ZnSe电子结构与性质的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ⅱ-Ⅵ族半导体发光材料具有优异的光电催化及光电转化活性等特性,已广泛应用于光学材料、太阳能材料、压电晶体和激光材料等领域.而ZnSe被认为是一种较好的制备蓝绿激光器的材料,已引起世界各国科研人员的广泛关注.目前,对ZnSe的电子结构、半导化掺杂、高压化途径、导电模型、缺陷态、表面/界面态等方面已有相关的理论和实验结果,但是在高压化途径、杂质和缺陷对材料半导化、光学性能以及相关性质的影响机理仍存在着分歧.本文采用基于密度泛函理论框架下的平面波赝势方法,对ZnSe材料的高压化途径、本征Zn缺陷、替代性V掺杂、电子结构、光学性质等进行研究,为制备高质量的ZnSe半导体材料及其应用提供理论依据.主要研究内容及结果如下:
     一、系统地计算了闪锌矿结构ZnSe晶体不同压强下平衡时的晶格常数、总能量、电子态密度分布、能带结构、光反射与吸收系数;详细讨论了高压下ZnSe的电子结构,并且结合实验结果定性地分析了高压下的光学性质.计算结果表明:随着压强的增大,晶格常数和键长在不断变小,总能量不断升高,Zn原子和Se原子的态密度峰都有不同程度的变化,有向低能量移动的趋势,闪锌矿结构ZnSe晶体在压强为26.5 Gpa时由直接带隙半导体变成了间接带隙半导体.
     二、对闪锌矿结构(ZB)和岩盐结构(RS)的ZnSe在0~20 Gpa高压下的几何结构、态密度、能带结构进行了计算研究,分析了闪锌矿结构ZnSe和岩盐结构ZnSe的几何结构,在此基础上,研究了ZnSe的结构相变、弹性常数、成键情况以及相变压强下电子结构的变化机制,结果发现:通过焓相等原理得到的ZB相到RS相的相变压强为15.3 Gpa,而由弹性常数判据得到的相变压强为11.52 Gpa,但在9.5 Gpa左右并没有发现简单立方(SC)相的出现;在结构相变过程中,sp3轨道杂化现象并未消除,Zn原子的4s电子在RS相ZnSe的导电性中起主要贡献.
     三、对V掺杂和Zn空位ZnSe闪锌矿结构进行了优化,讨论了电子结构以及Zn空位下的光学性质,对ZnSe半导体的自补偿效应和光催化性能做了探讨.结果表明:V掺杂与Zn空位ZnSe体系,并没有因为杂质或空位的存在而发生晶格畸变,V掺杂ZnSe体系由于杂质原子能级的存在,费米面附近的能级连续,从而表现出明显的金属性,Zn空位ZnSe体系由于Zn空位能级的存在,导致费米面能量降低,价带顶能级处于半满状态,电导率和发光性能大大提高,使得介电峰拓展到红外区,为ZnSe运用在红外光催化实验中提供了理论依据.
Because of their excellent photoelectric conversion and photo-electro-catalytic activity,Ⅱ-Ⅵsemiconductor light-emitting materials have been used as optical materials, solar energy materials, piezoelectric crystals, laser materials and other fields. And ZnSe is considered to be a better candidate for the preparation of blue-green laser material, which has been attracted many researchers’attention. At present, some theoretical and experimental investigations have been done on electronic structure,doping,conductivity model, defect states,surfaces and interface of ZnSe, but there are still some discrepancies, such as the route of the phase change under high pressure, the effects of impurity and defect on optical properties of ZnSe. Therefore using the first principles method, the electronic structures and optical properties for the different phases of ZnSe,the intrinsic Zn vacancies and doped with vanadium have been investigated with ultra-soft pseudo-potential approach of the plane wave based upon the Density Functional Theory (DFT). The main contents are as the following:
     1. The electronic structure and optical properties of zinc blended structure ZnSe under different pressures have been calculated. And the total energy, density of state, energy band structure, and optical absorption and refection properties have been discussed. Furthermore, the changes of electron structure, band structure and optical properties under high pressure have been analyzed in comparison with the experimental and theoretical data.
     2. Geometric structures, density of states and band structures of zinc blended structure and rock salt structure of ZnSe at different pressures (from 0 Gpa to 20 Gpa) have been calculated. Based on those results, the structure of the ZnSe phase transitions, elastic constants, bonding and phase transition under pressure have been discussed. From the principle of enthalpy for the ZB and RS ZnSe, the pressure at the phase transition is equal to 15.3 Gpa, which is greater than the results of 11.52 Gpa from the elastic constants of the phase transition criterion. And the change of phase to SC has not been found at the pressure of 9.5 Gpa; and the sp3 hybrid orbital have not been eliminated during the structure phase transition, while the 4s electronic state of Zn atom has a major contribution to the conductivity in RS phase.
     3. The geometric structure of V-doped and Zn vacancy for blended structure ZnSe have been optimized firstly, then the electronic structures and optical properties of the Zn vacancy in ZnSe with self-compensation effect and photo catalytic properties have been discussed. The results gives that, for V-doped ZnSe and Zn vacancy, there was no lattice distortion because of the existence of impurities; for V-doped ZnSe system, due to the existence of the impurity atomic energy level, the energies near Fermi level become continuous, and it shows the metal properties, while for the Zn vacancy the Fermi energy declines, and the conductivity and luminescence greatly increase. The dielectric peak is extended to the infrared area, so ZnSe containing Zn vacancy can be applied to the infrared optical catalytic experiments.
引文
[1]张跃,谷景华,尚家香等,《计算材料学基础》,北京航空航天大学出版社,2007
    [2]刘长友,ZnSe多晶料的合成方法及其工艺研究,材料导报,2007, 21, 18
    [3]郝海,ZnSe纳米复合材料的制备及性能表征,西安交通大学电子陶瓷与器件教育部重点实验室,西安,710049
    [4]孙寒,二氧化碳激光器谐振腔稳定性的研究,大学物理,2005, 24, 41
    [5]许洪,多光谱、超光谱成像技术在军事上的应用,红外与激光工程,2007, 36, 13
    [6]宋登元,王秀山,半导体蓝绿激光器的发展现状,半导体光电,1997, 18, 215
    [7]王善忠,谢绳武,庞乾骏等,ZnSe单晶薄膜生长控制和掺杂控制,量子电子学报,1999, 16, 385
    [8]张芳伟,郑毅,范敏殿等,离化原子团束外延ZnSe单晶薄膜,清华大学学报(自然科学版),1994, 34, 96
    [9] Piermarini G J and Block S, Ultrahigh Pressure Diamond-Anvil Cell and Several Semiconductor Phase Transition Pres-sures in Relation to the Fixed Point Pressure Scale, Rev Sci Instrum, 1975, 46, 973.
    [10] Karzel H, Potzel W, K?fferlein M, et al. Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures, Phys Rev B, 1996, 53, 11425
    [11] Lin C M, Chuu D S and Yang T J, Raman spectroscopy study of ZnSe and Zn0.84Fe0.16Se at high pressures, Phys Rev B, 1997, 55, 13641
    [12] Valeri I. S, John S T, Theoretical study on the highpressure phase transformation in ZnSe, Phys. Rev. B, 1995,52,4658
    [13] Hamdi I, Aouissi M, Pressure dependence of vibrational, thermal, and elastic properties of ZnSe: An ab initio study, Phys Rev B, 2006, 73, 174114
    [14] Haase M A, Qui J, DePuydt J M, et al, Blue-green laser diodes, Appl Phys Lett,1991,59, 1272
    [15] Laks D B, Van de Walle C G, Neumark G F, et al, Native defects and self-compensation in ZnSe, Phys Rev B, 1992, 45,10965
    [16] Van de Walle C G, Laks D B, Neumark G F, Pantelides S T, First-principles calculations of solubilities and doping limits: Li, Na, and N in ZnSe, Phys Rev B, 1993, 47,9425
    [17] Gundel S and Faschinger W, First-principles calculation of p-type doping of ZnSe using nitrogen, Phys Rev B, 2001, 65,035208
    [18] Ren T L, Zhu J L, Zhu Z Q, et al, Compensation Introduced by Defect Complexes in P-Type ZnSe, Journal of Applied Physics, 1999, 86,1439
    [19] Gudkov V V, Lonchakov A T, Sokolov V I,et al, Ultrasonic investigation of ZnSe:V2+ and ZnSe:Mn2+: Lattice softening and low-temperature relaxation in crystals with orbitally degenerate states, Phys Rev B, 2008, 77,155210
    [1] Segall M D, Lindan P J D, Probert M J, et al.Firstprinciples simulation:ideas, illustrations and the CASTEP code, J. Phys.:Condens.Matter. 2002,14, 2717
    [2]谢希德,陆栋,固体能带理论,复旦大学出版社(上海),1998,第一版,1-20
    [3] Hohenberg P C, Kohn W, Inhomogeneous electron gas, Phys Rev B, 1964,136, 864
    [4] Kohn W, Sham L J, Quantum Density Oscillations in an Inhomogeneous Electron Gas, Phys Rev, 1965, 137, A1697
    [5] Kohn W,Fumi F,Tosi M P et al,Highlights of condensed matter theory,NorthHolland,1985
    [6] Yang W, Direct calculation of electron density in density-functional theory, Phys Rev Lett, 1991, 66, 1438
    [7] Beek A D, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys Rev, 1988, A38, 3098
    [8]贠江妮,基于密度泛函理论的钛酸锶电子结构及属性研究[D],西北大学,2007
    [9] Andersson Y, Langreth D C and Lundqvist B L, van der Waals Interactions in Density-Functional Theory, Phys Rev Lett,1996, 76, 102
    [10] Kohn W, Meir Y andMakarov D E, van der Waals Energies in Density Functional Theory, Phys Rev Lett, 1998, 80, 4153
    [11] Hamann D R, Sehluter M and Chiang C, Norm-Conserving Pseudopotentials, Phys Rev Lett, 1979, 43, 1494
    [12] Bachelet G B, Hamann D R and Schluter M, Pseudopotentials that work: From H to Pu, Phys Rev B, 1982, 26, 4199
    [13] Vanderbilt D, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys Rev B, 1990, 41, 7892
    [1] Manuel C, Ruprecht H, Optical Properties of Some Compound Semiconductors in the 36-150-eV Region, Phys Rev B, 1970, 1, 2605
    [2] Bevilacqua G, Martinell L, Vogel E E, Jahn-Teller Effect and the Luminescence Spectra of V2+ in ZnS and ZnSe, Phys Rev B, 2002,66, 1553381
    [3] Fazzio M, Caldas J, Zunger A. Many-electron multiplet effects in the spectra of 3d impurities in heteropolar semiconductors, Phys Rev B,1984,30,3430
    [4] Karazhanov S Zh, Ravindran P, Kjekshus A, Fjellv?g H, and Svensson B G, Electronic structure and optical properties of ZnX (X=O, S, Se, Te): A density functional study, Phys Rev B,2007, 75, 155104
    [5] Jiang Y Y, Sheng Y, Zhang X L, et al. ZnSe-based organic-inorganic heterostructure diodes, Acta Phys. Sin. 2006, 55, 4860(in Chinese)
    [6] John L F, Far-Ultraviolet Reflectance of II-VI Compounds and Correlation with the Penn—Phillips Gap, Phys Rev B, 1973, 7, 3810
    [7] Chang E and Barsch G R, Pressure dependence of single crystal elastic constantsand anharmonic properties of wurtzite, J. Phys. Chem. Solids, 1973, 34, 1534
    [8] Jaffe J E, Pandey R, and Seel M J, Ab initio high-pressure structural and electronic properties of ZnS, Phys. Rev. B, 1993, 47, 6299
    [9] Hu Y J, Cui L, Zhao J, Teng Y Y, Zeng X H, Tan M Q, 2007, Acta Phys. Sin. 56 4079(in Chinese)
    [10] Perdew J P, Levy M, Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities, Phys. Rev. Lett, 1983, 51, 1884
    [11] Segall M D, Lindan P J D, Probert M J, et al.Firstprinciples simulation: ideas, illustrations and the CASTEP code, J. Phys.:Condens.Matter. 2002,14, 2717
    [12] Inorganic Crystal Structure Database (Gmelin Institut, Karlsruhe, 2001)
    [13] Lambrecht W R, Rodina A V, Limpijumnong S, et al. Valence-band ordering and magneto-optic exciton fine structure in ZnO, Phys Rev B, 2002, 65, 075207
    [14] Vogel D, Kr?ger P, and Pollmann J, Ab initio electronic-structure calculations for II-VI semiconductors using self-interaction-corrected pseudopotentials, Phys Rev B, 1995, 52, R14316
    [15] Oleg Z, Angel R, BlaséX, Marvin L C, and Steven G Louie, Quasiparticle band structures of six II-VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe, Phys Rev B, 1994, 50, 10780
    [16] Shen Y B, Zhou X, Xu M, et al. Electronic structure and optical properties of ZnO doped with transition metals, Acta Phys Sin, 2007, 56, 3440(in Chinese)
    [17] Huang K, Han R Y, 1988, Solid-State Physics (Beijing: Hep. Press)p438
    [18] Shen X C, 1992, The Spectrum and Optical Property of Semiconductor (Beijing: Science Press) p76
    [19] Optical Constants of Crystalline and Amorphous Semiconductors: Numerical Data and Graphical Information, edited by Adachi S (Kluwer Academic, Boston, 1999)
    [1] Mujica A, Rubio A, Mu?oz A and Needs R J, Angle-resolved photoemission studies of the cuprate superconductors, Rev Mod Phys, 2003, 75, 473
    [2] Kirin D, Luka?evi? I, Stability of high-pressure phases in II-VI semiconductors by a density functional lattice dynamics approach, Phys Rev B, 2007, 75, 172103
    [3] Piermarini G J and Block S, Ultrahigh Pressure Diamond-Anvil Cell and Several Semiconductor Phase Transition Pres-sures in Relation to the Fixed Point Pressure Scale, Rev Sci Instrum, 1975, 46, 973
    [4] Karzel H, Potzel W, K?fferlein M, et al. Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures, Phys Rev B, 1996, 53, 11425
    [5] Lin C M, Chuu D S and Yang T J, Raman spectroscopy study of ZnSe and Zn0.84Fe0.16Se at high pressures, Phys Rev B, 1997, 55, 13641
    [6] Valeri I. S, John S T, Theoretical study on the highpressure phase transformation in ZnSe, Phys. Rev. B, 1995,52,4658
    [7] Hamdi I, Aouissi M, Pressure dependence of vibrational, thermal, and elastic properties of ZnSe: An ab initio study, Phys Rev B, 2006, 73, 174114
    [8] Perdew J P, Levy M, Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities, Phys. Rev. Lett, 1983, 51, 1884
    [9] Segall M D, Lindan P J D, Probert M J, et al.Firstprinciples simulation:ideas, illustrations and the CASTEP code, J. Phys.:Condens.Matter. 2002, 14, 2717
    [10] Yuan P F, Ding Z J, Ab initio calculation of elastic properties of rock-salt and zinc-blend MgS under pressure, Physica B, 2008, 403, 1996
    [11] Sinko G V, Smirnow N A, Ab initio calculations of elastic constants and thermodynamic properties of bcc,fcc,and hcp Al crystals under pressure, J Phys: Condense Matter, 2002,14, 6989 [ 12 ] Kim H K, Nahm K, Electronic contribution to the elastic constants of hydrogen-added metals, J Appl Phys, 1984, 55, 2797
    [13] John E J, James A S, Lin Z J and Anthony C H, LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO, Phys Rev B, 2000, 62, 1660
    [1] Bevilacqua G, Martinell L, Vogel E E, Jahn-Teller Effect and the Luminescence Spectra of V2+ in ZnS and ZnSe, Phys Rev B, 2002, 66, 1553381
    [2] Alberto G, John E N, Compensation of p-Type Doping in ZnSe: The Role of Impurity-Native Defect Complexes, Phys Rev Lett, 1995, 74, 1131
    [3] Lin C M, Chuu D S and Yang T J, Raman spectroscopy study of ZnSe and Zn0.84Fe0.16Se at high pressures, Phys. Rev. B, 1997, 55, 13641
    [4] Postnikov A V, Olivier P and Joseph H, Lattice dynamics of the mixed semiconductors (Be, Zn)Se from first-principles calculations, Phys Rev B, 2005, 71, 115206
    [5] Kwak K W and Vanderbilt D, First-principles study of phosphorus and nitrogen impurities in ZnSe, Phys Rev B, 1995, 52, 11912
    [6] Haase M A, Qui J, DePuydt J M, et al, Blue-green laser diodes, Appl Phys Lett, 1991, 59, 1272
    [7] Laks D B, Van de Walle C G, Neumark G F, et al, Native defects and self- compensation in ZnSe, Phys Rev B, 1992, 45,10965
    [8] Van de Walle C G, Laks D B, Neumark G F, Pantelides S T, First-principles calculations of solubilities and doping limits: Li, Na, and N in ZnSe, Phys Rev B, 1993, 47, 9425
    [9] Gundel S and Faschinger W, First-principles calculation of p-type doping of ZnSe using nitrogen, Phys Rev B, 2001, 65,035208
    [10] Gudkov V V, Lonchakov A T, Sokolov V I,et al, Ultrasonic investigation of ZnSe: V2+ and ZnSe: Mn2+: Lattice softening and low-temperature relaxation in crystals with orbitally degenerate states, Phys Rev B, 2008, 77,155210
    [11] Karzel H, Potzel W, K?fferlein M, et al. Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures, Phys Rev B, 1996, 53, 11425
    [12]何开华,余飞,姬广富等,第一性原理研究ZnS掺V的光学性质和电子结构,高压物理学报, 2006, 20, 56
    [13] Perdew J P, Levy M, Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities, Phys. Rev. Lett, 1983, 51, 1884
    [14] Segall M D, Lindan P J D, Probert M J, et al.Firstprinciples simulation: ideas, illustrations and the CASTEP code, J Phys: Condens.Matter. 2002, 14, 2717
    [15] Oleg Z, Angel R, BlaséX, Marvin L C, and Steven G Louie, Quasiparticle bandstructures of six II-VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe, Phys Rev B, 1994, 50, 10780
    [16] Huang K,Han R Y 1988 Solid-State Physics (Beijing: Hep. Press)p325
    [17] Zhao Z Y, Liu Q J, Zhu Z Q, Zhang J, Effects of S doping on electronic structures and photocatalytic properties of anatase TiO2, Acta Phys Sin, 2008, 57, 3760 (in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700