电沉积法制备CuInS_2和CuInSe_2薄膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着传统石化能源的日益减少,太阳能作为一种重要的可再生能源逐渐成为人们关注的热点。光伏发电是太阳能利用研究领域中最重要的发展方向之一。过去的几十年里,全球光伏产业发展迅速。目前占市场份额90%以上的是晶体硅太阳电池,由于其使用的原材料高纯硅价格较高,生产过程中能耗高,电池生产成本难以降低,阻碍了它的进一步大范围应用。近年来,薄膜太阳电池由于具有低成本、高性能等优点而引起了人们的广泛关注。CuInS_2和CulnSe_2(CIS)等Ⅰ-Ⅲ-Ⅵ_2族化合物薄膜电池具有高理论转换效率、直接禁带、高光吸收系数、禁带宽度与太阳光谱相匹配和稳定性好等优点,因此成为很有发展前景的下一代太阳电池。普遍采用的真空法制备此类CIS薄膜虽然成膜质量较好,但设备和技术要求都很高,导致成本较高。采用非真空法如喷涂,颗粒涂覆,电沉积等制备CIS薄膜设备简单,投资少,薄膜的生产成本低,而且容易大面积成膜,有望实现CIS薄膜太阳电池工业化大规模量产,具有很好的发展前景。
     采用电沉积法制备CIS薄膜易于控制薄膜的厚度,可在大尺寸和形状复杂的衬底上沉积薄膜,并且电沉积过程在室温下进行,能量损耗低。一步电沉积法与两步电沉积法相比,能同时将三种元素还原到衬底上,易于控制薄膜的成分,获得缺陷较少的高质量CIS薄膜。本文利用一步电沉积法制备了CuInS_2和CuInSe_2薄膜,对制备的薄膜进行了分析和表征,并初步制备了CuInS_2薄膜太阳电池原型器件。本论文取得的主要成果如下:
     1.利用一步电沉积法制备出具有不同Cu/In比的均匀致密的CuInS_2薄膜,薄膜的厚度约为1—2μm,薄膜为黄铜矿结构,禁带宽度约为1.47 eV,呈p型。研究了沉积电位、衬底、Cu/In比、pH值、柠檬酸钠用量和原材料等对先驱体薄膜的影响以及后续热处理条件对CulnS_2薄膜的影响。
     2.在一步电沉积法制备CuInS_2薄膜的基础上初步制备出结构为Mo/CuInS_2/CdS/ZnO/ITO/C的薄膜太阳电池原型器件。电池的平均开路电压为350mV,平均短路电流为3mA/cm~2,填充因子为20%,最高转化效率为0.57%。
     3.利用一步电沉积法制备出均匀致密的CuInSe_2薄膜,薄膜的厚度约为1-2μm,黄铜矿结构。研究了沉积电位和衬底对先驱体薄膜的影响以及后续热处理条件对CuInSe_2薄膜的影响。
With the increasing decrease of conventional fossil energy, solar energy, as one kind of significant renewable energy, has becoming a focus. The photovoltaic technology is one of the most important development aspects in the utilization field of solar energy. In the past decades, photovoltaic industry in the world developed rapidly. The further massive application of crystalline silicon solar cells, accounting for more than 90% of the world photovoltaic market at present, is prevented by the high production cost of solar cells due to the costly price of high purity silicon raw material and high energy consumption in the production process. Recently, thin film solar cells with the predominance of low cost and high performance have attracted much attention. I-III-VI2 family compound thin film cells such as CuInS_2 and CuInSe_2 (CIS), with high theoretical photoelectric conversion efficiency, direct band gap, optimum width of band gap, extraordinarily high absorption coefficient and long-term stability, are considered promising candidates for next generation solar cells.
     Although generally vacuum deposition techniques fabricate high quality CIS thin films, the production cost is high due to vacuum equipments and rigorous techniques. Preparation of CIS thin films by non-vacuum deposition techniques such as spray, particle-coating and electrodeposition, with a good development foreground, needs inexpensive equipments and low investment capital. Not only the production cost of thin films is low, but also large-area preparation of CIS thin films is feasible. Large-scale industrialization of CIS thin film solar cells is promising to come true.
     The thickness of CIS thin films prepared by electrodeposition method is easy to control. Precursor thin films can be deposited on large size and complicated shape substrates. The electrodeposition process is at room temperature, so it consumes low energy. Three kinds of elements are reduced onto a substrate synchronously in one-step electrodeposition method, compared with two-step electrodeposition method. The composition of films can be controlled, and high quality films with few defects can be obtained. In this thesis, the CuInS_2 and CuInSe_2 thin films were prepared by one-step electrodeposition method. The precursor thin films and multicrystalline CIS thin films were analyzed and characterized. Moreover, the primary archetypal CuInS_2 thin film solar cell devices were fabricated.
     The following results have been obtained:
     1. Uniform and compact CuInS_2 thin films with different Cu/In ratio were prepared by one-step electrodeposition method. They're p-type chalcopyrite semiconductors with direct band gap of about 1.47 eV and thickness of about 1~2μrn. The influences of applied potential, substrates, Cu/In ratio, pH value, the concentration of citric acid sodium and raw material in the precursor thin films and the effect of post anneal treatment conditions on multi-crystalline CuInS_2 thin films were studied.
     2. The CuInS_2 thin film solar cells with a configuration of Mo/CuInS_2/CdS/ZnO/ITO/C, fabricated on CuInS_2 thin films prepared by one-step elecrodeposition, take on the photovoltaic characteristic. The average values of V_(oc), I_(sc) and FF are 350 mV, 3 mA/cm~2 and 20%, respectively. The highest conversion efficiency is 0.57%.
     3. Uniform and compact CuInSe2 thin films of chalcopyrite phase with a thickness of about 1~2μm were prepared by one-step electrodeposition method. The influences of applied potential and substrates in the precursor thin films and the effect of post anneal treatment conditions on multi-crystalline CuInSe2 thin films were studied.
引文
[1]李申生.太阳能[M].北京:人民教育出版社,1988:15-16
    [2]王炳忠.太阳能--未来能源之星[M].北京:气象出版社,1990:141-158
    [3]Harold J.Hovel.赵富鑫,李今其译.太阳电池[M].1982:7-10
    [4]D.M.Chapin,C.S.Fuller,G.L.Pearson.A new silicon p-n junction photocell for converting solar radiation into electrical power[J].J.Appl.Phys,1954,25:676-677
    [5]A.Shah,P.Torres,R.Tscharner,N.Wyrsch,H.Keppner.Photovoltaic Technology:The Case for Thin-Film Solar Cells[J].Science,1999,285:692-698.
    [6]Martin A.Green.Consolidation of Thin-film Photovoltaic Technology:The Coming Decade of Opportunity[J].Progress in Photovoltaic:Research and Applications,2006,14:383-392
    [7]杨德仁.太阳电池材料[M].北京:化学工业出版社,2001:49-52
    [8]邱继军.离子层气相反应法(ILGAR)制备硫属半导体薄膜的研究[D].天津大学硕士学位论文,2005
    [9]施敏.赵鹤鸣,钱敏,黄秋萍译.现代半导体器件物理[M].北京:科学出版社,2001:362-402
    [10]Adolf Goetzberger,Christopher Heblinga,Hans-Werner Schock.Photovoltaic materials,history,status and outlook[J].Materials Science and Engineering,2003,40:6-41
    [11]Alvin D.Compaan.Photovoltaics:Clean power for the 21 st century[J].Solar Energy Materials & Solar Cells,2006,90:2170-2180
    [12]梁宗存,沈辉.太阳能电池及材料研究[J].材料导报,2000.14(8):38-40
    [13]毛爱华.太阳能电池研究和发展现状[J].包头钢铁学院学报,2002.(21)1:94-98
    [14]席珍强,杨德仁,吴丹等.单晶硅太阳电池的表面织构化[J].太阳能学报,2002,23(2):285-289
    [15]赵百川,孟凡英,崔容强.多晶硅太阳电池表面化学织构工艺[J].太阳能学报,2002,23(6):759-762
    [16]G.J.Bauhuis,P.Mulder,J.J.Schermer,E.J.HaverKamp,J.van Deelen,P.K. Larsen.High efficiency thin film GaAs solar cells with improved radiation hardness,20th European Photovoltaic Solar Energy Conference[C],Barcelona,June,2005,468-471.
    [17]R.Venkatasubramanian,B.C.O'Quinn,J.S.Hills,P.R.Sharps,M.L.Timmons,J.A.Hutchby,H.Field,A.Ahrenkiel,B.Keyes.18.2%(AM1.5) efficient GaAs solar cell on optical-grade polycrystalline Ge substrate,Conference Record,25th IEEE Photovoltaic Specialists Conference Washington[C],May 1997,31-36.
    [18]X.Wu,J.C.Keane,R.G.Dhere,C.DeHart,A.Duda,T.A.Gessert,S.Asher,D.H.Levi,P.Sheldon.16.5%-efficient CdS/CdTe polycrystalline thin-film solar cell Conf.Proceed-ings,17th European Photovoltaic Solar Energy Con-ference Munich[C],22-26October 2001,995-1000
    [19]R.Klenka,J.Klaer,R.Scheer,M.Ch.Lux-Steiner,I.Luck,N.Meyer,U.Rqhle.Solar cells based on CuInS_2-an overview[J].Thin Solid Films,2005(480-481):509-514
    [20]张辉,马向阳,杨德仁.太阳能光电材料CuInSe_2的研究进展[J].材料导报,2001,15(5):11-13
    [21]J.T.Heath,J.D.Cohen,W.N.Shafarman,D.X.Liao and A.A.Rockett.Effect of Ga content on defect states in CuInGa_xSe_2 photovoltaic devices[J].APPLIED PHYSICS LETTERS,2002,80(24):4540-4542
    [22]Chiba Y,Islam A,Kakutani K,Komiya R,Koide N,Han L.High efficiency dye sensitized solar cells Technical Digest,15th International Photovoltaic Science and Engineering Conference Shanghai[C],October,2005,665-666
    [23]Laird D,Vaidya S,Li S,MathaiM,Woodworth B,Sheina E,Williams S,Hammond T.Advances in Plexcore TM active layer technology systems for organic photovoltaics:Roof-top and accelerated lifetime analysis of high per-formance organic photovoltaic cells,SPIE Proc.[C],2007,6656(12)
    [24]庄大明,张弓.铜锢镓硒薄膜太阳能电池的发展现状以及应用前景[J].真空,2004,41(2):1-7
    [25]周鑫发.薄膜太阳电池的发展值得重视[J].chinese journal of Power sources,1999,23(1):43-45
    [26]M.Contreras,B.Egaas,K.Ramanathan,J.Hiltner,F.Hasoon,R.Noufi,Progress toward 20%efficiency in Cu(In,Ga)Se2 polycrystalline thin-film solar cells[J].Prog. Photovolt. Res. Appl., 1999, (7) 311-316.
    
    [27] K. Siemer, J. Klaer, I. Luck, J. Brims, R. Klenk, D. Braunig, Efficient CuInS_2 solar cells from a rapid thermal process (RTP)[J]. Solar Energy Materials and Solar Cells, 2001,67:159-166.
    
    [28] M. A. Contreras, J. Turtle, A. Gabor, A. Tennant, K. Ramanathan, S. Asher, A. Franz, J. Keane, L. Wang, J. Scofield, R. Noufi, 1st World Conference of Photovoltaic Solar Energy Conversion [C], Hawaii, 1994,68-75.
    
    [29] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, R. Noufi. 19.9%-efficient ZnO/CdS/CuInGaSe_2 solar cell with 81.2% fill factor [J]. Progress in Photovoltaics: Research and Applications, 2008,16:235-239
    
    [30] J. Klaer, J. Brans, R. Henninger, K. Siemer, R. Klenk, K. Ellmer, D. Braunig, Efficient CuInS_2 thin-film solar cells prepared by a sequential process [J]. Semicond. Sci. Technol., 1998,13:1456-1458
    
    [31] V. Nadenau, D. Hariskos, H.W. Schock, 14th European Photovoltaic Solar Energy Conference and Exhibition [C], Barcelona, 1997, 1250-1253.
    
    [32] S.Wanger, J. L. Shay, P. Migliorato, et al. CuInSe_2/CdS hetrojunction photovoltaic detectors [J]. Appl. Phys. Lett., 1974,25: 434.
    
    [33] L. L Kazmerski, M. S.Ayyagari, J. Y. Juang, et al. Growth and characterisation of thin film compound semiconductor heterojunctions [J]. J. Vac. Sci. Technol., 1977, 13: 65.
    
    [34] M. Winkler, J. Griesche, I. Konovalov, J. Penndorf, J. Wienke, O. Tober. CIS CuT-solar cells and modules on the basis of CuInS_2 on Cu-tape [J]. Solar Energy, 2004, 77: 705-716
    
    [35] S. C. Abrahams, J. L. Berbstein. Piezoeletric nonlinear optic CuGaS_2 and CuInS_2 crystal structure: Sublattice distortion in A~Ⅰ B~ⅢC~Ⅵ_2 and A~ⅡB~ⅣC~Ⅴ_2 type chalcopyrites [J]. The Journal of Chemical Physics, 1973, 59: 5415-5422
    
    [36] J. J. M. Binsma, L. J. Giling, J. Bloen. Phase relations in the system Cu_2S-In_2S_3 [J].. Journal of Crystal Growth, 1980, 50: 429-436
    
    [37] D. O. Hendersona, R. Mu, A. Ueda, M. H. Wu, E. M. Gordon, Y. S. Tung, M. Huang, J. Keay, L. C. Feldman, J. A. Hollingsworth, W. E. Buhro, J. D. Harris, A. F. Hepp and R. P.Raffaell.Optical and structural characterization of copper indium disulfide thin films [J].Materials and Design,2001,22:585-589
    [38]Malle Krunks,Olga Bijakina,Tiit Varema,Valdek Mikli,Enn Mellikova.Structural and optical properties of sprayed CuInS_2 films[J].Thin Solid Films,1999,338:125-130
    [39]S.Ali Hussain Reshaka.Auluck Electronic properties of chalcopyrite CuAlX_2(X = S,Se,Te)compounds[J].Solid State Communications,2008,145,571-576
    [40]M.Zribi,M.Kanzari,B.Rezig.Post-growth annealing treatment effects on properties of Na-doped CuInS_2 thin films[J].Materials Science and Engineering B,2008,(149):1-6
    [41]Lexi Shao,Kun-hui Chang,Huey-liang.Hwang.The one-step vacuum growth of high-quality CuInS_2 thin film suitable for photovoltaic applications[J].Materials Science in Semiconductor Processing,2003,6(5-6):397-400
    [42]Y.Akaki,H.Komaki,K.Yoshino,T.Ikari.Structural and optical characterization of CuInS_2 thin films grown by vacuum evaporation method[J].Journal of Materials Science-Materials in Electronics,2003,14(5-7):291-294
    [43]Y.Akaki,H.Komaki,H.Yokoyama,K.Yoshino,K.Maeda,T.Ikari.Surface morphology of evaporated CuInS_2 thin films grown by single source thermal evaporation technique[J].Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films,2002,20(4):1486-1487
    [44]A.Joswig,M.Gossla,H.Metzner,U.Reisl(o|¨)hner,Th.Hahn,W.Witthuhn.Sulphurization of single-phase Cu_(11)In_9 precursors for CuInS_2 solar cells[J].Thin Solid Films,2007,(515):5921-5924
    [45]邵乐喜,张昆辉,黄惠良.用于太阳电池吸收层CuInS_2薄膜的RF反应溅射制备及其表征[J].太阳能学报,2004,25(1):123-126
    [46]J.Alvarez-Garcia,B.Barcones,A.Romano-Rodriguez,L.Calvo-Barrio,A.Perez-Rodriguez,R.J.Morante,R.Scheer,R.Klenk.Sulfurization of Cu/In Precursors for CuInS_2-Based Solar Cells[J].Journal of The Electrochemical Society,2003,150(7):G400-G403
    [47]K.Ellmer,J.Hinze,J.Klaer.Copper indium disulfide solar cell absorbers prepared in a one-step process by reactive magnetron sputtering from copper and indium targets [J].Thin Solid Films,2002,(413):92-97
    [48]A.Antony,A.S.Asha,R.Yoosuf,R.Manoj,M.K.Jayaraj.Growth of CuInS_2 thin films by sulphurisation of Cu-In alloys[J].Solar Energy Materials & Solar Cells,2004,(81):407-417
    [49]S.Bandyopadhyaya,S.Chaudhuri,A.K.Pal.Synthesis of CuInS_2 films by sulphurization of Cu/In stacked elemental layers[J].Solar Energy Materials & Solar Cells,2000,(60):323 339
    [50]M.L.Fearheiley,N.Dietz,S.Schroetter,H.J.Lewerenz,in:K.J.Bachmann,H.L.Hwang,C.Schwab(Eds.).Proceeding ofthe International Conference on Advanced Materials,Symposium A3:Non Stoichiometry in Semiconductors[C],North-Holland,Amsterdam,1992:125
    [51]A.M.Martineza,L.G.Arriaga,A.M.Fernandez,U.Cano.Band edges determination of CuInS_2 thin films prepared by electrodeposition[J].Materials Chemistry and Physics,2004,(88):417-420
    [52]阎有花,刘迎春,方玲.Cu_7In_3前驱膜制备(112)择优取向CuInS_2薄膜[J].物理测试,2008,26(2):1-4
    [53]Y.H.YAN,Y.C.LIU,L.FANG,H.H.ZHAO,D.R.LI,Z.C.LU,S.X.ZHOU.Influence of post-grown treatments on CuInS_2 thin films prepared by sulphurization of Cu-In films[J].RARE METALS,2008,27(5):490-495
    [54]Y.H.YAN,Y.C.LIU,L.FANG,J.S.ZHU,H.H.ZHAO,D.R.LI,Z.C.LU,S.X.ZHOU.Characterization of CuInS_2 thin films prepared by sulfurization of Cu-In precursor[J].Trans.Nonferrous Met.Soc.,2008,(18):1083-1088
    [55]M.Krunks,A.Mere,A.Katerski,V.Mikli,J.Krustok.Characterization of sprayed CuInS_2 films annealed in hydrogen sulfide atmosphere[J].Thin Solid Films,2006,(511- 512):434-438
    [57]S.Nakamura,A.Yamamoto.Preparation of CuInS_2 films with sufficient sulfur content and excellent morphology by one-step electrodeposition[J].Solar Energy Materials and Solar cells,1997,(49):415-421
    [58]S.Kuranouchi,T.Nakazawa.Study of one-step electrodeposition condition for preparation of CuIn(Se, S)_2 thin films [J]. Solar Energy Materials and Solar Cells, 1998, (50): 31-36
    
    [59] A. M. Martinez, A. M. Fernandez, L. G. Arriaga, U. Cano. Preparation and characterization of Cu-In-S thin films by electrodeposition [J]. Materials Chemistry and Physics, 2006, (95): 270-274
    
    [60] B. Asenjo, A. M. Chaparro, M. T. Gutierrez, J. Herrero. Electrochemical growth and properties of CuInS_2 thin films for solar energy conversion [J]. Thin Solid Films, 2006, (511-512): 117-120
    
    [61] R. Cayzac, F. Boulc'h, M. Bendahan, M. Pasquinelli, P. Knauth. Preparation and optical absorption of electrodeposited or sputtered, dense or porous nanocrystalline CuInS_2 thin films [J]. C. R. Chimie, 2008, (11): 1016-1022
    
    [62] Malle Krunks, Valdek Mikli, Olga Bijakina, Enn Mellikov, Growth and recrystallization of CuInS_2 films in spray pyrolytic process [J]. Applied Surface Science, 1999,142: 356-361
    
    [63] M. Krunks, O. Kijatkina, H. Rebane, I. Oja, V. Mikli, A. Mere, Composition of CuInS_2 thin films prepared by spray pyrolysis [J]. Thin Solid Films, 2002, 403-404: 71-75
    
    [64] I. Oja, M. Nanu, A. Katerski, M. Krunks, A. Mere, J. Raudoja, A. Goossens, Crystal quality studies of CuInS_2 films prepared by spray pyrolysis [J]. Thin Solid Films, 2005, 480-481:82-86
    
    [65] Teny Theresa John, K. C. Wilson, P. M. Ratheesh Kumar, C. Sudha Kartha,K. P. Vijayakumar, Y. Kashiwa, T. Abe, and Y. Yasuhiro, CuInS_2 films using repeated chemical spray pyrolysis [J]. phys. stat. sol. (a), 2005,202, 1, 79-84
    
    [66] Tomoaki Terasako, Yuji Uno, Seiki Inoue, Tetsuya Kariya, and Sho Shirakata, Structural, optical and electrical properties of CuInS_2 thin films prepared by chemical spray pyrolysis [J]. phys. stat. sol. (c), 2006 3, 8, 2588-2591
    
    [67] G. Norsworthy, C. R. Leidholm, A. Halani, V. K. Kapur,R. Roe, B. M. Basol, R. Matson, CIS film growth by metallic ink coating and selenization [J]. Solar Energy Materials & Solar Cells, 2000, (60): 127-134.
    [68]Vijay K.Kapur,Ashish Bansal,Phucan Le,Omar I.Asensio,Non-vacuum processing of CuIn_(1-x)Ga_xSe_2 solar cells on rigid and flexible substrates using nanoparticle precursor inks[J].Thin Solid Films,2003,(431-432):53-57.
    [69]I.Konovalov.Material requirements for CIS solar cells[J].Thin Solid Films,2004,(451-452):413-419
    [70]R.Scheer,R.Klenk,J.Klaer,I.Luck,CuInS_2 based thin film photovoltaics[J].Solar Energy,2004,77:777-784
    [71]Yoshio O,Kenji T,Sumihiro I,et al.Preparation and properties of CuInS_2 thin film prepared from electroplated precursor[J].Solar Energy,2006,(80):132-138
    [72]Yoshio O,Kenji T,Sumihiro I,et al.Cross-Sectional Analysis of CuInS_2 Thin Film Prepared from Electroplated Precursor[J].Japanese Journal of Applied Physics,2004,43,(1A/B):108-110
    [73]刘玮,孙云,何青.后硒化法制备CIGS薄膜中的元素损失机制.杨德仁eds.第十届中国太阳能光伏会议[C].杭州:浙江大学出版社,2008:550-553
    [74]J.Klaer,R.Klenk,H.W.Schock.Progress in the development of CuInS_2 based mini-modules[J].Thin Solid Films,2007,(515):5929-5933

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700