BST铁电薄膜移相器结构仿真与工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁电薄膜介质移相器相比较其它类型的移相器具有成本低、体积小、抗辐射、驱动功率低、可靠性强等优点而备受人们青睐,是军用雷达领域的热点研究对象。本文主要对叉指电容加载共面波导移相器结构做了简要的理论研究和实验制备,给出了共面波导与外接电路匹配的结构(CPW-MS)结构设计,重点讨论了双周期结构对器件性能的改进作用,最后通过半导体工艺成功地制备出了双周期、单周期移相器单元结构,并给出了器件的测试方案。
     利用HFSS软件对叉指电容的结构参数进行了模拟仿真,研究了叉指电极宽度、叉指电极间隙、叉指电极长度对器件性能的影响,结果发现大的移相量和小的损耗很难同时满足,需要根据具体情况对参数进行折中选择。
     对具有CPW-MS转换结构的移相器模型也做了HFSS仿真,结果发现在微带线(MS)宽度为一定值时,转换结构的角度越大,即转换结构的长度越小,器件的损耗越小,然而器件的移相量只在长度较大时有明显的变化。对双周期结构相邻叉指电容之间的不同距离进行了研究,最终得出可以在更宽的频段内阻抗匹配的一组L1和L2的值,并且这种相邻叉指电容位置的变化还可以降低某单个频率点的损耗,优化了移相器的性能。
     结合实际制备工艺以及本论文和本实验小组的相关结论给出了移相器的最终设计参数:信号线宽度为40μm~60μm,缝隙宽度在没有叉指电极存在时为10μm~20μm,有叉指电容时我们取为70μm,叉指长度40μm~60μm,叉指宽度4μm~8μm,叉指间距8μm~12μm;衬底主要有Sapphire、Si,电极材料主要有Al、Cu、Pt;BST薄膜厚度为0.3μm~0.8μm,Al电极厚度在1.152μm以上,Cu电极厚度0.934μm以上。
     利用剥离工艺成功的制备了单周期和双周期两种移相器单元结构,图形完整清晰,制备效果良好。最后提出可用在片测试技术对器件性能进行测试分析。
Compared with others, the ferroelectric films based phase shifter has many better advantages, such as low cost, small valume, anti-radiation, small drive power, high reliability and so on, and it has attracted much more attention especially in military radar field in recent years. In this dissertation, we have done some theoretical research and experimental fabrication of interdigital capacitor loading on the CPW, designed CPW-MS transition structure which makes CPW matching with external microstrip circuit, and discussed the improvement of double periodic structure. At last, the unit structure of single periodic and double periodic phase shifter is fabricated successfully using semiconductor technology, introduced testing solution of the phase shifter.
     The effection to device performence of interdigital capacitor structure parameters including the width and length of interdigital electrode, the width between interdigital electrode is analyzed using HFSS software. According to result analyzed, it is difficult to obtain large phase shift and small loss simultaneously, and the parameters chosen need to compromise according to actual situation.
     The phase shifter model with CPW-MS transformation structure is simulated by using HFSS software and when the width of microstrip is a fixed value, the larger the angle of CPW-MS, namely the smaller the length of CPW-MS, the smaller the loss, but the phase shift of device can not change significantly unless the length of CPW-MS is large enough. The different distances of adjacent interdigital capacitor of double periodic structure are discussed, and got the optimal length of the L1 and L2 that lead to impedance matching in wider band; moreover as a result, the loss of some single frequency point can be reduced, optimize the performance of device.
     The final design parameters is derived by relevant conclusions of this paper and experimental group as width of signal line is 40μm to 60μm, the width of slot is 10μm to 20μm without interdigital electrodes, otherwise is 70μm, the length of interdigital electrode is 40μm to 60μm, the width of interdigital electrode is 4μm to 8μm, the width between interdigital electrode is 8μm to 12μm; the substrate can be Sapphire or Si; electrode materials can be Al、Cu and Pt; The thickness of BST thin films is 0.3μm to 0.8μm, the thickness of Al and Cu is over 1.152μm and 0.934μm respectively.
     The unit structures of single and double periodic phase shifter are fabricated successfully using lift-off technology, the graphics are complete and clear and the fabrication effect is good. At last, on-chip test technology which can be used for analysis of device performence is proposed.
引文
[1] Mueller C. H., Romanofsky R. R., Miranda F. A.. Ferroelectric thin film and broadband satellite systems. Potentials, 2001, 20(2): 36-39
    [2] Miranda F. A., Subramanyam G.., Van Keuls F. W., et al. A K-band(HTS, gold)/ferroelectric thin film/dielectric diplexer for a discriminator-locked tunable oscillator. IEEE Transactions on Applied Superconductivity, 1999, 9(2): 3581-3584
    [3] Subramanyam G., Ahamed F., Biggers R., et al. A Si MMIC compatible ferroelectric varactor shunt switch for microwave applications. IEEE Microwave and Wireless Components Letters, 2005, 15(11): 739-741
    [4] Kosmin, Dmitry M., Osadchy, et al. Digital-analog phase shifters with ferroelectric varactors for 2D phased array antenna. International Conference on Microwaves, Radar & Wireless Communications, 2006, MIKON: 687-691
    [5]钟维烈.铁电体物理学.北京:科学出版社, 1998. 1-18
    [6]胡立业,杨传仁,符春林.钛酸锶钡薄膜C-V曲线不对称现象研究.功能材料, 2005, 36(11): 1074-1075
    [7]陈宏伟,杨传仁,符春林等. BST薄膜的膜厚与铁电性能关系研究.电子元件与材料, 2004, 24(6): 16-17
    [8] Kozyrev A., Osadchy V., Pavlov A., et al. Application of ferroelectrics in phase shifter design. IEEE MTT-S International Microwave Symposium Digest, 2000, 3: 1355-1358
    [9] Wang Longhai, Yu Jun, Wen Xin’yi, et al. Ferroelectric properties of Pt/PbTiO3/PbZr0.3Ti0.7O3/PbTiO3/Pt integrated capacitors etched in noncrystalline phase. Appl. Phys. Lett. 2006, 89: 182901-1-182901-3
    [10] Quaddari M., Delprat S., Vidal F., et al. Microwave characterization of ferroelectric thin film materials. IEEE Transactions on Microwave Theory and Techniques, 2005, 53: 1390-1397
    [11] Xu Jinbao, Gao Cheng, Zhai Jiwei, et al. Structure-related infrared optical properties of Ba(ZrxTi1-x)O3 thin films grown on Pt/Ti/SiO2/Si substrates by low-temperatureprocessing. J. Crys. Grow., 2006, 291(1): 130-134
    [12] Chen F. Y., Fang Y. K., Shu C. Y., et al. Numerical analysis of a PbTiO3 ferroelectric thin-film infrared optical diode. IEEE Transactions on Electron Devices, 1997, 44: 937-942
    [13] Murgan R., Razak F., Tilley D. R., et al. Second harmonic generation from a ferroelectric film. Comp. Mater. Sci., 2004, 30(3-4): 468-473
    [14] Barker N. S., Rebeiz G. M. Optimization of distributed MEMS phase shifters [c]//IEEE MTT2S International Microwave Symposium Digest, 1999; 1: p2992302
    [15]卿健,石艳玲,赖宗声,朱自强. MEMS移相器及其在微型通信系统中的应用.微电子学, 2002, 32(4): 241-244
    [16] Franco D. F., Alexopoulos N. G., et al. Planar microwave integrated phase-shifter design with high purity ferroelectric material. IEEE, 1997, 45(6): 963-969
    [17] Zimmermann F., Voigts M., et al. Investigation of barium strontium titanate thick films for tunable phase shifters. Journal of the European Ceramic Society 21, 2001, 2019–2023
    [18] Van Keuls F. W., Romanpfsky R. R., Mueller C. H., et al. Room temperature thin film BaxSr1-xTiO3 Ku-band coupled microstrip phase shifters: effects of film thickness, doping, annealing and substrate choice. IEEE MTT-S, 1999: 737-740
    [19] Kim B. J., Baik S., Poplavko Y., et al. Epitaxial Ba0.5Sr0.5TiO3 thin films for microwave phase shifters [J]. Integr. Ferroelectr., 2001, 34(1–4): 1647/207–1654/214
    [20] Velu G., Blary K., Burgnies L., et al. A 310°/3.6-dB K-band phase shifter using paraelectric BST thin films. IEEE microwave and wireless components letters, 2006, 16(2): 87-89
    [21] Yu A., Yang C. R., Chen H. W., et al. Modified principle of distributed ferroelectric phase shifter considering the influence of interconnecting lines. Microwave andoptical technology letters, 2008, 50(3): 748-751
    [22] Fu C. L., Pan F. S., Chen H. W., et al. Coplanar phase shifters based on ferroelectric thin films. Int J Infrared Milli Waves, 2007, 28: 229-235
    [23] Yang W. M., Yu J., He L. X., et al. Crystallization and electrical properties of(Ba0.4Pb0.3)Sr0.3TiO3 thin film by pulsed laser deposition. Journal of Wuhan University of Technology(Materials Science Edition), 2007, 22(4): 634-637
    [24] Yu J., Yang W. M., Zhou S., et al. Effect of RF-magnetron sputtering parameters on structure and properties of Ba0.7Sr0.3TiO3 thin films.电子器件, 2008, 31(1): 216-219
    [25] Feldman C.. Formation of thin films of BaTiO3 by evaporation. Rev. Sci. Instr., 1955, 26(5): 463-466
    [26] Feuersanger A. E., Hagenlocher A. K., Solomon A. L.. Preparation and properties of thin barium titanate films. J. Electrochem. Soc., 1964, 111(12): 1387-1391
    [27] Takei W. J., Formigoni N. P., Francombe M. H.. Preparation and epitaxy of sputtered films of ferroelectric Bi4Ti3O12. J. Vacuum Science and Technology, 1970, 7: 442-448
    [28] Jayadevan K. P., Tseng T. Y.. Materials in Electronics, 2002, 13: 439
    [29] Padmini P., Taylor T. R., Lefevre M. J., et al. Realization of high tenability barium strontium titanate thin films by RF magnetron sputtering. Applied Physics Letters, 1999, 75(20): 3186-3188
    [30] Xu Jin, Menesklou Wolfgang, Ivers-Tiffee Ellen. Processing and properties of BST thin films for tunable microwave devices. Journal of the European Ceramic Society, 2004, 24: 1735-1739
    [31] Kim W. J., Chang W., Qadri S. B., et al. Microwave properties of tetragonally distorted Ba0.5Sr0.5TiO3 thin films. [J]. Appl. Phys. Letter, 2000, 76: 1185~1187
    [32] Kim W. J., Wu H. D., Chang W., et al. Microwave dielectric properties of strained Ba0.4Sr0.6Ti03 thin films. Journal of Applied Physics, 2000, 88(9): 5448-5451
    [33] Park B. H., Gim Y., Fan Y., et al. High nonlinearity of Ba0.6Sr0.4TiO3 films heteroepitacially grown in MgO substrates. Applied Physics Letters, 2000, 77(16): 2587-2589
    [34] Cracium V., Cracium D., Howard J. M., et al. Ultraviolet-assisted plused laser deposition: a new technology for the growth of thin films at medium and low temperatures. Sixth Conference on Optics, 2001, 4430: 205-214
    [35] Ding Y. P., Jin C. Y., Meng Z. Y.. Investigation on the amo rphous-crystalline transition and micro structure of sol-gel derived Ba1-xSrxTiO3 thin films. [J]. Mater. Res. Bulletin, 2000, 35: 1187-1193
    [36] Adikary S. U., Chan H. L. W.. Ferroelectric and dielectric properties of sol-gel derived BaxSr1-xTiO3 thin films. Thin Solid Films, 2003, 424: 70-74
    [37] Sun Xiaohua, Zhu Bailin, Liu Tao, et al. Dielectric and tunable properties of K-doped Ba0.6Sr0.4TiO3 thin films fabricated by sol-gel method. Journal of Applied Physics 2006, 99: 084103
    [38] Regnery S., Ding Y., Ehrhart P., et al. Metal-organic chemical-vapor deposition of (Ba,Sr)TiO3: nucleation and growth on Pt-(111). Journal of Applied Physics, 2005, 98: 084904
    [39]范寿康.微波技术与微波电路.北京:机械工业出版社, 2003: 9-44
    [40]廖承恩.微波技术基础.北京:国防工业出版社, 1984: 10-60
    [41] Kim Ki-Byoung. Integration of coplanar (Ba,Sr)TiO3 microwave phase shifters onto Si wafers using TiO2 buffer layers. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, Vol. 53, No. 3, March, 2006, 518-524.
    [42] Veyres C., Hanna V. F.. Extension of the application of conformal mapping techniques to coplanar lines with finite dimensions[J]. Int. J. Electron, 1980, 48(1): 47-56.
    [43]赵吉祥,毛军发.薄衬底共面波导的特性分析.电子学报. 2003,12,第12期1891-1983
    [44] Wheeler H. A.. Transmission line properties of a strip on a dielectric sheet on a plane. IEEE Trans. Microwave Theory Tech., 1977, 25(8), 631-647.
    [45] Ghione G.. A cad-oriented analytical model for the losses of general asymmetric coplanar lines in hybrid and monolithic MICS [J]. IEEE Trans. Microwave Theory Tech., 1993, 41 (9): 1499-1510
    [46]杨卫明.铁电移相材料Ba1-x-yPbxSryTiO3的制备与性能研究.博士学位论文,华中科技大学, 2008
    [47] Ji T., Yoon H., Abraham J. K.. Ku-Band Antenna Array Feed Distribution Network with Ferroelectric Phase Shifter on Silicon. IEEE Transaction on Microwave Theory and Techniques, 2006, 54(3): 1131-1138
    [48] Nagra A. S.,York R. A.. Distributed analog phase shifters with low insertion loss, IEEE Trans. Microw. Theory Tech., Sep. 1999, 47(9): 1705–1711
    [49] Meng Q. D., Zhang X. Q., et al. An impedance matched phase shifter using BaSrTiO3 thin film. IEEE microwave and wireless components letters, June 2006, 6:345-347
    [50] Ludwig R. Bretchko P., RF Circuit Design Theory and Application. Upper Saddle River, NJ: Prentice-Hall, 2002, p. 434
    [51] Zheng Guizhen, Papapolymerou John, et al. Wideband coplanar waveguide RF probe pad to microstrip transitions without via holes. IEEE microwave and wireless components letters, December 2003, 12: 544-546
    [52] Wen C. P.. Coplanar waveguide surface strip transmission line suitable for nonreciprocal gyro magnetic device applications. IEEE Trans. Microwaves Theory Tech., 1969, 17(12): 1087-1090
    [53]韩阶平,侯豪情,邵逸凯. [J ].真空科学与技术, 1994, 14(3): 215-219
    [54] Yao Peng. [J ]. Proc. of SPIE, 2000, 5342: 165-172
    [55] Yang Hua, Zhu Hongliang, Xie Hongyun, et al. Low microwave loss coplanar waveguides fabricated on high-resistivity silicon substrate. Chinese journal of semiconductors, 2006, 27(1): 1-3
    [56]孙伟,田小建.共面微波探针在片测试技术研究.电子学报, 2001, 29(2): 222-224

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700