四氢喹啉类光敏染料用于染料敏化太阳能电池的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在染料敏化太阳能电池体系中,最核心的部分是吸附了单层光敏染料的纳米多孔半导体电极。光敏染料起到吸收太阳光并将激发态电子转移到纳米半导体导带的作用,同时产生的染料氧化态又能快速的从电解质(I_3~-/I~-)中得到电子而被还原至基态。光敏染料是染料敏化太阳能电池获得高光电转换效率和长寿命的决定因素之一。
     本论文设计合成了13个以取代四氢喹啉为供电子基、氰基丙烯酸基或氰乙烯基磷酸基为吸电子基并通过不同π-桥基相连的电子推拉型光敏染料,并利用质谱、核磁共振氢谱对这些化合物进行结构表征,研究了光敏染料的光物理、电化学等性质,并将其应用于染料敏化太阳能电池,系统地考察了光敏染料结构与电池性能之间的关系。同时,本论文还对2个模型化合物的分子内电荷转移性质进行了实验和理论方面的研究,并将其结果用于解释光敏染料结构与性能之间的关系。
     光敏染料的结构与其光物理、电化学性质具有密切关系。通过在π-桥基中引入更多的噻吩基或乙烯基结构单元,增大了染料的共轭体系,使其吸收光谱发生红移和拓宽,增强了染料对光的吸收能力,而苯基桥基的引入对染料吸收光谱的影响较小。同时发现,光敏染料中多个噻吩基或者乙烯基结构单元的引入使得染料在TiO-2表面的聚集趋势增大,导致染料在TiO_2表面吸收光谱的蓝移。光敏染料的基态和激发态氧化还原电位同时满足了染料激发态电子向TiO_2导带注入和染料还原的电位要求。噻吩基和乙烯基结构单元会导致染料基态氧化还原电位的升高,降低其与电解质中I_3~-/I~-电对的电位差,从而降低染料被还原的驱动力。与氰基丙烯酸基相比,氰乙烯基磷酸基作为吸电子基更能升高染料的激发态氧化还原电位,从而使得激发态染料分子具有更高的电子注入驱动力。
     四氢喹啉衍生物作为染料敏化太阳能电池光敏染料,展现出良好的电池性能。研究发现,进行TiO_2膜的染料敏化时所用的溶剂和添加剂的用量会对最终的电池性能产生较大的影响。由于光物理和电化学性质的改变,光敏染料的结构变化对电池的性能也会产生重要影响。对本论文所合成的大部分染料来说,乙烯基作为π-桥基的组成部分对电池的开路电压、短路电流密度和光电转换效率都会产生不利的影响。π-桥基中较多噻吩基结构单元的存在也会导致电池开路电压的降低,但由于噻吩基拓宽了染料的光谱响应范围,进而提高短路电流密度,因此光敏染料中含有适当数目的噻吩基有助于获得更好的光电转换效率。经过优化和对比测试,C2-2染料敏化的太阳能电池在获得了最好电池性能,在模拟太阳光(AM 1.5,100 mW/cm~2)下,总的光电转换效率可达4.53%,短路电流密度为12.00 mA/cm~2,开路电压为597 mV,填充因子0.63,在同样条件下,以N3染料作为光敏染料的太阳能电池的光电转换效率为6.16%。
     实验和理论研究结果显示,某些含噻吩基和乙烯基C=C双键的模型化合物的激发念具有明显的分子内电荷转移性质,而且它们的激发态构型为扭转的分子内电荷转移念。构型的扭转导致这类化合物的激发态通过振动驰豫去活化的可能性增大,减少了类似结构染料的激发态电子向TiO_2导带注入的概率,从而可能会对这些含乙烯基桥基的染料在染料敏化太阳能电池中的应用性能产生不利的影响。
At the heart of the dye-sensitized solar cell (DSSC) system is a mesoporous oxide layer composed of nanometer-sized particles anchored by a monolayer of the charge transfer dye. Sunlight is harvested by a dye sensitizer, photo-excitation of the dye results in the injection of electrons into the conduction band of the oxide. The dye is regenerated by the electrolyte, such as an ionic liquid containing most frequently the iodide/triiodide couple as a redox system. Dye is one of the most important parts for DSSCs getting higher efficiency and longer lifetime.
     In this thesis, thirteen novel donor acceptorπ-conjugated (D-π-A) metal-free organic dyes have been engineered and synthesized as sensitizers for the application in DSSCs. The electron-donating moieties are substituted tetrahydroquinoline and the electron-withdrawing parts are cyanoacrylic acid group or cyanovinylphosphonic acid group. Differentπ-conjugation moieties (thienyl, thienylvinyl, dithieno[3, 2-b; 2′, 3′-d] thienyl and phenyl, etc) are introduced to the molecules and serve as electron spacers. The structures of the dyes have been characterized by mass spectra (MS) and proton nuclear magnetic resonance (~1H NMR) technology. The photophysical and electrochemical properties of the dyes were studied. DSSCs were constructed based on these dyes and detailed relationship between dye structures and solar cell performances has been investigated. At the same time, two model compounds were synthesized for the intromolecular charge transfer (ICT) study. The findings are used to interpret the relationship between dye structures and solar cell performances.
     The change of dye structures has important effect on the photophysical and electrochemical properties of the sensitizers. The absorption band of a dye can be red-shifted and broadened by the introduction of a largeπ-conjugation spacer, such as more thienyl or vinyl moieties. This will enhance the light absorption ability of a dye, while the phenyl moiety has lower effect on the absorption character. The thienyl or vinyl in theπ-conjugation spacer will enhance aggregation of a dye on TiO_2 surface and results in the blue-shift of the absorption band. Redox potentials of ground and excited states of the dyes match well with that of I_3~-/I~- and TiO_2 conduction band, respectively. Introduction of more thienyl or vinyl moieties will shift the ground state redox potential of a dye negatively, and results in a reduced gap between that and redox potential of I_3~-/I~-. This might reduce the efficiency of regeneration of the oxidized dye by I~-. A dye with cyanovinylphosphonic acid as anchoring group has more negative excited state redox potential than a cyanoacrylic acid group containing one, and thus has more efficient electron injection from the excited dye to the conduction band of TiO_2.
     The tetrahydroquinoline derivates show well performance in DSSC applications. Dye bath solvents and coadsorbent for TiO_2 sensitization influence the solar cell performances. As the result of changing of photophysical and elecrtrochemical properties, structural change of the dyes has important effect on the performances of DSSCs based on these dyes. For most cases, a dye containing the vinyl moiety inπ-conjugation spacer gives worse solar cell performance, such as lower short-circuit current density (Jsc), open-circuit voltage (Voc) and the overall solar-to-electrical energy conversion efficiency (η). The thienyl moiety in a dye molecule also leads to lower Voc value of the DSSC, but a higherηvalue could be obtained as the result of broadened spectral response and higher J_(SC). A maximumηvalue of 4.53% was achieved under simulated AM 1.5 irradiation (100 mW/cm~2) with a DSSC based on C2-2 dye (Voc= 597 mV, Jsc=12.00 mA/cm~2, FF=0.63). Under the same conditions, theηvalue of a DSSC based on N3 dye is 6.16%.
     From the experimental and theoretical investigations, it is found that the excited states of model compounds containing thienyl and vinyl moieties have obvious ICT character. The optimized lowest energy geometry is a twisted intramolecular charge transfer (TICT) structure because of the coexistence of thienyl and vinyl moieties. Geometrical twist in the excited state will increase the probability of de-excitation through vibration relaxation pathway, and thus reduce the probability of electron injection to the TiO_2 conduction band and lower the solar cell performance.
引文
[1] Renewables in global energy supply. International energy agency, 2007.
    [2] 中国光伏产业发展研究报告,2004.
    [3] 王革华主编.新能源概论.北京:化学工业出版社,2006.
    [4] 雷永泉主编.二十一世纪新材料丛书—新能源材料.天津:天津大学出版社,2002.
    [5] 施敏主编.现代半导体器件物理.北京:科学出版社,2001.
    [6] http://www.newport.com/Introduction-to-Solar-Radiation/411919/1033/catalog.aspx.
    [7] http://www.dur.ac.uk/~dph0www5/aml_5.html.
    [8] 王忠胜.染料敏化TiO_2纳米晶太阳能电池的光电化学性质研究:(博士学位论文).北京:北京大学,2001.
    [9] Green M A. Photovoltaic principles. Physica E, 2002, 14:11-17.
    [10] Goetzberger A, Hebling C, Schock H W. Photovoltaic materials, history, status and outlook. Materials Science and Engineering R., 2003, 40:1-46.
    [11] Becquerel A E. Recherches sur les effets de la radiation chimique de la lumiere solaire, au moyen des courants e1ectriques. C. R. Acad, Sci., Paris, 1839, 9:561-567.
    [12] Adams W G, Day R E. Proc. Roy. Soc. London A, 1877, 25:113.
    [13] Fritts C E. Proc. Am. Assoc. Adv. Sci., 1883, 33:97.
    [14] Firtts C E. Am. J. Sci., 1883, 26:465.
    [15] Ohl R S. Light-sensitive electric device. US Patent No. 2402622, 1941.
    [16] Ohl R S. Light-sensitive device including silicon. US Patent No. 2443542, 1941.
    [17] Chapin D M, Fullerand C S, Pearson G L. A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys., 1954, 25:676.
    [18] O'Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO_2 films. Nature, 1991, 353:737-740.
    [19] Gratzel M. Photoelectrochemical cells. Nature, 2001, 414:338-344.
    [20] http://www:nrel.gov/ncpv/thin_filrn/docs/kaz_best_research_cells.ppt.
    [21] 黄春晖,李富友,黄岩谊.光电功能超薄膜.北京:北京大学出版社,2001.
    [22] Moser J. Notizuber verstarkung photo-elektrischer strome durch optischer sensibilierung. Monatsh. Chem. 1887, 8:373.
    [23] Gerischer H, Tributsch H. Electrochemische untersuchungen zur spectraleu sensibilisierung von ZnO-einkristallen. Ber.Bunsen.Phys.Chem., 1968, 72:437-445.
    [24] Tributch H, Gerischer H. Elektrochemische untersuchungen uber den mechanismus der sensibilisierung und ubersensibilisierung an ZnO-einkristallen. Ber.Bunsen.Phys.Chem., 1969, 73:251-260.
    [25] Memming R. Faraday Discuss. Chem. Soc., 1974, 261-270.
    [26] Memming R, Schroppel F. Electron transfer reactions of excited ruthenium(Ⅱ) complexes in monolayer assemblies at the SnO_2-water interface. Chem. Phys. Lett., 1979, 62:207-210.
    [27] Memming R, Schroppel F, Bringrnann U. Sensitized oxidation of water by tris(2,2'-bipyridyl) ruthenium at SnO_2 electrodes. J. Electroanal. Chem., 1979, 100:307-318.
    [28] Kiwi J, Gratzel M. Projection, size factors, and reaction dynamics of colloidal redox catalysts mediating light induced hydrogen evolution from water. J. Am. Chem. Soc., 1979, 101:7214-7217.
    [29] Vlachopoulos N, Liska P, Gratzel Met al. Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films. J. Am. Chem. Soc., 1988, 110:1216-1220.
    [30] Liska P, Vlachopoulos N, Gratzel M et al. cis-Diaquabis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(Ⅱ) sensitizes wide band gap oxide semiconductors very efficiently over a broad spectral range in the visible. J. Am. Chem. Soc., 1988, 110:3686-3687.
    [31] Kavan L, Gratzel M. Nation modified TiO_2 electrodes: photoresponse and sensitization by Ru(Ⅱ)-bipyridyl complexes. Electrochimica Acta., 1989, 34:1327-1334.
    [32] Nazeerudin Md K, Kay A, Gratzel Met al. Conversion of light to electricity by cis-X_2Bis(2,2'- bipyridyl-4,4'-dicarboxylate)ruthenium(Ⅱ) charge-transfer sensitizers (X = CI~-, Br~-, I~-, CN~-, and SCN~-) on nanocrystalline TiO_2 electrodes. J. Am. Chem. Soc., 1993, 115:6382-6390.
    [33] Hagfeldt A, Gratzel M. Molecular photovoltaics. Acc. Chem. Res., 2000, 33: 269-277.
    [34] Gratzel M. Perspectives for dye-sensitized nanocrystalline solar cells. Prog. Photovolt. Res. Appl., 2000, 8:171-185.
    [35] Gratzel M. Molecular photovoltaics that mimic photosynthesis. Pure Appl. Chem., 2001, 73:459-467.
    [36] Gratzel M. Dye-sensitized solar cells. J. Photochem. Photobiol. C, 2003, 4: 45-153.
    [37] Gratzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photochem. Photobiol. A, 2004, 164:3-14.
    [38] Gratzel M. Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem., 2005, 44:6841-6851.
    [39] 韩宏伟.染料敏化二氧化钛纳米晶薄膜太阳能电池研究:(博士学位论文).武汉:武汉大学,2005.
    [40] McConnell R D. Assessment of the dye-sensitized solar cell. Renewable and Sustainable Energy Reviews, 2002, 6:273-293.
    [41] Wang H, Li H, Meng Q et al. Solid-state composite electrolyte LiI/3-hydroxypropionitrile/SiO_2 for dye-sensitized solar cells. J. Am. Chem. Soc., 2005, 127:6394-6401.
    [42] Xue B, Fu Z, Meng Q et al. Cheap and environmentally benign eMctrochemical energy storage and conversion devices based on AⅡ_3 electrolytes. J. Am. Chem. Soc., 2006, 128:8720-8721.
    [43] Dai S, Wang K, Weng Jet al. Design of DSC panel with efficiency more than 6%. Sol. Energy Mater. Sol. Cells, 2005, 85:447-455.
    [44] Liang M, Xu W, Li Z et al. New triphenylamine-based organic dyes for efficient dye-sensitized solar cells. J. Phys. Chem. C, 2007, 111:4465-4472.
    [45] Tan S, Zhai J, Fang H et al. Novel carboxylated oligothiophenes as sensitizers in photoelectric conversion systems. Chem. Eur. J., 2005, 11:6272-6276.
    [46] Chen Y, Li C, Wang X et al. Efficient electron injection due to a special adsorbing group's combination of carboxyl and hydroxyl: dye-sensitized solar cells based on new hemicyanine dyes. J. Mater.Chem., 2005, 15:1654-1661.
    [47] 李斌,邱勇.染料敏化纳米太阳能电池.感光科学与光化学,2000,18:336-347.
    [48] Gratzel M. The artificial leaf, molecular photovoltaics achieve efficient generation of electricity from sunlight. Coord. Chem. Rev., 1991, 111:167-174.
    [49] Hagfeldt A, Gratzel M. Light-induced redox reactions in nanocrystalline systems. Chem. Rev., 1995,95:49-68.
    [50] Shah A, Torres P, Tschamer R et al. Photovoltaic technology: the case for thin-film solar cells. Science. 1999. 285:692-698.
    [51] 唐笑,钱觉时,黄佳木.染料敏化太阳能电池中的光电极制备技术.材料导报,2006,20:97-103.
    [52] Barbé C J, Arendse F, Gratzel Met al. Nanocrystalline titanium oxide electrodes for photovoltaic applications. J. Am. Ceram. Soc., 1997, 80:3157-3171.
    [53] Wang P, Zakeeruddin S M, Gratzel Met al. Enhance the performance of dye-sensitized solar cells by co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO_2 nanocrystals. J. Phys. Chem. B, 2003, 107:14336-14341.
    [54] Ma T, Kida T, Akiyama M et al. Preparation and properties of nanostructured TiO_2 electrode by a polymer organic-medium screen-printing technique. Electrochem. Commun., 2003, 5:369-372.
    [55] Ito S, Chen P, Gratzel M et al. Fabrication of screen-printing pastes from TiO_2 powders for dye-sensitized solar cells. Prog. Photovolt: Res. Appl., 2007, DOI: 10.1002/pip.768.
    [56] Cómez M M, Magnusson E, Olsson E et al. Nanocrystalline Ti-xoide-based solar cells made by sputter deposition and dye sensitization: efficiency versus film thickness. Sol. Energy Mater. Sol. Cells, 2000, 62:259-263.
    [57] Cómez M M, Olsson E, Hagfeldt A et al. High efficiency dye-sensitized nanocrystalline solar cells based on sputter deposited Ti oxide films. Sol. Energy Mater. Sol. Cells, 2000, 64:385-392.
    [58] Okuya M, Nakade K, Kaneko S. Porous TiO_2 thin films synthesized by a spray pyrolysis deposition (SPD) technique and their application to dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells, 2002, 70:425-435.
    [59] Lindstrom H, Magnusson E, Hagfeldt A et al. A new method for manufacturing nanostrnctured electrodes on glass substrates. Sol. Energy Mater. Sol. Cells, 2002, 73:91-101.
    [60] Mosaddeq-ru-Rahman Md, Krishna K K, Miki T et al. Investigation of solid state Pb doped TiO_2 solar cell. Sol. Energy Mater. Sol. Cells. 1997.48:123-130.
    [61] 杨蓉,王维波,敬炳文等.苯基磷酸联吡啶钌络合物敏化纳晶多孔 TiO_2薄膜电极光电性能研究.感光科学与光化学,1997,15:293-296.
    [62] 王艳芹,张莉,程虎民等.掺杂过渡金属离子的TiO_2复合纳米粒子光催化剂罗丹明B的光催化降解.高等学校化学学报,2000,21:958-960.
    [63] Wang Y, Cheng H, Hao Y et al. Preparation ,characterization and photoelectrochemical behaviors of Fe(Ⅲ) doped TiO_2 nanoparticles. J. Mater. Sci., 1999, 34:3721-3729.
    [64] Ma T, Akiyama M, Abe E et al. High-efficiency dye-sensitized solar cell based on a nitrogen-doped nanostructured titania electrode. Nano Lett., 2005, 5:2543-2547.
    [65] Zaban A, Chen S G, Chappel S et al. Bilayer nanoporous electrodes for dye sensitized solar cells. Chem. Comm., 2000, 22:2231-2232.
    [66] Wang Z S, Huang C H, Guang Y Y et al. A highly efficient solar cell made from a dye modified ZnO covered TiO_2 nanoporous electrode. Chem. Mater., 2001, 13:678-682.
    [67] Robertson N. Optimizing dyes for dye-sensitized solar cells. Angew. Chem. Int. Ed., 2006, 45:2338-2345
    [68] 梁茂,陶占良,陈军.染料敏化太阳能电池中的敏化剂.化学通报,2005,889-896.
    [69] Murakoshi K, Kano G, Wada Y et al. Importance of hinging states between photosensitizing molecules and the TiO_2 surface for efficiency in a dye-sensitized solar cell. J. Electroanal. Chem., 1995, 396:27-34.
    
    [70] Meyer T J, Meyer G J, Pfennig B W et al. Molecular-level electron transfer and excited state assemblies on surfaces on metal oxides and glass. Inorg. Chem., 1994, 33:3952-3964.
    
    [71] Anderson S, Constable E C, Dare-Edwards M P et al. Chemical modification of a titanium(IV) oxide electrode to give stable dye sensitisation without a supersensitiser. Nature, 1979, 280:571-573.
    
    [72]Amadelli R, Argazzi R, Bignozzi C A et al. Design of antenna-sensitizer polynuclear complexes. sensitization of titanium dioxide with [Ru(bpy)_2(CN)_2]_2Ru(bpy(COO)_2)_2~(2-). J. Am. Chem. Soc, 1990, 112, 7099-7103.
    
    [73]Nazeeruddin Md K, Pechy P, Gratzel M. Efficient panchromatic sensitization of nanocrystalline TiO_2 films by a black dye based on a trithiocyanato-ruthenimu complex. Chem. Commun., 1997, 1705-1706.
    
    [74]Nazeeruddin Md K, Pechy P, Gratzel M et al. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO_2-based solar cells. J. Am. Chem. Soc, 2001, 123:1613-1624.
    
    [75] Wang P, Zakeeruddin S M, Gratzel M et al. High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. Chem. Commun., 2002, 2972-2973.
    
    [76] Wang P, Zakeeruddin S M, Gratzel M et al. Molecular-scale interface engineering of TiO_2 nanocrystals: improving the efficiency and stability of dye-sensitized solar cells. Adv. Mater., 2003, 15:2101-2104.
    
    [77] Wang P, Zakeeruddin S M, Gratzel M et al. Stable new sensitizer with improved light harvesting for nanocrystalline dye-sensitized solar cells. Adv. Mater., 2004, 16:1806-1811.
    
    [78] Klein C, Nazeeruddin Md K, Gratzel M et al. Amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cells. Inorg. Chem., 2004,43:4216-4226.
    
    [79] Klein C, Nazeeruddin Md K, Gratzel M et al. Engineering of a novel ruthenium sensitizer and its application in dye-sensitized solar cells for conversion of sunlight into electricity. Inorg. Chem., 2005, 44:178-180.
    
    [80] Wang P, Klein C, Gratzel M et al. A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells. J. Am. Chem. Soc, 2005, 127:808-809.
    
    [81]Kuang D, Ito S, Gratzel M et al. High molar extinction coefficient heteroleptic ruthenium complexes for thin film dye-sensitized solar cells. J. Am. Chem. Soc, 2006, 128:4146-4154.
    
    [82] Nazeeruddin Md K, Wang Q, Gratzel M et al. DFT-INDO/S modeling of new high molar extinction coefficient charge-transfer sensitizers for solar cell applications. Inorg. Chem., 2006,45:787-797.
    
    [83]Kuang D, Klein C, Gratzel M et al. Ion Coordinating sensitizer for high efficiency mesoscopic dye-sensitized solar cells: influence of lithium ions on the photovoltaic performance of liquid and solid-state cells. Nano. Lett., 2006, 6:769-773.
    
    [84]Kuang D, Klein C, Gratzel M et al. High molar extinction coefficient ion-coordinating ruthenium sensitizer for efficient and stable mesoscopic dye-sensitized solar cells. Adv. Funct. Mater., 2007, 17:154-160.
    
    [85]Sauve G, Cass M E, Doig S J et al. High quantum yield sensitization of nanocrystalline titanium dioxide photoelectrodes with cis-dicyanobis(4,4'-dicarboxy-2,2'-bipyridine)osmium(II) or tris(4,4'- dicarboxy-2,2'-bipyndine)osmium(II) complexes. J. Phys Chem. B, 2000, 104:3488-3491.
    [86] Sauve G, Cass M E, Coia G et al. Dye sensitization of nanocrystalline titanium dioxide with osmium and rutheium polypyridyl complexes. J Phys. Chem. B, 2000, 104:6824-6836.
    
    [87] Argazzi R, Larramona G, Contado C et al. Preparation and photoelectrochemical characterization of a red sensitive osmium complex containing 4,4',4"-tricarboxy-2,2':6',2"-terpyridine and cyanide ligands. J. Photochem. Photobiol. A, 2004, 164:15-21.
    
    [88] Islam A, Sugihara H, Arakawa H et al. Dye sensitization of nanocrystalline titanium dioxide with square planar platinum(II) diimine dithiolate complexes. Inorg. Chem., 2001, 40:5371-5380.
    
    [89] Geary E A M, Yellowlees L J, Jack L A et al. Synthesis, structure, and properties of [Pt(II)(diimine) (dithiolate)] dyes with 3,3'-,4,4'-,and 5,5'-disubstituted bipyridyl: applications in dye-sensitized solar cells. Inorg. Chem., 2005, 44:242-250.
    
    [90] Georg M, Meyer G J. Diffusion-limited interfacial electron transfer with large apparent driving forces. J. Phys. Chem. B, 1999, 103:7671-7675.
    
    [91]Ferrere S, Gregg B A. Photosensitization of TiO_2 by [Fe"(2,2'-bipyridine-4,4'-dicarboxylic acid)_2(CN)_2]: band selective electron injection from ultra-short-lived excited States. J. Am. Chem. Soc, 1998, 120:843-844.
    
    [92]Ferrere S. New photosensitizers based upon [Fe(L)_2(CN)_2] and [Fe(L)_3] (L = substituted 2,2'-bipyridine): yields for the photosensitization of TiO_2 and effects on the band selectivity. Chem. Mater., 2000, 12:1083-1089.
    
    [93]Ferrere S. New photosensitizers based upon [Fe~(II)(L)_2(CN)_2] and [Fe~(II)L_3], where L is substituted 2,2'-bipyridme. Inorganica Chimica Acta, 2002, 329:79-92.
    
    [94]Alonso-Vante N, Nierengarten J F, Sauvage J P et al. Spectral sensitization of large-band-gap semiconductors (thin films and ceramics) by a carboxylated bis(1,10-phenanthroline)copper(I) complex. J. Chem. Soc, Dalton Trans., 1994, 1649-1654.
    
    [95]Koehorst R B M, Boschloo G K, Savenije T J et al. Spectral sensitization of TiO_2 substrates by monolayers of porphyrin heterodimers. J. Phys Chem. B, 2000, 104:2371-2377.
    
    [96]Cherian S, Wamser C C. Adsorption and photoactivity of tetra(4-carboxyphenyl)porphyrin (TCPP) on nanoparticulate TiO_2. J. Phys Chem. B, 2000, 104:3624-3629.
    
    [97] Ma T, Inoue K, Noma H et al. Effect of functional group on photochemical properties and photosensitization of TiO_2 electrode sensitized by porphyrin derivatives. J. Photochem. Photobiol. A, 2002, 152:207-212.
    
    [98]Odobel F, Blart E, Lagree M et al. Porphyrin dyes for TiO_2 sensitization. J. Mater. Chem. 2003, 3:502-510.
    
    [99]Komori T, Amao Y. Dye-sensitized solar cell with the near-infrared sensitization of aluminum phthalocyanine. J. Porphyrins Phthalocyanines, 2003, 7, 131.
    
    [100] He J, Benko G, Korodi F et al. Modified phthalocyanines for efficient near-IR sensitization of nanostructured TiO2 electrode. J. Am. Chem. Soc, 2002, 124:4922-4932.
    
    [101] Hara K, Saynma K, Ohga Y et al. A coumarin-derivative dye sensitized nanocrystalline TiO_2 solar cell having a high solar-energy conversion efficiency up to 5.6%. Chem. Commun., 2001, 569-570.
    
    [102] Hara K, Sato T, Katoh R et al. Molecular design of coumarin dyes for efficient dye-sensitized solar cells. J. Phys. Chem. B, 2003, 107:597-606.
    [103] Hara K, Kurashige M, Dan-oh Y et al. Design of new coumarin dyes having thiophene moieties for higyly efficient organic-dye-sensitized solar cell. New.J. Chem., 2003, 27:783-785.
    
    [104] Hara K, Tachibana Y, Arakawa H et al. Dye-sensitized nanocrystalline TiO_2 solar cells based on novel coumarin dyes. Sol. Energy Mater. Sol. Cells, 2003, 77:89-103.
    
    [105] Hara K, Dan-oh Y, Arakawa H et al. Effect of additives on the photovoltaic performance of coumarin-dye-sensitized nanocrystalline TiO_2 solar cells. Langmuir, 2004, 20:4205-4210.
    
    [106] Wang Z S, Hara K, Arakawa H et al. Photophysical and (photo)electrochemical properties of a coumarin dye. J. Phys. Chem. B, 2005, 109:3907-3914.
    
    [107] Hara K, Miyamoto K, Yanagida M et al. Electron transport in coumarin-dye-sensitized nanocrystalline TiO_2 electrodes. J. Phys. Chem. B, 2005,109:23776-23778.
    
    [108] Wang Z S, Cui Y, Hara K et al. A high-light-harvesting-efficiency coumarin dye for stable dye-sensitized solar cells. Adv. Mater., 2007,19:1138-1141.
    
    [109] Horiuchi T, Miura H, Uchida S. Highly-efficient metal-free organic dyes for dye-sensitized solar cells. Chem. Commun., 2003, 3036-3037.
    
    [110] Horiuchi T, Miura H, Sumioka K et al. High efficiency of dye-sensitized solar cell based on metal-free indoline dyes. J. Am. Chem. Soc, 2004,126:12218-12219.
    
    [111] Horiuchi T, Miura H, Uchida S. Highly efficient metal-free organic dyes for dye-sensitized solar cells. J. Photochem. Photobiol. A, 2004, 164:29-32.
    
    [112] Ito S, Zakeeruddin S M, Gratzel M et al. High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO_2 electrode thickness. Adv. Mater. 2006, 18:1202-1205.
    
    [113] Sayama K, Hara K, Arakawa H et al. Photosensitization of a porous TiO_2 electrode with merocyanine dyes containing a carboxyl group and a long alkyl chain. Chem. Commun., 2000, 1173-1174.
    
    [114] Wang Z S, Li F Y, Huang C H et al. Photoelectric conversion properities of nanocrystalline TiO_2 electrodes sensitized with hemicyanine derivatives. J. Phys. Chem. B, 2000, 104:9676-9682.
    
    [115] Wang Z S, Li F Y, Huang C H. Photocurrent enhancement of hemicyanine dyes containing RSO_3~- group through treating TiO_2 films with hydrochloric acid. J. Phys. Chem. B, 2001, 105:9210-9217.
    
    [116] Yao Q H, Meng F S, Huang C H et al. Photoelectric conversion properties of four novel carboxylated hemicyanine dyes on TiO_2 electrode. J. Mater. Chem. 2003,13:1048-1053.
    
    [117] Hara K, Kurashige M, Arakawa H et al. Novel polyene dyes for highly efficient dye-sensitized solar cells. Chem. Commun., 2003, 252-253.
    
    [118] Kitamura T, Ikeda M, Shigaki K et al. Phenyl-conjugated oligoene sensitizers for TiO_2 solar cell. Chem. Mater., 2004, 16:1806-1812.
    
    [119] Hara K, Sato T, Katoh R et al. Novel conjugated organic dyes for efficient dye-sensitized solar cells. Adv. Funct. Mater, 2005, 15:246-252.
    
    [120] Hagberg D P, Edvinsson T, Sun L et al. A novel organic chromophore for dye-sensitized nanostructured solar cells. Chem. Commun., 2006, 2245-2247.
    
    [121] Niitsoo O, Sarkar S K, Pejoux C et al. Chemical bath deposited CdS/CdSe-sensitized porous TiO_2 solar cells. J. Photochem. Photobiol. A, 2006, 181:306-313.
    
    [122]Nazeeruddin Md K, Zakeeruddin S M, Gratzel M, et al. Acid-base equilibria of (2,2'-bipyridyl- 4,4'-dicarboxylic acid)ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania. Inorg. Chem., 1999, 38:6298-6305.
    [123] Wang P, Zakeeruddin S M, Gratzel M et al. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nature Mater., 2003, 2:402-407.
    
    [124] Xu H, Shen T, Zhou Q et al. Aspects of metal phthalocyanine photosensitization systerms for light energy conversion. J. Photochem. Photobiol. A, 1992, 65:267-276.
    
    [125] He J, Hagfeldt A, Lindquist S. Phthalocyanine-sensitized nanostructured TiO_2 electrodes prepared by a novel anchoring method. Langmuir, 2001, 17:2743-2747.
    
    [126] Xia H P, Nogami M. Copper phthalocyanine bonding with gel and their optical properities. Opt. Mater., 2000, 15:93-98.
    
    [127] Wrobel D, Lukasiewicz J, Goc J et al. Photocurrent generation in an electro chemical cell with substituted metalloporphyrins. J. Mol. Struct., 2000, 555:407-417.
    
    [128] Ghosh H N, Asbury J B, Lian T. Direct observation of ultrafast electron injection from coumarin 343 to TiO_2 nanoparticles by femtosecond infrared spectroscopy. J. Phys. Chem. B, 1998, 102:6482-6486.
    
    [129] Thomas K R J, Lin J T, Hsu Y-C et al. Organic dyes containing thienylfluorene conjugation for solar cells. Chem. Commun., 2005, 4098-4100.
    
    [130] Li S L, Jiang K J, Shao K F et al. Novel organic dyes for efficient dye-sensitized solar cells. Chem. Commun., 2006, 2792-2794.
    
    [131] Koumura N, Wang Z S, Hara K et al. Alkyl-functionalized organic dyes for efficient molecular photovoltaics. J. Am. Chem. Soc, 2006, 128:14256-14257.
    
    [132] Choi H, Lee J K, Song K et al. Novel organic dyes containing bis-dimethylfluorenyl amino benzo[b]thiophene for highly efficient dye-sensitized solar cell. Tetahedron, 2007, 63:3115-3121.
    
    [133] Niiesch F, Moster J E, Shklover V et al. Merocyanine aggregation in mesoporous netwoeks. J. Am. Chem. Soc, 1996, 118:5420-5431.
    
    [134] Ehret A, Stuhl L, Spitler M T. Spectral sensitization of TiO_2 nanocrystalline electrodes with aggregated cyanine dyes. J. Phys. Chem. B, 2001, 105:9960-9965.
    
    [135] Sayama K, Tsukaqoshi S, Mori T et al. Efficient sensitization of nanocrystalline TiO_2 films with cyanine and merocyanine organic dyes. Sol. Energy Mater. Sol. Cells, 2003, 80:47-71.
    
    [136] Chen Y, Zeng Z, Li C et al. Highly efficient co-sensitization of nanocrystalline TiO_2 electrodes with plural organic dyes. New J. Chem., 2005, 29:773-776.
    
    [137] Hagfeldt A, Lindquist S E, Gratzel M. Charge carrier separation and charge transport in nanocrystalline junctions. Sol. Energy Mater.Sol.Cells, 1994, 32:245-257.
    
    [138] Liu Y, Hagfeldt A, Xiao X R et al. Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO_2 solar cell. Sol. Energy Mate. Sol. Cells, 1998, 55:267-281.
    
    [139] Haque S A, Tachibana Y, Willis R L et al. Parameters influencing charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films. J. Phys. Chem. B, 2000, 104:538-547.
    
    [140] Lindstrom H, Rensmo H, Sodergren S et al. Electron transport properties in dye-sensitized nanoporous-nanocrystalline TiO_2 films. J. Phys. Chem., 1996, 100:3084-3088.
    
    [141] Pelet S, Moser J E, Gratzel M. Cooperative effect of adsorbed cations and iodide on the interception of back electron transfer in the dye sensitization of nanocrystalline TiO_2. J. Phys. Chem. B, 2000, 104:1791-1795.
    
    [142] Hara K, Horiguchi T, Kinoshita T et al. Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO_2 solar cells. Sol. Energy Mater. Sol. Cells, 2001, 70:151-161.
    [143] Huang S Y, Schlichth6rl G, Nozik A J et al. Charge recombination in dye-sensitized nanocrystalline TiO_2 solar cells. J. Phys. Chem. B, 1997, 101:2576-2582.
    [144] Nakade S, Kambe S, Kitamura T et al. Effects of lithium ion density on electron transport in nanoporous TiO_2 electrodes. J. Phys. Chem. B, 2001, 105:9150-9152.
    [145] Wang P, Zakeeruddin S M, Gratzel Met al. Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. J. Am. Chem. Soc., 2003, 125:1166-1167.
    [146] Schmidt-Mende L, Zakeeruddin S M, Gratzel M. Efficiency improvement in solid-state-dye-sensitized photovoltaics with an amphiphilic Ruthenium-dye. Appl. Phys. Lett., 2005, 86:013504.
    [147] Gratzel M. Mesoscopic solar cells for electricity and hydrogen production from sunlight. Chem. Lett., 2005, 34:8-13.
    [148] M. Gratzel. Dye-sensitized solid-state heterojunction solar cells. Mrs. Bulletin, 2005, 30:23-27.
    [149] 史成武,戴松元,王孔嘉等.染料敏化纳米薄膜太阳电池中电解质的研究进展.化学通报,2005,68:w001-009.
    [150] Kron G, Egerter T, Werner J H et al. Electronic transport in dye-sensitized nanoporous TiO_2 solar cells - comparison of electrolyte and solid-state devices. J. Phys. Chem. B, 2003, 107:3556-3564.
    [151] Ruhle S, Cahen D. Electron tunneling at the TiO_2/substrate interface can determine dye-sensitized solar cell performance. J. Phys. Chem. B, 2004, 108:17946-17951.
    [152] Schwarzburg K, Ernstorfer R, Felber S et al. Primary and final charge separation in the nano-structured dye-sensitized electrochemical solar cell. Coord. Chem. Rev., 2004, 248:1259-1270.
    [153] Kubo W, Murakoshi K, Yanagida S et al. Fabrication of quasi-solid-state dye-sensitized TiO_2 solar cells using low molecular weight gelators. Chem. Lett., 1998, 12:1241-1242.
    [154] Kubo W, Kambe S, Nakade S et al. Photocurrent-determining processes in quasi-solid-state dye-sensitized solar cells using ionic gel electrolytes. J. Phys. Chem. B, 2003, 107:4374-4381.
    [155] Kubo W, Murakoshi K, Kita ura T et al. Quasi-solid-state dye-sensitized TiO2 solar cells: effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine. J. Phys. Chem. B, 2001, 105:12809-12815.
    [156] O'Regan B, Schwartz D. Large enhancement in photocurrent efficiency caused by UV illumination of the dye-sensitized heterojunction TiO_2/RuLL'NCS/CuSCN: initiation and potential mechanisms. Chem. Mater., 1998, 10:1501-1509.
    [157] Kumara G R A, Kaneko S, Okuya Met al. Fabrication of dye-sensitized solar cells using triethylamine hydrothiocyanate as a CuI crystal growth inhibitor. Langmuir, 2002, 18:10493-10495.
    [158] Bach U, Lupo D, Gratzel M et al. Solid-state dye-sensitized mesoporous TiO_2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998, 395:583-585.
    [159] Schmidt-Mende L, Bach U, Gratzel M et al. Organic dye for highly efficient solid-state dye-sensitized solar cells. Adv. Mater., 2005, 17:813-815.
    [160] Krysin M Yu, Shikhaliev Kh S, Anokhina I K et al. 6-(1,3-Dioxoindan-2-ylidenemethyl)-1,2,2,4-tetramethyl-l,2-dihydro- and -1,2,3,4-tetrahydroquinolines. Chem. Heterocycl. Compd., 2001, 37:227-230.
    [161] Jen A K-Y, Rao V P, Wong K Yet al. Functionalized thiophenes: second-order nonlinear optical materials. J, Chem. Soc. Chem. Commun., 1993, 90-92.
    [162] Zakeeruddin S M, Nazeeruddin Md K, Gratzel Met al. Molecular engineering of photosensitizers for nanocrystalline solar cells: synthesis and characterization of Ru dyes based on phosphonated terpyridines, Inorg. Chem., 1997, 36:5937-5946.
    [163] Miyaura N, Yanagi T, Suzuki A. The palladium-catalyzed cross-coupling reaction of phenylboronic acid with haloarenes in the presence of bases. Synth. Commun., 1981, 11:513-519.
    [164] Inaoka, S.; Collard, D. M. Synthesis, polymerization and characterization of substituted dithieno[3,4-b :3',4'-d]thiophenes. J. Mater. Chem., 1999, 9:1719-1726.
    [165] Janssen M J, Jong F De. Synthesis, oxidation, and electronic spectra of four dithienothiophenes. J. Org. Chem., 1971, 36:1645-1648.
    [166] Mfiller R E, Nord F F. Heterocyclics. XV. The synthesis of thiophene polyenes. J. Org. Chem., 1951, 16:1380-1388.
    [167] Sommeling P M, O'Regan B C, Haswell R R et al. Influence of a TICl_4 post-treatment on nanocrystalline TiO_2 films in dye-sensitized solar cells. J. Phys. Chem. B, 2006, 110:19191-19197.
    [168] Ito S, Nazeeruddin Md K, Gratzel Met al. Photovoltaic characterization of dye-sensitized solar cells: effect of device masking on conversion efficiency. Prog. Photovolt: Res. Appl., 2006, 14:589-601.
    [169] Koide N, Han L. Measuring methods of cell performance of dye-sensitized solar cells. Rev. Sci. Instru., 2004, 75:2828-2831.
    [170] Wang Z S, Kawauchi H, Arakawa H et al. Significant influence of TiO_2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coord. Chem. Rev., 2004, 248:1381-1389
    [171] Kamat P V. Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem. Rev., 1993, 93:267-300.
    [172] Gagné R R, Koval C A, Lisensky G C. Ferrocene as an internal standard for electrochemical measurements. Inorg. Chem., 1980, 19:2854-2855.
    [173] Tachibana Y, Hara K, Sayama K et al. Quantitative analysis of light-harvesting efficiency and electron-transfer yield in ruthenium-dye-sensitized nanocrystalline TiO_2 solar cells. Chem. Mater., 2002, 14:2527-2535.
    [174] Okada T, Fujita T, Kubota Met al. Intramolecular electron donor-acceptor interactions in the excited state of (anthracene)-(CH_2)n-(N,N-dimethylaniline) systems. Chem. Phys. Lett., 1972, 14:563-568.
    [175] Grabowski Z R, Rotkiewicz K, Rettig W. Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem. Rev., 2003, 103:3899-4031.
    [176] Rettig W. Charge separation in excited states of decoupled systems: twisted intramolecular charge transfer (TICT) compounds and implications for the development of new laser dyes and for the primary process of vision and photosynthesis. Angew Chem. Int. Ed. Engl., 1986, 25:971.
    [177] 张煊.苯甲酰苯胺衍生物分子内电荷转移与质子转移:(博士学位论文).厦门:厦门大学,2003.
    [178] Lippert E, Lueder W, Boos H in Mangini A ed. Advances in Molecular Spectroscopy. European Conference on Molecular Spectroscopy, Bologna (1959), Oxford: Pergamon Press, 1962, 43.
    [179] Grabowski Z R, Rotkiewicz K, Siemiarczuk A et al. Twisted intramolecular charge transfer states (TICT). A new class of excited states with a full charge separation. Nouv. J. Chim., 1979, 3: 443-454.
    [180] Zachariasse K A, von der Haar Th, Hebecker A et al. Intramolecular charge transfer in aminobenzonitriles: requirements for dual fluorescence. Pure Appl. Chem., 1993, 65:1745-1750.
    
    
    [181] Zachariasse K A, Grobys M, von der Haar T et al. Intramolecular charge transfer in the excited state. Kinetics and configurational changes. J. Photochem. Photobiol. A, 1996, 102:59-70.
    
    [182] Sobolewski A L, Domcke W. Charge transfer in aminobenzonitriles: do they twist?. Chem. Phys. Lett., 1996, 250:428-436.
    
    [183] Sobolewski A L, Domcke W. Promotion of intramolecular charge transfer in dimethylamino derivatives: twisting versus acceptor-group rehybridization. Chem. Phys. Lett., 1996, 259:119-127.
    
    [184] Reichardt C. Solvents and solvent effect in organic chemistry, 2nd. New York:VCH Weinheim, 1990, p343.
    
    [185] Page M, Williams A. Organic and bio-organic mechanisms. London:Addison Wesley, Longman Limited, 1997, p52.
    
    [186] Acar N, Kurzawa J, Fritz N et al. Phenothiazine-pyrene dyads: photoinduced charge separation and structural relaxation in the CT State. J. Phys. Chem. A, 2003, 107:9530-9541.
    
    [187] Maiti M, Misra T, Bhattacharya T et al. Comparative studies on inter- and intramolecular electron transfer processes within 4-methoxybenzo[b]thiophene (4MBT) and p-chloroacetophenone (PCA) reacting systems by using steady-state and laser flash photolysis techniques. J. Photochem. Photobiol. A, 2002, 152:41-52.
    
    [188] Valeur B. Molecular fluorescence: principles and applications. Viley-VCH Verlag GmbH, 2001.
    
    [189] Yang J S, Liau K L, Wang C M et al. Substituent-dependent photoinduced intramolecular charge transfer in N-aryl-substituted trans-4-aminostilbenes. J. Am. Chem. Soc, 2004, 126:12325-12335.
    
    [190] Maus M, Rettig W, Bonafoux D et al. Photoinduced intramolecular charge transfer in a series of differently twisted donor-acceptor biphenyls as revealed by fluorescence. J. Phys. Chem. A, 1999, 103:3388-3401.
    
    [191] Wang S L, Ho T I. Substituent effects on intramolecular charge-transfer behavior of styrylheterocycles. J. Photochem. Photobiol. A, 2000, 135:119-126.
    
    [192] Sumalekshmy S, Gopidas K R. Photoinduced intramolecular charge transfer in donor-acceptor substituted tetrahydropyrenes. J. Phys. Chem. B, 2004, 108:3705-3712.
    
    [193] Reichardt C. Solvatochromic Dyes as Solvent Polarity Indicators. Chem. Rev., 1994, 94:2319-2358.
    
    [194] Fayed T A. A novel chalcone-analogue as an optical sensor based on ground and excited states intramolecular charge transfer: A combined experimental and theoretical study. Chem. Phys., 2006, 324:631-638.
    
    [195] Zachariasse K A, Druzhinin S I, Bosch W et al. Intramolecular charge transfer with the planarized 4-aminobenzonitrile 1-tert-butyl-6-cyano-1,2,3,4-tetrahydroquinoline (NTC6). J. Am. Chem. Soc, 2004, 126:1705-1715.
    
    [196] Techert S. Zachariasse K A. Structure determination of the intramolecular charge transfer state in crystalline 4-(diisopropylamino)benzonitrile from picosecond X-ray diffraction. J. Am. Chem. Soc, 2004, 126:5593-5600.
    
    [197] Ishikawa H, Sugiyama M, Baba I et al. Determination of the equilibrium structure of the charge-transfer state of (p-cyanophenyl)pentamethyldisilane by means of transient infrared spectroscopy. J. Phys. Chem. A, 2005, 109:8959-8961.
    [198] Laane J. Spectroscopic determination of ground and excited state vibrational potential energy surfaces. Int. Rev. Phys. Chem., 1999, 18:301-341.
    
    [199] Laane J. Experimental determination of vibrational potential energy surfaces and molecular structures in electronic excited states. J. Phys. Chem. A, 2000, 104:7715-7733.
    
    [200] Ruiz Delgado M C, Hernandez V, Casado J et al. Vibrational study of push-pull chromophores for second-order non-linear optics derived from rigidified thiophene p-conjugating spacers. J. Mol. Struct., 2003,651-653:151-158.
    
    [201] Ruiz Delgado M C, Hernandez V, Casado J et al. Vibrational and quantum-chemical study of push-pull chromophores for second-order nonlinear optics from rigidified thiophene-based p-conjugating spacers. Chem. Eur. J., 2003, 9:3670-3682.
    
    [202] Mennucci B, Toniolo A, Tomasi J. Ab initio study of the electronic excited states in 4-(N,N-dimethylamino)benzonitrile with inclusion of solvent effects: The internal charge transfer process. J. Am. Chem. Soc, 2000, 122:10621-10630.
    
    [203] Rappoport D, Furche F. Photoinduced intramolecular charge transfer in 4-(dimethyl)aminobenzonitrile - A theoretical perspective. J. Am. Chem. Soc, 2004, 126:1277-1284.
    
    [204] Kohn A, Hattig C. On the nature of the low-lying singlet states of 4-(dimethylamino)benzonitrile. J. Am. Chem. Soc, 2004, 126:7399-7410.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700