(1):8-23.
    [40]Kong J, Cassell A M, Dai H J. Chemical vapor deposition of methane for single-walled carbon nanotubes [J]. Chemical Physics Letters,1998,292(46):567-574.
    [41]Yugo S, Kanai T, Kimura T, et al. Generation of diamond nuclei by electric field in plasma chemical vapor deposition [J]. Applied physical Letters, 1991,58(10):1036-1038.
    [42]Ci L J, Ryu Z Y, Jin-Phi 11ipp N Y, et al. Carbon nanotubes/SiC whiskers composite prepared by CVD method [J]. Diamond and Related Materials,2007, (16):531-536.
    [43]Reina A, Jia X T, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition [J].Nano Letters,2009,9(1):30-35.
    [44]Wu J J, Liu S C. Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition [J]. Advanced Materials,2002,14(3):215-218.
    [45]Lyu S C, Zhang Y, Lee C J. Low-temperature growth of ZnO nanowire array by a simple physical vapor-deposition method [J]. Chemistry of Materials,2003,15(17):3294-3299.
    [46]Narayan, J, Tiwari, P, Chen, X, et al. Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition [J].Applied Physics Letters, 1992,61 (11):1290-1292.
    [47]Wang J, Huang H C, Kesapragada S V. Growth of Y-shaped nanorods through physical vapor deposition [J]. Nano Letters,2005,5(12):2505-2508.
    [48]Colligon J S. Physical vapor deposition [J].Pergamon Materials Series, 1999,2:225-253.
    [49]Sproul W D. Physical vapor deposition tool coatings [J]. Surface and Coatings Technology,1996,81 (1):1-7.
    [50]Yang J L, An S J, Park W I, et al. Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition [J].Advanced Materials, 2004,16(18):1661-1664.
    [51]Wu X H, Kapolnek D, Tarsa E J, et al. Nucleation layer evolution in metal-organic chemical vapor deposition grown GaN [J]. Applied Physics Letters, 1996,68(10):1371-1373.
    [52]Wu X H, Brown L M, Kapolnek D, et al. Defect structure of metal-organic chemical vapor deposition-grown epitaxial (0001) GaN/Al2O3 [J]. Journal of Applied Physics, 1996,80(6):3228-3237.
    [53]Liu Y, Gorla C R, Liang S, et al. Ultraviolet detetors based on epitaxial ZnO films grown by MOCVD [J]. Journal of Electronic Materials,2000,29(1):69-74.
    [54]E. Kuphal. Liquid phase epitaxy [J]. Applied Physics A,1991,52(6):380-409.
    [55]Rode D L. Isothermal diffusion theory of LPE:GaAs, GaP, bubble garnet [J]. Journal of Crystal Growth,1973,20(1):13-23.
    [56]Nishinaga T, Nakano T, Zhang S A. Epitaxial lateral overgrowth of GaAs by LPE [J]. Japanese Journal of Applied Physics,1988,27 (6):964-967.
    [57]Hsieha J J. Thickness and surface morphology of GaAs LPE layers grown by supercooling, step-cooling, equilibrium-cooling, and two-phase solution techniques [J]. Journal of Crystal Growth,1974,27:49-61.
    [58]Marshall E D, Zhang B, Wang L C, et al. Nonalloyed ohmic contacts to n-GaAs by solid-phase epitaxy of Ge [J].Journal of Applied Physics,1987,62(3):942-947.
    [59]Strane J W, Stein H J, Lee S R, et al. Metastable SiGeC formation by solid phase epitaxy [J]. Applied Physics Letters,1993,63(20):2786-2788.
    [60]Cherief N, DAnterroches C, Cinti R C, et al. Semiconducting silicide-silicon heterojunction elaboration by solid phase epitaxy [J]. Applied Physics Letters, 1989,55(16):1671-1673.
    [61]Lulli G, Merli P G, Antisari M V. Solid-phase epitaxy of amorphous silicon induced by electron irradiation at room temperature [J]. Physical Review B, 1987,36(15).-8038-8042.
    [62]Hibino'H, Shimizu N, Shinoda Y. Mesh pattern of Ge islands grown using solid phase epitaxy [J]. Journal of Vacuum Science and Technology A,1993,11(5):2458-2462.
    [63]Wang Z, Qian X F, Yin J, et al. Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route [J]. Langmuir, 2004,20(8):3441-3448.
    [64]Lange F F. Chemical solution routes to single-crystal thin films [J]. Science, 1996,273 (5277):903-909.
    [65]Schwartz R W. Chemical Solution deposition of perovskite thin films [J].Chemistry of Materials,1997,9(11):2325-2340.
    [66]Schwartz R W, Schneller T, Waser R. Chemicalsolution deposition of electronic oxide films [J].Comptes Rendus Chimie,2004,7(5):433-461.
    [67]Dai Z R, Pan Z W, Wang Z L Novel nanostructures of functional oxides synthesized by thermal evaporation [J]. Advanced Functional Materials,2003,13(1):9-24.
    [68]Cantalini C, Wlodarski W, Sun H T, et al. NO2 response of In2O3 thin film gas sensors prepared by sol-gel and vacuumthermalevaporation techniques [J]. Sensors and Actuators B,2004,65(1-3):101-104.
    [69]Lozzi L, Ottaviano L, Passacantando M, et al. The influence of air and vacuumthermal treatments on the NO2 gas sensitivity of WO3 thin films prepared by thermal evaporation [J].Thin Solid Films,2001,391 (2):224-228.
    [70]Cantalini C, Sun H T, Faccio M, et al. NO; sensitivity of WO3 thin film obtained by high vacuum thermal evaporation [J]. Sensors and Actuators B,1996,31(1-2):81-87.
    [71]Ikeda T, Satoh H. Phase formation and characterization of hard coatings in the Ti-Al-N system prepared by the cathodic arc ion plating method [J].Thin Solid Films, 1991,195(1-2):99-110.
    [72]Mattox D M. Fundamentals of Ion Plating [J]. Journal of Vacuum Science and Technology, 1973,10(1):47-52.
    [73]Li M S, Zhang S J, Huang J, et al. Micro-structure and hardness of (Ti, Al, Nb)N coatings prepared under different negative pulse bias by arc ion plating [J]. Appl ied Mechanics and Materials,2011,109:141-144.
    [74]Huang J H, Tsai Z E, Yu G P. Mechanical properties and corrosion resistance of nanocrystalline ZrNxOx coatings on AISI 304 stainless steel by ion plating [J]. Surface and Coatings Technology,2008,202(10):4992-5000.
    [75]Martin P J, Macleod H A, Netterfield R P, et al. Ion-beam-assisted deposition of thin films [J]. Applied Optics,1983,22(1):178-184.
    [76]Smidt F A. Use of ion beam assisted deposition to modify the microstructure and properties of thin films [J]. International Materials Reviews,1990,35(2):61-128.
    [77]Terrasi A, Ravesi S, Marcellino C, et al. Ion-beam-assisted deposition of Al films on Si [J]. Journal of Vacuum Science and Technology,1995,13 (6):2827-2831.
    [78]Look D C, Reynolds D C, Litton C W, et al. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy [J].Applied Physics Letters, 2002,81 (10):1830-1833.
    [79]Goldstein L, Glas F, Marzin J Y, et al. Growth by molecular beam epitaxy and characterization of InAs/GaAs strained-layer superlattices [J]. Applied Physics Letters,1985,47(10):1099-1101.
    [80]Praseuth J P, Goldstein L, Henoc P, et al. Investigation of crystalline and optical properties of Al0.48In0.52 as grown by molecular-beam expitaxy [J]. Journal of Applied Physics,1987,61(1):215-219.
    [81]Kaidashev E M, Lorenz M, Wenckstern H V, et al. High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition [J]. Applied Physics Letters,2003,82 (22):3901-3904.
    [82]Mass J, Bhattacharya P, Katiyar R S. Effect of high substrate temperature on Al-doped ZnO thin films grown by pulsed laser deposition [J]. Materials Science and Engineering B,2004,103(1):9-15.
    [83]Sun X W, Kwok H S. Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition [J]. Journal of Applied Physics,1999,86(1):408-412.
    [84]Hitoshi T, Hidekazu T, Tomoji K. Formation of artificial BaTi(VSrTi03 superlattices using pulsed laser deposition and their dielectric properties [J]. Applied Physics Letters,1994,65 (15):1970-1972.
    [85]Behrisch R. Sputtering of solids with neutrons [J]. Topics in Applied Physics, 1983,52:179-229.
    [86]Sigmund P. Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets [J]. Physical Review,1969,184(2):383-419.
    [87]Biersack J P, Eckstein W. Sputtering studies with the monte carlo program TRIM. SP [J]. Applied Physics A,1984,34(2):73-94.
    [88]田民波.薄膜技术与薄膜材料[M].北京:清华大学出版社,2006.
    [89]Careia P F, McLean R S, Re illy M H, et al. Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering [J].Applied Physics Letters, 2003,82(7):1117-1119.
    [90]Minami T, Nanto H, Takata S. Highly Conductive and transparent aluminum doped zinc oxide thin films prepared by rf magnetron sputtering [J]. Japanese Journal of Applied Physics,1984,23:280-282.
    [91]Kelly P J, Arnell R D. Magnetron sputtering:A review of recent developments and applications [J]. Vacuum,2000,56(3):159-172.
    [92]Vladimir K, Karol M, Jochen M, et al. A novel pulsed magnetron sputter technique utilizing very high target power densities [J].Surface and Coatings Technology, 1999,122(2-3):290-293.
    [93]Sato H, Minami T, Takata S, et al. Transparent conducting p-type NiO thin films prepared by magnetron sputtering [J].Thin Solid Films,1993,236(1-2):27-31.
    [94]储志强.国内外磁控溅射靶材的现状及发展趋势[J].金属材料与冶金工程,2011,39(4):44-49.
    [95]岳红云.柔性衬底薄膜光伏电池相关材料制备及性能[D].大连:大连理工大学,2011.
    [96]SimorM, FialaA. Corrosion protection of a thin aluminum layer deposited on polyester [J]. Surface and Coatings Technology,2007,201(18):7802-7812.
    [97]Fang G J, Li D J, Yao B L. Fabrication and characterization of transparent conductive Zn0:Al thin films prepared by direct current magnetron sputtering with highly conductive ZnO (ZnAl2O4) ceramic target [J]..journal of Crystal Growth, 2003,247 (3-4):393-400.
    [98]Lu J G, Ye Z Z, Zeng Y J, et al. Structural, optical, and electrical properties of (Zn, Al)0 films over a wide range of compositions [J]. Journal of Applied Physical, 2006,100(7):073714-073724.
    [99]Schuler T, Aegerter M A. Optical, electrical and structural properties of sol gel ZnO:Al coatings [J].Thin solid films,1999,351(1-2):125-131.
    [100]Jin Z C, Hamberg 1, Granqvist C G. Optical properties of sputter-deposited ZnO:Al thin films [J]. Journal of Applied Physics,1988,64 (10)-.5117-5131.
    [101]Yang T L, Zhang D H, Ma J, et al. Transparent conducting Zn0:Al films deposited on organic substrates deposited by r. f. magnetron-sputtering [J].Thin solid films, 1998,326(1-2):60-62.
    [102]Zafar S, Ferekides C S, Morel D L. Characterization and analysis of ZnO:Al deposited by reactive magnetron sputtering [J].Journal of Vacuum Science and Technology A, 1995,13(4):2177-2182.
    [103]Kim H, Gilmore C M, Pique A, et al. Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices [J]. Journal of Applied Physics,1999,86 (11).-6451-6462.
    [104]Wu C C, Wu C I, Sturm J C, et al. Surface modification of indium tin oxide by plasma treatment:An effective method to improve the efficiency, brightness, and rel iability of organic light emitting devices [J]. Applied Physics Letters, 1997,70(11):1348-1351.
    [105]Kim J S, Granstrom M, Friend R H, et al. Indium-tin oxide treatments for single-and double-layer polymeric light-emitting diodes:The relation between the anode physical, chemical, and morphological properties and the device performance [J]. Journal of Applied Physics,1998,84(12):6859-6871.
    [106]Jong M P, IJzendoorn L J, Voigt M J A. Stability of the interface between indium-tin-oxide and poly (3,4-ethylenedioxythiophene)/poly (styrenesulfonate) in polymer light-emitting diodes [J]. Applied Physics Letters,2000,77(14):2255-2258.
    [107]Park Y, Choong V, Gao Y, et al. Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy [J]. Applied Physics Letters, 1996,68(19):2699-2702.
    [108]Sugiyama K, Ishii H, Ouchi Y, et al. Dependence of indium-tin-oxide work function on surface cleaning method as studied by ultraviolet and x-ray photoemission spectroscopies [J].Journal of Applied Physics,2000,87 (1):295-299.
    [109]吴丽君,韩雪,夏慧,等.光记录介质反射膜用铝合金薄膜及其溅射靶材[J].稀有金属,1997,21(5):379-383.
    [110]Polini R, D'Antonio P, Traversa E. Diamond nucleation from the gas phase onto cold-worked Co-cemented tungstencarbide [J].Diamond and Related Materials, 2003,12(3-7):340-345.
    [111]温培刚,颜悦,张官理,等.磁控溅射沉积工艺条件对薄膜厚度均匀性的影响[J].航空材料学报,2007,27(3):66-68.
    [112]李学丹,万学英,姜祥祺,等.真空沉积技术[M].杭州:浙江大学出版社,1994.
    [113]Erdemir A. Nanolubricants [M]. Wiley Online Library,2008.
    [114]邹上荣,王海燕,耿梅艳.工艺参数对直流反应磁控溅射Zn0:Al薄膜沉积速率的影响[J].真空,2009,46(2):45-48.
    [115]Thornton, John A. Influence of substrate temperature and deposition rate on structure of thick sputtered Cu coatings [J]. Journal of Vacuum Science and Technology, 1975,12(4):830-835.
    [116]陈响明,易丹青,王以任.基体表面酸洗处理对硬质合金涂层组织和性能的影响[J].硬质合金,2009,26(4):223-228.
    [117]Lowther J E. Possible ultra-hard materials based upon boron icosahedra [J]. Physica B,2002,322(1-2):173-178.
    [118]Kolpin H, Music D, Henkelman G, et al. Phase stability and elastic properties of XMgBn studied by ab initio calculations (X=A1, Ge, Si, C, Mg, Sc, Ti, V, Zr, Nb, Ta, Hf) [J].Physical Review B,2008,78:1-6.
    [119]Lee Y, Harmon B N. First principles calculation of elastic properties of AlMgBu [J].Journal of Alloys and Compounds,2002,338(1-2):242-247.
    [120]Clark S J, Segall M D, Pickard C J, et al. First principles methods using CASTEP [J].Zeitschrift fur Kristallographie,2005,220(5-6):567-570.
    [121]Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Physical Review Letters,1996,77:3865-3868.
    [122]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Physical Review B,1990,41 (11):7892-7895.
    [123]Nelmes R J, Loveday J S, Allan D R, et al. Neutron-and X-ray-diffraction measurements of the bulk modulus of boron [J].Physical Review B,1993,47(13):7668-7673.
    [124]Hill R. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society A,1952,65(5):349-354.
    [125]Muthu D V S, Chen B, Cook B A, et al. Effects of sample preparation on the mechanical properties of AlMgB14 [J].High Pressure Research,2008,28(1):63-68.
    [126]Segall M D, Shah R, Pickard C J, et al. Population analysis of plane-wave electronic structure calculations of bulk materials [J]. Physical Review B, 1996,54(23):16317-16320.
    [127]Pauling L. General Chemistry [M].3rd ed. San Francisco:Freeman,1970.
    [128]Wade K. Structural and bonding patterns in cluster chemistry [J]. Advances in Inorganic Chemistry Radiochem,1976,18:1-16.
    [129]Longuet-Higgins H C, Roberts M de V. The electronic structure of an icosahedron of boron atoms [J]. Proceedings the Royalof Society A,1955,230(1180):110-119.
    [130]Blanco M A, Francisco E, Luana V. GIBBS:Isothermal-isobaric thermodynamics of sol ids from energy curves using a quasi-harmonic Debye model [J].Computer Physics Communications,2004,158(1):57-72.
    [131]Guo H Z, Chen X R, Cai L C, et al. Structural and thermodynamic properties of MgB2 from first-principles calculations [J]. Solid State Communications, 2005,134(12):787-790.
    [132]Hao Y J, Chen X R, Cui H L, et al. First-principles calculations of elastic constants of c-BN [J].Physica B,2006,382:118-122.
    [133]Wada Y; Yap Y K, Yoshimura M, et al. The contro] of B-N and B-C bonds in BCN films synthesized using pulsed laser deposition [J]. Diamond and Related Materials, 2000,9(3-6):620-624.
    [134]Linss V, Rodilb S E, Reinkec P, et al. Bonding characteristics of DC magnetron sputtered B-C-N thin films investigated by Fourier-transformed infrared spectroscopy and X-ray photoelectron spectroscopy [J].Thin Solid Films,2004,467 (1-2):76-87.
    [135]Dong C, Wang Q, Qiang J B, et al. From clusters to phase diagrams:composition rules of quasicrystals and bulk metallic glasses [J]. Journal of Physics D:Appl ied Physics, 2007,40(15):273-291.
    [136]Chen J X, Wang Q, Wang Y M, et al. Cluster formulae for alloy phases [J]. Philosophical Magazine Letters,2010,90(9):683-688.
    [137]张杰.Cu-Ni基多元耐蚀合金的稳定国溶体团簇结构模型及成分设计[D].大连:大连理工大学,2011.
    [138]Han G, Qiang J B, Li F W, et al. The e/a values of ideal metallic glasses in relation to cluster formulae [J]. Acta Materialia,2011,59(15):5917-5923.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700