VO_2外延薄膜制备、生长机理及相变温度调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化钒(V02)由于接近室温的金属绝缘转变温度,同时伴随着光学、电学以及磁学性质的巨大突变而吸引了人们极大的兴趣。这些典型的特点使得V02在节能材料、记忆存储,光电转换开关等领域有着非常广阔的应用前景。然而钒的氧化物有着多重价态(如V2+, V3+,V4+,V5+)以及由于点缺陷而存在Magneli相如VnO2n-1(3     (1)、系统研究了薄膜生长过程中氧分压对VO2薄膜相组分的影响。首次利用氧源射频分子束外延(MBE)技术制备出2英寸大小的V02外延单晶薄膜,系统研究了氧空位在VO2相变过程中所起的作用,提出了一种新的观点来解释氧空位降低相变温度的机制。
     (2)、利用φ-scan x射线衍射研究了VO2/Al203外延薄膜面内晶格匹配情况并提出了区域匹配的外延生长模型。首次利用高分辨同步辐射x射线衍射开展V02/Al2O3外延薄膜生长特性的研究,发现了φ-scan过程中的复杂精细衍射结构。根据界面多区域生长模型,我们很好的解释了这种复杂精细衍射结构的来源。同时掠入射φ-scan x射线衍射实验进一步证实了我们所提出的界面外延生长模型。这种晶体薄膜的外延生长模型对六重旋转对称性的其它衬底上生长V02薄膜具有普适性。
     (3)、开展VO2相变温度调控的研究:首先制备了不同厚度的V02/TiO2外延薄膜,发现相变温度与薄膜的厚度密切相关。相变温度随着薄膜变薄逐步降低。利用同步辐射倒易空间成像方法研究了不同厚度的V02薄膜中应力演变的动力学过程,基于VASP软件计算了不同应力下VO2费米面附近态密度分布情况。根据应力演变以及计算结果,我们指出界面应力改变了VO2薄膜中导带电子占据状态,继而影响了相变温度。
     另一项工作是通过电压来调控相变温度,首先我们在压电材料PMN-PT衬底上制备了V02薄膜,通过外加电压调控PMN-PT材料的应力,继而可以连续调控VO2相变温度。最后制备了VO2/GaN pn结结构,并且通过外加电压调控pn结电压,在某种程度上也可以调控V02相变温度。
Vanadium dioxide (VO2) is a system that still attracts a tremendous interest because of its metal-insulator transition near the room temperature, accompanied by abrupt and large changes in optical, electrical and magnetic properties. The particular characteristics of the VO2indicate many applications in different fields such as energy-saving material, memory devices and optical switchs. Vanadium oxides contain multivalent states such as V2+, V3+, V4+, V5+, and exists in a Magneli phase VnO2n-1(3     (1) We systematically studied the role of the oxygen pressure in the VO2film growth. For the first time we successfully prepared a2-inch VO2epitaxial film using oxide plasma Molecular Beam Epitaxy (MBE). The role of oxygen defect in the VO2phase transition process was also analyzed. We proposed a new model to explain how oxygen defects decrease the critical temperature.
     (2) The in-plane lattice matching relation of a VO2/Al2O3epitaxial film was studied by j-scan XRD and the epitaxial property was explained in the domain lattice matching. We also performed high resolution synchrotron radiation XRD experiment on the VO2/Al2O3epitaxial film discovering a fine diffraction structures in j-scan XRD patterns. The growth behavior was explained according to a new interfacial model, which was validated by the results of the grazing incidence φ-scan XRD. The result of the VO2film deposition can be extended also to other six-fold rotation symmetry substrates.
     (3) We proceeded on the research on VO2phase transition temperature control via interfacial strain and voltage. We prepared VO3/TiO2films with different thickness and correlated it with the critical temperature. The critical temperature decreases as the film becomes thinner. The correlation with the interfacial strain was also demonstrated thanks to the Reciprocal Space mapping (RSM) method and the density of state near the Fermi surface of these different thickness films was calculated by using the VASP software. From the analysis of the interfacial strain data and theoretical calculations we discovered that the electronic orbital occupancy is strongly affected by the interfacial strain, which changes the electron-electron correlation and shifts the phase transition temperature. We also tuned the critical temperature by applying an external voltage on VO2films growth on a piezoelectric material (PMN-PT). The lattice constant of the substrate PMN-PT was changed by applying an external voltage, which also changes the lattice of the growth VO2film through an interfacial strain. The critical temperature can be the controlled almost continuously with this method.
     Besides, we also prepared VO2/GaN p-n junction films that change the critical temperature in a similar way using the same procedure.
引文
[I]Morin F.J.1959. Oxides which show a metal-to-insulator transition at the Neel temperature [J]. Phys. Rev. Lett.3,34.
    [2]Yang Z., Ko, C. and Ramanathan S.2011. Oxide electronics utilizing ultrafast metal-insulator transition [J]. Annu. Rev. Mater. Res.41,337.
    [3]Imada M., Fujimori A. and Tokura Y.1998. Metal-insulator transitions. Rev. Mod. Phys.70, 1039.
    [4]Torrance J.B., Lacorre P., Nazzal A.I., Ansaldo E.J. and Niedermayer C.1992. Systematic study of insulator-metal transitions in perovskites RNiO3 (R=Pr, Nd, Sm, Eu) due to closing of charge-transfer gap. Phys. Rev. B 45,8209.
    [5]Arcangeletti E., Baldassarre L., Castro D.D., Lupi S., Malavasi L., Marini C., Perucchi A. and Postorino P.2007. Evidence of a pressure-induced metallization process in monoclinic VO2 [J]. Phys. Rev. Lett.98,196406.
    [6]Abreu E., Liu M.K., Lu J.W., West K.G., Kittiwatanakul S., Yin W., Wolf S.A. and Averitt R.D.2012. THz spectroscopy of VO2 epitaxial films: controlling the anisotropic properties through strain engineering [J]. New J. Phys.14,083026.
    [7]Liu L., Cao F., Yao T., Xu Y, Zhou M, Qu B.Y., Pan B.C., Wu C.Z., Wei S.Q. and Xie Y. 2012. New-phased VO2 micro/nanostructures: investigation of phase transition and magnetic property. New J. Chem.36,619.
    [8]Whittaker L., Zhang H.S. and Banerjee S.2009. VO2 nanosheets exhibiting a well-defined metal-insulator phase transition [J]. J. Mate. Chem.19,2968.
    [9]Corr S.A., Grossman M., Shi Y, Heier K.R., Stucky G.D. and Seshadri R.2009. VO2 (B) nanorods: solvothermal preparation, electrical properties and conversion to rutile VO2 and V2O3 [J]. J. Mater. Chem.19,4362.
    [10]Oka Y, Yao T. and Yamamoto N.1991. Structural phase transition of VO2(B) to VO2(A) [J]. J. Mater. Chem.1,815.
    [11]Pouget J.P. and Launois H.1975. Electron localization induced by uniaxial stress in pure VO2 [J]. Phys. Rev. Lett.35,873.
    [12]Marezio M., Mcwhan B., Remeika J.P. and Dernier P.D.1972. Structural aspects of the metal-insulator transitions in Cr-doped VO2 [J]. Phys. Rev. B.5,2541.
    [13]Zhang S.X., Kim I.S. and Lauhon L.J.2011. Stoichiometry engineering of monoclinic to rutile phase transition in suspended single crystalline vanadium dioxide nanobeams [J]. Nano Lett.11,1443.
    [14]Zhang S.X., Chou J.Y. and Lauhon L.J.2009. Direct correlation of structural domain formation with the metal insulator transition in a VO2 nanobeam [J]. Nano Lett.9,4527.
    [15]Sohn J.I. Joo H.J., Ahn D., Lee H.H., Porter A.E., Kim K., Kang D.J. and Welland M.E.2009. Surface-stress-induced mott transition and nature of associated spatial phase transition in single crystalline VO2 nanowires [J]. Nano Lett.9,3392,
    [16]Park J.H., Coy J.M., Kasirga T.S., Huang C.M., Fei Z.Y., Hunter S. and Cobden D.H.2013. Measurement of a solid-state triple point at the metal-insulator transition in VO2 [J]. Nature. 500,431.
    [17]Wu Y.F., Fan L.L., Chen S.M., Chen S., Zou C.W. and Wu Z.Y.2013. Spectroscopic analysis of phase constitution of high quality VO2 thin film prepared by facile sol-gel method [J]. AIP Adv.3,042132.
    [18]Jeong J., Aetukuri N., GrafT., Schladt T.D., Samant M.G. and Parkin S.S.P.2013. Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation [J]. Science 339,1402.
    [19]Fan L.L., Chen S., Wu Y.F., Chen F.H., Chu W.S., Chen X., Zou C.W. and Wu Z.Y.2013. Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy [J]. Appl. Phys. Lett.103,131914.
    [20]Yang T.H., Mal S., Jin C., Narayan J.J. and Narayan J.2011. Epitaxial VO2/Cr2O3/Sapphire heterostructure for multifunctional applications [J]. Appl. Phys. Lett.98,022105.
    [21]Zhang H., Wu Z., Yang W. and Jing Y.2013. Large phase-transition hysteresis for nanostructured VOX film prepared on ITO conductive glass by DC reactive magnetron sputtering [J]. Vacuum 94,84.
    [22]Fan L.L., Wu Y.F., Si C., Zou C.W., Qi Z.M., Li L.B., Pan G.Q. and Z.Y. Wu.2012. Oxygen pressure dependent VO2 crystal film preparation and the interfacial epitaxial growth study [J]. Solid State Films.520,6124.
    [23]Goodenough J.B.1971. The two components of the crystallographic transition in VO2 [J]. J. Solid State Chem.3,490.
    [24]Zylbersztejn A. and Mott N.F.1975. Metal-insulator transition in vanadium dioxide [J]. Phys. Rev. B 11,4383.
    [25]Gao Y.F., Wang S.B., Kang L.T., Chen Z., Du J., Liu X.L., Luo H.J. and Kanehira M.2012. VO2-Sb:SnO2 composite thermochromic smart glass foil [2012]. Energy Environ. Sci.5, 8234.
    [26]Driscoll T., Kim H.T., Chae B.G., Kim B.J., Lee Y.W., Jokerst N.M., Palit S., Smith D.R., Ventra M.D. and Basov D.N.2009. Memory metamaterials [J]. Science 325,1518.
    [27]Fuls E.N., Hensler D.H. and Ross A.R.1967. Reactively sputtered vanadium dioxide thin films [J]. Appl. Phys. Lett.10,199.
    [28]Thornton J.A.1983. Plasma-assisted deposition process-theory, mechanisms and applications [J]. Thin Solid Films 107,3.
    [29]Chain E.E.1986. The influence of deposition temperature on the structure and optical properties of vanadium-oxide films [J]. J. Vac. Sci. Technol. A 4,432.
    [30]Chain E.E.1987. Effects of oxygen in ion-beam sputter deposition of vanadium oxide [J]. J. Vac. Sci. Technol. A 5,1836.
    [31]Dillon R.O., Le K. and Ianno N.2001. Thermochromic VO2 sputtered by control of a vanadium-oxygen emission ratio [J]. Thin Solid Films 398,10.
    [32]Guinneton F., Sauques L., Valmalette J.C., Cross F. and Gavarri J.R.2004. Optimized infrared switching properties in thermochromic vanadium dioxide thin films:role of deposition process and microstructure [J]. Thin Solid Films 446,287.
    [33]Jin P., Yoshimura K and Tanemura S.1997. Dependence of microstructure and thermchromism on substrate temperature for sputter-deposited VO2 epitaxial films [J]. J. Vac. Sci. Technol. A 15,1113.
    [34]Mlyuka N.R. and Kivaisi R.T.2006. Correlation between optical, electrical and structural properties of vanadium dioxide thin films [J]. J. Mater. Sci.41,5619.
    [35]Gurvitch M., Luryi S., Polyakov A., Shabalov A., Dudley M., Wang G., Ge S. and Yakovelev V.2007. VO2 films with strong semiconductor to metal phase transition prepared by precursor oxidation process [J]. J. Appl. Phys.102,033504.
    [36]Borek M., Qian F., Nagabushnman V and Singh R.K.1993. Pulsed-laser deposition of oriented VO2 thin films on R-cut sapphire substrates [J]. Appl. Phys. Lett.63,3288.
    [37]Suh J.Y., Lopez R., FeLDMAN L.C. and Haglund R.F. Jr.2004. Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films [J]. J. Appl. Phys.96,1209.
    [38]Wu Z.P., Yamamoto S., Miyashita A., Zhang Z.J., Narumi K. and Naramoto H.1998. Single-crystalline epitaxy and twinned structure of vanadium dioxide thin film on (0001) sapphire [J]. J. Phys. Condens. Matter.10, L765.
    [39]Yang T.H., Nori S., Zhou H.H. and Narayan J.2009. Defect-mediated room temperature ferromagnetism in vanadium dioxide thin films [J]. Appl. Phys. Lett.95,102506.
    [40]Yang T.H., Mai S., Jin C., Narayan R.J. and Narayan J.2011. Epitaxial VO2/Cr2O3/sapphire heterostructure for multifunctional applications [J]. Appl. Phys. Lett.98,022105.
    [41]Narayan J. and Bhosle V.M.2006. Phase transition and critical issues in structure-property correlations of vanadium oxide [J]. J. Appl. Phys.100,103524 (2006).
    [42]Zhou H., Chisholm M.F., Yang T.H., Pennycook S.J. and Narayan J.2011. Role of interfacial transition layers in VO2/A12O3 heterostructures [J]. J. Appl. Phys.110,073515.
    [43]Yang T.H., Jin C.M., Aggarwal R., Narayan R.J. and Narayan J.2010. On growth of epitaxial vanadium oxide thin film on sapphire (0001) [J]. J. Mater. Res.25,422.
    [44]Nag J., Payzant E.A., More K.L. and F.Huang Jr.2011. Enhanced performance of room-temperature-grown epitaxial thin films of vanadium dioxide [J]. Appl. Phys. Lett. 98,251916.
    [45]Fan L.L., Wu Y.F., Si C., Pan G.Q., Zou C.W. and Wu Z.Y.2013. Synchrotron radiation study of VO2 crystal film epitaxial growth on sapphire substrate with intrinsic multi-domains [J]. Appl. Phys. Lett.102,011604.
    [46]Tashman J.W., Lee J.H., Paik H., Moyer J.A., Misra R., Mundy J.A., SpilaT., Merz T.A., Schubert J., Muller D.A., Schiffer P. and Schlom D.G.2014. Epitaxial growth of VO2 by periodic annealing [J]. Appl. Phys. Lett.104,063104.
    [47]Fan L.L., Chen S., Wu Y.F., Chen F.H., Chu W.S., Chen X., Zou C.W. and Wu Z.Y.2013. Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy [J]. Appl. Phys. Lett.103,131914.
    [48]Wu C.Z., Zhang X.D., Dai J., Yang J.L., Wu Z.Y., Wei S.Q. and Xie Y.2011. Direct hydrothermal synthesis of monoclinic VO2 (M) single-domain nanorods on large scale displaying magnetocaloric effect [J]. J. Mater. Chem.21,4509.
    [49]Patridge C.J., Whittaker L., Ravel B. and Banerjee S.2012. Elucidating the influence of local structure perturbations on the metal-insulator transitions of V1-xMoxO2 nanowires: mechanistic insights from an x-ray absorption spectroscopy study [J]. J. Phys. Chem. C 116, 3728.
    [50]Tan X.G., Yao T., Long R., Sun Z.H., Feng Y.J. Cheng H., Yuan X., Zhang W.Q., Liu Q.H., Wu C.Z., Xie Y. and Wei S.Q.2012. Unraveling metal-insulator transition mechanism of VO2 triggered by tungsten doping [J]. Sci. Rep.2,466.
    [51]Whittaker L., Wu T.L., Patridge C.J., Sambandamurthy G. and Banerjee S.2011. Distinctive finite size effects on the phase diagram and metal-insulator transitions of tungsten-doped vanadium oxide [J]. J. Mater. Chem.21,5580.
    [52]Chae B.G., Kim H.T., Yun S.J., Kim B.J., Lee Y.W., Youn D.H. and Kang Y.Y.2006. Highly orientated VO2 thin films prepared by sol-gel deposition [J]. Electrochem. Solid State Lett.9, C12.
    [53]Chae B.G., Kim H.T. and Yun S.J.2008. Characteristics of W-and Ti-doped VO2 thin films prepared by sol-gel method [J]. Electrochem. Solid State Lett.11, D53.
    [54]Takei H. and Koide S.1966. Growth and electrical properties of vanadium-oxide single crystals by oxychloride decomposition method [J]. J. Phys. Soc. Japan 21,1010.
    [55]Guiton B.S., Gu Q., Prieto A.L., Gudiksen M.S. and Park H.2005. Single-crystalline vanadium dioxide nanowires with rectangular cross sections [J]. J. Am. Chem. Soc.127,498.
    [56]Cao J., Ertekin E., Srinivasan V., Fan W., Huang S., Zheng H., Yim J.W.L., Khanal D.R., Ogletree D.F., Grossman J.C. and Wu J.2009. Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams [J]. Nat. Nanotechnol.4,732.
    [57]Cheng C., Liu K., Xiang B., Suh J. and Wu J.Q.2012. Ultra-long, free-standing, single-crystalline vanadium dioxide micro/nanowires grown by simple thermal evaporation [J]. Appl. Phys. Lett.100,103111.
    [58]Lee S.W., Cheng C., Guo H., Hippalganonkar K., Wang K., Suh J., Liu K. and Wu J.Q.2013. Axially engineered metal-insulator phase transition by graded doping VO2 nanowires [J]. J. Am. Chem. Soc.135,4850.
    [59]Yao T., Zhang X.D., Sun Z.H., Liu S.J., Huang Y.Y., Xie Y, Wu C.Z., Yuan X., Zhang W.Z., Wu Z.Y, Pan G.Q., Hu F.C., Wu L.H., Liu Q.H. and Wei S.Q.2010. Understanding the nature of the kinetic process in a VO2 metal-insulator transition [J]. Phys. Rev. Lett.105, 226405
    [60]Aetukuri N., Gray A.X., Drouard M., Cossale M., Gao L., Reid A.H., Kukreja R., Ohldag H., Jenkins C.A., Arenholz E., Roche K.P., Durr HA., Samant M.G. and Parking S.S.P.2013. Control of the metal-insulator transition in vanadium dioxide by modifying orbital occupancy [J]. Nat. Phys.9,661.
    [61]Shibuya K., Kawasaki M. and Tokura Y.2010. Metal-insulator transition in epitaxial V1-xWxO2 (0    [62]Sakai E., Yoshimatsu K., Shibuya K., Kumigashira H., Ikenaga E., Kawasaki M., Tokura Y. and Oshima M.2011. Competition between instabilities of peierls transition and mott transition in W-doped VO2 thin films [J]. Phys. Rev. B 84,195132.
    [63]Qazilbash M.M., Brehm M., Chae B.G., Ho P.C., Andreev G.O., Kim B.J., Yun S.J., Balatsky A.V., Maple M.B., Keilmann F., Kim H.T. and Basov D.N.2009. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging [J]. Science 318,1750.
    [64]Lupi S., Baldassarre L., Mansart B., Perucchi A., Barinov A., Dudin P., Papalazarou E., Rodolakis F., Rueff J.P., Ltie J.P., Ravy S., Nicoletti D., Postorino P., Hansmann P., Parragh N., Toschi A., Dasgupta T.S., Andersen O.K., Sangiovanni G., Held K. and Marsi M.2010. A microscopic view on the mott transition in chromium-doped V2O3. Nat. Commun.
    [65]Tao Z.S., Han T.R., Mahanti S.D., Duxbury P.M., Yuan F. Ruan C.Y., Wang K. and Wu J.Q. 2012. Decoupling of structure and electronic phase transitions in VO2 [J]. Phys. Rev. Lett. 109,166406.
    [66]Cavalleri A., Toth C., Siders C.W., Squier J.A. and Raksi F.2001. Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition [J]. Phys. Rev. Lett. 87,237401.
    [67]Yuan X., Zhang W.Q. and Zhang P.H.2013. Hole-lattice coupling and photoinduced insulator-metal transition in VO2 [J]. Phys. Rev. B.88,035119.
    [68]Shibuya K., Okuyama D., Kumai R., Yamasaki Y., Nakao H., Murakami Y, Taguchi Y, Arima T., Kawasaki M. and Tokura Y 2011. X-ray induced insulator-metal transition in a thin film of electron-doped VO2 [J]. Phys. Rev. B.84,165108.
    [69]Liu M.K., Hwang H.Y, Tao H., Strikwerda A.C., Fan K., Keiser G.R., Sternbach A.J., West K.G., Kittiwatanakul S., Lu J., Wolf S.A., Omenetto F.G., Zhang X., Nelson K.A. and Averitt R.D.2012. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial [J]. Nature 487,385.
    [70]Wu T.L., Whittaker L., Banerjee S. and Sambandamurthy G.2011. Temperature and voltage driven tunable metal-insulator transition in individual WxV1-xO2 nanowires [J]. Phys. Rev. B 83,073101.
    [71]Kim H.T., Chae B.G., Youn D.H., Maeng S.L., Kim G., Kang K.Y. and Lim Y.S.2004. Mechanism and observation of Mott transition in VO2 based two-and three-terminal devices [J]. New J. Phys.6,52.
    [72]Lee Y.W., Kim B.J., Lim J.W, Yun S.J., Choi S., Chae B.G., Kim G. and Kim H.T.2008. Metal-insulator transition-induced electrical oscillation in vanadium dioxide thin film [J]. Appl. Phys. Lett.92,162903.
    [73]Greenberg C.B.1983. Undoped and doped VO2 films grown from VO(OC3H7)3 [J]. Thin solid Films 110,73.
    [74]Horlin T., Niklewsk T. and Nygren M.1973. Magnetic, electrical and thermal studies on V1-xMoxO2 system with 0≤x≤0.2 [J]. Mater. Res. Bull.8,179.
    [75]Beteille F. and Livage J.1998. Optical switching in VO2 thin films [J]. J. Sol-Gel Sc. Technol. 13,915.
    [76]Booth J.M. and Casey P.S.2009. Anisotropic structure deformation in the VO2 metal-insulator transition [J]. Phys. Rev. Lett.103,086402.
    [77]Nakano M, Shibuya K., Okuyama D., Hatano T., Ono S., Kawasaki M., Lwasa Y. and Tokura Y.2012. Collective bulk carrier delocalization driven by electrostatic surface charge accumulation [J]. Nature 487,459.
    [78]Wei J., Ji H., Guo W.H., Nevidomskyy A.H. and Natelson D.2012. Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams [J]. Nat. Nanotechnol.7,357.
    [79]Hong W.K., Park J.B., Yoon J., Kim B.J., Sohn J.I., Lee Y.B., Bae T.S., Chang S.J., Hun Y.S., Son B., Stach E.A., Lee T. and Welland M.E.2013. Hydrogen-induced morphotropic phase transformation of single-crystalline vanadium dioxide nanobeams [J]. Nano Lett.13,1822.
    [80]Wu C.Z., Feng F., Feng J., Dai J., Peng L.L., Zhao J.Y., Yang J.L., Si C., Wu Z.Y. and Xie Y. 2011. Hydrogen-incorporation stabilization of metallic VO2 (R) phase to room temperature, displaying promising low-temperature thermoelectric effect [J]. J. Ame. Chem. Soc.133, 13798.
    [81]Andreev V.N., Kapralova V.M. and Klimov V.A.2007. Effect of hydrogenation on the metal-semiconductor phase transition in vanadium dioxide thin films [J]. Phys. Solid State 49, 2318.
    [82]Muraoka Y. and Hiroi Z.2002. Metal-insulator transition of VO2 thin films grown on TiO2 (001) and (110) substrates [J]. Appl. Phys. Lett.80,583.
    [83]Nagashima K., Yanagida T., Tanaka H. and Kawai T. Stress relaxation effect on transport properties of strained vanadium dioxide epitaxial thin films [J]. Phys. Rev. B 74,172106.
    [1]Fan L.L., Chen S., Wu Y.F., Chen F.H., Chu W.S., Chen X., Zou C.W. and Wu Z.Y.2013. Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy [J]. Appl. Phys. Lett.103,131914.
    [2]Sayers D.E., Stern E.A. and Lytle F.W.1971. New technique for investigating noncrystalline structures:fours analysis of the extended x-rya-absorption fine structure [J]. Phys. Rev. Lett. 27,1204.
    [3]Lee P.A., Citrin P.H., Eisenberger P. and Kincaid B.M.1981. Extended x-ray absorption fine structure-tis strengths and limitations as a structural tool [J]. Rev. Mod. Phys.53,769.
    [1]Fan L.L., Wu Y.F., Si C., Zou C.W., Qi Z.M., Li L.B., Pan G.Q. and Z.Y. Wu.2012. Oxygen pressure dependent VO2 crystal film preparation and the interfacial epitaxial growth study [J]. Solid State Films.520,6124.
    [2]Yang T.H., Mal S., Jin C, Narayan R.J. and Narayan J.2011. Epitaxial VO2/Cr2O3/sapphire heterostructure for multifunctional applications [J]. Appl. Phys. Lett. 98,022105.
    [3]Fan L.L., Wu Y.F., Si C., Pan G.Q., Zou C.W. and Wu Z.Y.2013. Synchrotron radiation study of VO2 crystal film epitaxial growth on sapphire substrate with intrinsic multi-domains [J]. Appl. Phys. Lett.102,011604.
    [4]Wang XJ., Li H.D., Fei Y.J., Wang X., Xiong Y.Y., Nie Y.X. and Feng K.A.2001. XRD and raman study of canadium oxide thin films deposited on fused silica substrates by RF magnetron sputtering [J]. App. Surf. Sci.177,8.
    [5]Kang L.T., Gao Y.F., Zhang Z.T., Du J., Cao C.X., Chen Z. and Luo H.J.2010. Effects of annealing parameters on optical properties of thermochromic VO2 films prepared in aqueous solution [J]. J. Phys. Chem. C 114,1901.
    [6]Kang L.T., Gao Y.F. and Luo H.J.2009. A novel solution process for the synthesis of VO2 thin films with excellent thermochromic properties [J]. ACS Appl. Mater. Inter.1, 2211.
    [7]Schilbe P.2002. Raman scattering in VO2 [J]. Phys. B 316,600.
    [8]Jeong J., Aetukuri N., Graf T., Schladt T.D., Samant M.G. and Parkin S.S.P.2013. Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation [J]. Science 339,1402.
    [9]Zhang S.X., Chou J.Y. and Lauhon L.J.2009. Direct correlation of structural domain formation with the metal insulator transition in a VO2 nanobeam [J]. Nano Lett.9,4527.
    [10]Fan L.L., Chen S., Wu Y.F., Chen F.H., Chu W.S., Chen X., Zou C.W. and Wu Z.Y.2013. Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy [J]. Appl. Phys. Lett.103,131914.
    [11]Shibuya K., Kawasaki M. and Tokura Y.2010. Metal-insulator transition in epitaxial V1-xWxO2 (0    [12]Sakai E., Yoshimatsu K., Shibuya K., Kumigashira H., Ikenaga E., Kawasaki M. Tokura Y. and Oshima M.2011. Competition between instabilities of pererls transition and mott transition in W-doped VO2 thin films [J]. Phys. Rev. B 84,195132.
    [13]Zhou H., Chisholm M.F., Yang T.H., Pennycook S.J. and Narayan J.2011. Role of interfacial transition layers in VO2/Al2O3 heterostructures [J]. J. Appl. Phys. Lett.110, 073515.
    [14]Tan X.G., Yao T., Long R., Sun Z.H., Feng Y.J., Cheng H., Yuan X. Zhang W.Q., Liu Q.H. Wu C.Z., Xie Y. and Wei S.Q.2012. Unraveling metal-insulator transition mechanism of VO2 triggered by tungsten doping [J].2,466.
    [1]Fan L.L., Wu Y.F., Si C., Zou C.W., Qi Z.M., Li L.B., Pan G.Q. and Z.Y. Wu.2012. Oxygen pressure dependent VO2 crystal film preparation and the interfacial epitaxial growth study [J]. Solid State Films.520,6124.
    [2]Yang T.H., Nori S., Zhou H.H. and Narayan J.2009. Defect-mediated room temperature ferromagnetism in vanadium dioxide thin films [J]. Appl. Phys. Lett.95,102506.
    [3]Yang T.H., Mal S., Jin C., Narayan R.J. and Narayan J.2011. Epitaxial VO2/Cr2O3/sapphire heterostructure for multifunctional applications [J]. Appl. Phys. Lett.98,022105.
    [4]Narayan J. and Bhosle V.M.2006. Phase transition and critical issues in structure-property correlations of vanadium oxide [J]. J. Appl. Phys.100,103524 (2006).
    [5]Zhou H., Chisholm M.F., Yang T.H., Pennycook S.J. and Narayan J.2011. Role of interfacial transition layers in VO2/A12O3 heterostructures [J]. J. Appl. Phys.110,073515.
    [6]Yang T.H., Aggarwal R., Gupta A., Zhou H.H., Narayan R.J. and Narayan J.2010. Semiconductor-metal transition characteristics of VO2 thin films grown on c-and r-sapphire substrates [J]. J. Appl. Phys.107,053514.
    [7]Yang T.H., Jin C.M., Aggarwal R., Narayan R.J. and Narayan J.2010. On growth of epitaxial vanadium oxide thin film on sapphire (0001) [J]. J. Mater. Res.25,422.
    [8]Nag J., Payzant E.A., More K.L. and F.Huang Jr.2011. Enhanced performance of room-temperature-grown epitaxial thin films of vanadium dioxide [J]. Appl. Phys. Lett. 98,251916.
    [9]Fan L.L., Chen S., Wu Y.F., Chen F.H., Chu W.S., Chen X., Zou C.W. and Wu Z.Y.2013. Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy [J]. Appl. Phys. Lett.103,131914.
    [10]Zhang S.X., Chou J.Y. and Lauhon L.J.2009. Direct correlation of structural domain formation with the metal insulator transition in a VO2 nanobeam [J]. Nano Lett.9,4527.
    [11]Fan L.L., Wu Y.F., Si C., Pan G.Q., Zou C.W. and Wu Z.Y.2013. Synchrotron radiation study of VO2 crystal film epitaxial growth on sapphire substrate with intrinsic multi-domains [J]. Appl. Phys. Lett.102,011604.
    [12]Whittaker L., Jaye C., Fu Z., Fischer D.A. and Banerjee S.2009. Depressed phase transition in solution-grown VO2 nanostructures [J]. J. Am. Chem. Soc.131,8884.
    [13]Pouger J.P., Launois H., D'Haenens J.P., Merenda P. and Rice T.M.1975. Electron localization induced by uniaxial stress in pure VO2 [J]. Phys. Rev. Lett.35,873.
    [14]Marezio M., Mcwhan D.B., Remeika J.P. and Dernier P.D.1972. Structural aspects of the metal-insulator transiton in Cr-doped VO2 [J]. Phys. Rev. B 5,2541.
    [15]Wu Y.F., Fan L.L., Chen S.M., Chen S., Zou C.W. and Wu Z.Y.2013. Spectroscopic analysis of phase constitution of high quality VO2 thin film prepared by facile sol-gel method [J]. AIP Adv.3,042132.
    [16]Chae B.G., Kim H.T., Yun S.J., Kim B.J., Lee Y.W., Youn D.H. and Kang K.Y.2006. Highly oriented VO2 thin films prepared by sol-gel deposition [J]. Electrochem. Solid-State Lett.11, D53.
    [17]Chae B.G., Kim H.T. and Yun S.J.2008. Characteristics of W-and Ti-doped VO2 thin films prepared by sol-gel method [J]. Electrochem. Solid-State Lett.11, D53.
    [18]Goodenough J.B.1971. The two components of the crystallographic transition in VO2 [J]. J. Solid State Chem.3,490.
    [1]Nagashima. K., Yanagida T., Tanaka H. and Kawai T.2006. Stress relaxation effect on transport properties of strained vanadium dioxide epitaxial thin films [J]. Phys. Rev. B 74, 172106.
    [2]Luo Z.L., Chen Z.H., Yang Y.J., Liu H.J., Huang C.W., Huang H.L., Wang H.B., Yang M.M., Hu C.S., Pan G.Q., Wen W, Li X.L., He Q., Sritharan T., Chu Y.H., Chen L. and Gao C.2013. Periodic elastic nanodomains in ultrathin tetragonal-like BiFeO3 films [J]. Phys. Rev. B 88, 064103.
    [3]Aetukuri N., Gray A.X., Drouard M., Cossale M., Gao L., Reid A.H., Kukreja R., Ohldag H., Jenkins C.A., Arenholz E., Roche K.P., Durr H.A., Samant M.G. and Parking S.S.P.2013. Control of the metal-insulator transition in vanadium dioxide by modifying orbital occupancy [J]. Nat. Phys.9,661.
    [4]Muraoka Y. and Hiroi Z.2002. Metal-insulator transition of VO2 thin films grown on TiO2 (001) and (110) substrates [J]. Appl. Phys. Lett.80,583.
    [5]Yao T., Zhang X.D., Sun Z.H., Liu S.J., Huang Y.Y., Xie Y, Wu C.Z., Yuan X., Zhang W.Z., Wu Z.Y., Pan G.Q., Hu EC, Wu L.H., Liu Q.H. and Wei S.Q.2010. Understanding the nature of the kinetic process in a VO2 metal-insulator transition [J]. Phys. Rev. Lett 105, 226405.
    [6]Cao J., Ertekin E., Srinivasan V., Fan W., Huang S., Zheng H., Yim J.W.L., Khanal D.R., Ogletree D.F., Grossman J.C. and Wu J.2009. Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams [J]. Nat. Nanotechnol.4,732.
    [7]Wu T.L., Whittaker L., Banerjee S. and Sambandamurthy G.2011. Temperature and voltage driven tunable metal-insulator transition in individual WxV1-xO2 nanowires [J]. Phys. Rev. B 83,073101.
    [8]Kim H.T., Chae B.G., Youn D.H., Maeng S.L., Kim G., Kang K.Y. and Lim Y.S.2004. Mechanism and observation of Mott transition in VO2 based two-and three-terminal devices [J]. New J. Phys.6,52.
    [9]Lee Y.W., Kim B.J., Lim J.W., Yun S.J., Choi S., Chae B.G., Kim G. and Kim H.T.2008. Metal-insulator transition-induced electrical oscillation in vanadium dioxide thin film [J]. Appl. Phys. Lett.92,162903.
    [10]Zhang S., Zhao Y.G., Li P.S., Yang J.J., Rizwan S., Zhang J.X., Seidel J., Qu T.L., Yang Y.J., Luo Z.L., He Q., Zou T., Chen Q.P., Wang J. W., Yang L.F., Sun Y, Wu Y.Z., Xiao X., Jin X.F., Huang J., Gao C., Han X.F. and Ramesh R.2012. Electric-field control of nonvolatile magnetization in Co4oFe4oB2o/Pb(Mg1/3Nb2/3)o.7TiO3 structure at room temperature [J]. Phys. Rev. Lett.108,137203.
    [11]Yang Y., Yang M.M., Luo Z.L., Huang H., Wang H., Bao J., Hu C., Pan G., Yao Y, Liu Y, Li X.G., Zhang S., Zhao Y.G., Gao C.2012. Large anisotropic remnant magnetization tenability in (011)-La2/3Sr1/3MnO3/0.7Pb(Mg2/3Nb1/3)O3-0.3PbTiO3 multiferroic epitaxial heterostructures [J]. Appl. Phys. Lett.100,043506.
    [12]Wu T., Bur A., Wong K., Zhao P., Lynch C.S., Amiri P.K., Wang K.L. and Carman G.P.2011. Electrical control reversible and permanent magnetization reorientation for magnetoelectric memory devices [J]. Appl. Phys. Lett.98,262504.
    [13]Thiele C., Dorr K., Bilani O., Rodel J. and Schultz L.2007. Influence of strain on the magnetization and magnetoelectric effect in La0.7A0.3MnO3/PMN-PT(001)(A=Sr, Ca) [J]. Phys. Rev. B 75,054408.
    [1]Qazilbash M.M., Brehm M., Chae B.G., Ho P.C., Andreev G.O., Kim B.J., Yun S.J., Balatsky A.V., Maple M.B., Keilmann F., Kim H.T. and Basov D.N.2009. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging [J]. Science 318,1750
    [2]Zhang S.X., Kim I.S. and Lauhon L.J.2011. Stoichiometry engineering of monoclinic to rutile phase transition in suspended single crystalline vanadium dioxide nanobeams [J]. Nano Lett.11,1443.
    [3]Cao J., Ertekin E., Srinivasan V., Fan W., Huang S., Zheng H., Yim J.W.L., Khanal D.R., Ogletree D.F., Grossman J.C. and Wu J.2009. Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams [J]. Nat. Nanotechnol.4,732.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700