薄荷品种资源遗传多样性研究及优异种质评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄荷为唇形科薄荷属中的一类重要植物,其所含的薄荷精油具有十分重要的经济价值广泛应用于食品、医药及日化产品领域。本研究对所收集的薄荷品种资源分别从叶片性状,生物量、精油产量、精油成分等方面进行了分析评价,同时利用化学和分子标(?)(Amplified Fragment Length Polymorphism and chloroplast DNA)分别对其进行化学多样性和分子遗传多样性分析。主要研究结果如下:
     1.薄荷叶片性状及精油产量评价。对薄荷叶片性状变异分析表明,除叶长宽比的变异系数较低外,其余各性状的变异系数均在35%以上,其中M×gracilis-01的叶片重量最大为0.15g,M. aquatica-01的叶长宽比最大为2.5,M. spicata-06的叶面积最大为7.8cm2,M.spicata-02的油腺数量最多为8475个。对精油含量、鲜草产量和精油产量变异分析表明,除鲜草产量的变异系数较低外,精油含量和精油产量的变异系数均在50%以上,其中M. spicata-08的鲜草亩产量最高为1467.4kg,M.canadensis-02的精油含量和精油亩产量最高分别为0.92%和10.3kg。相关性分析显示叶面积与精油产量、精油含量和叶长宽比之间显著正相关,与油腺数量呈现极显著正相关;精油产量与精油含量呈现极显著正相关。对薄荷精油产量进行综合评价显示精油亩产量在6.0kg以上的薄荷资源有M. canadensis-02等10种。结果表明所收集的薄荷品种在叶片性状和精油产量方面存在丰富的变异,在一些重要性状之间存在极显著的相关性。
     2.薄荷精油成分研究及评价。精油成分分析结果表明,薄荷精油成分呈现多样性,其中相对含量在5.0%以上有menthol等27种精油成分。不同花期精油成分分析结果表明,精油成分相对含量在不同花期存在差异性变化,其中globulol等7种精油成分相对含量在初花期最高。menthol等16种精油成分相对含量在盛花期最高。limonene等4种精油成分相对含量在末花期最高。脱落酸处理对薄荷精油成分影响的分析结果表明,经脱落酸处理后menthofuran含量显著提高导致精油品质下降。脱落酸处理后的薄荷精油主成分相对含量间的相关性分析表明,薄荷精油各主成分相对含量间存在动态平衡,变化规律符合线性方程menthol=74.787-1.044×menthone-0.705×menthofuran-0.796×pulegonec脱落酸处理后的薄荷精油合成相关基因表达分析结果表明,ABA处理会显著影响薄荷精油合成相关基因的表达。精油成分在不同薄荷资源间存在差异性,这些差异是影响精油品质的主要因素,依据精油成分评价,具有生产高品质薄荷精油潜力的种质资源有M. spicata-08等10种。
     3.薄荷资源chloroplast DNA亲缘关系分析。所收集的薄荷品种资源共产生了两个主要的聚类,聚类I包括M. spicata-M. suaveolens-M. longifolia-M.×gracilis-M. arvensis-M×piperita等薄荷群体,聚类II包括M. aquatica-M. xpiperita-M.×piperita等薄荷群体。其中聚类1分为3个亚组:①M. spicata-M. longifolia、②M. spicata-M. suaveolens和③M.arvensis-M. xgracilis,聚类11分为2个亚组:①M. canadensis-M.aquatica和②M.×piperita。结果表明,亲缘关系相近的薄荷群体聚为同一类,同时本研究结果清晰的反映了母本与其后代之间的亲缘关系。
     4.薄荷资源精油化学型分析。M. spicata群体精油包含2个化学型:limonene-carvone型和1,8-cineole-piperitenone oxide型。M.arvensis-01群体精油的化学型为limonene-carvone-piperitenone oxide型。M. aquatica群体精油包含4种化学型:①menthone-menthol-pulegone型、②Hnalool-linalyl acetate型、③limenone-carvone型、④1,8-cineole-globulol型。M×piperit群体精油含有2种化学型:high menthone-low menthol型和low menthone-high menthol型。M. longifolia群体精油含有2种化学型:limonene-carvone型和piperitone-isocaryophyllene oxide-piperitenone oxide型。M. suaveolens群体精油化学型为:piperitenone oxide型。M. canadensis群体精油含有两种化学型:menthol-menthyl acetate型和menthone-menthol型。Mxgracilis群体精油的化学型为limonene-carvone型。M. pulegium L群体精油的化学型为menthone-pulegone-menthofuran型。结果表明,所收集的薄荷品种精油存在丰富的化学多样性。精油化学型与cpDNA标记相关性分析表明,薄荷品种精油化学型分析结果与cpDNA标记聚类结果具有紧密的相关性,说明二者之间存在一定的相互关系。
     5.薄荷资源AFLP遗传多样性分析。分析结果表明,28份薄荷品种间的遗传相似系数0.44-0.91之间,平均相似系数为0.66。聚类分析结果将28个薄荷品种分为7个主要的聚类,分别为①M.spicata-M.suaveolens,②M×piperit,③M.aquatica-Mxgracilis,④M.spicata-M. longifolia,⑤M.aquatica,⑥M.canadensis-M.arvensis和⑦M.spicata-M.longifolia。结果表明所收集的薄荷品种存在丰富的遗传多样性。
Mint is the most important plant in the genus Mentha (Lamiaceae). All species and natural hybrids of Mentha are essential oil bearing; these essential oils have high economic value and are now widely used in foods, medicines industry and daily chemical field. In this article, we evaluated the leaf characters, biomass, production and composition of essential oil of the mint germplasm resources. The chemical and genetic diversity were also analyzed using chemical (composition of essential oil) and molecular marker (Amplified Fragment Length Polymorphism and chloroplast DNA) respectively.
     The main results were described as follows:
     1. Evaluation on foliage traits and essential oil production of mint germplasm resources. The results of leaf traits variation showed that great variation was found in leaf traits except the the trait of leaf length/width ratio. The coefficient of variation of these leaf traits was above35%. The leaf weight of M×gracilis-01was highest (0.15g) in the leaf weight trait. The leaf length/width ratio of M. aquatica-01was highest (2.5) in the leaf length/width ratio trait. The leaf area of M. spicata-06was highest (7.8cm2) in the leaf area trait. The oil gland numbers of M.spicata-02were highest (8475) in the oil gland numbers trait. The results of essential oil content, fresh yield and oil production traits showed that great variation was found in these traits except the the trait of fresh yield, the coefficient of variation of these traits was above50%. The fresh yield of M. spicata-08was highest (1467.4kg/mu) in the fresh yield trait. The oil content and production of M. canadensis-02were highest (0.92%and10.3kg respectively) in the content and production of essential oil trait. Correlation analysis showed that the leaf area had very significant positive correlation with content of essential oil, oil production, leaf length/width ratio and oil gland number. The oil production had significant positive correlation with content of essential oil. According to the comprehensive evaluation of oil production, there were ten mint germplasm resources whose per mu production of essential oil in more than6.0kg were selected. Our results showed that there were plentiful variation in leaf and oil production traits and extremely significant correlation among these characters in mint germplasm resources.
     2. Study and evaluation on compositions of mint oil. The analysis results of compositions of mint oil showed that in total, twenty-seven main compounds whose contents were above5.0%were identified. The contents of these compounds had difference at different flowering stage, the levels of seven compounds reached the maximum in the initial flowering stage, the levels of sixteen compounds reached the maximum in the full flowering stage, and the levels of four compounds reached the maximum in the later flowering stage. Exogenous abscisic acid (ABA) application caused a decline in oil quality by improving the content of menthofuran and reduceing the content of menthol of mint oil, correlation analysis showed that a dynamic balance among the contents of menthol, menthone, menthofuran and pulegone was found, the relationship was menthol=74.78-1.044×menthone-0.705×menthofuran0.796×pulegone. gene expression analysis showed that ABA application affected the expression of genes in metabolic pathways of mint oil. According to the result of evaluation on essential oil compounds, there were20mint germplasm resources that had the potential to produce high quality oil were selected.
     3. Analysis on relationship of mint germplasm resources using chloroplast DNA marker. The results showed that two main clusters (cluster I and cluster II) were found by neighbour-joining method. Cluster I included M. spicata-M. suaveolens-M. longifolia-M.×gracilis-M. arvensis-M×piperita, and Cluster II included M. aquatica-M.×piperita-M.×piperita-01, the Cluster I was divided three subgroups:①M. spicata-M. longifolia、②M. spicata-M. suaveolens and③M.arvensis-M.×gracilis, the Cluster II was divided two subgroup:①M. canadensis-M.aquatica and②M.×piperita. Our results reflected the relationship between parent lines and offspring lines.
     4. Analysis on diversity of chemotype of mint germplasm resources. M. spicata accessions included two chemtypes, one was limonene-carvone type, another was1,8-cineole-piperitenone oxide type. The chemotype of M.arvensis-01belonged to limonene-carvone-piperitenone oxide type. The M. aquatica accessions were divided into four chemotype:①menthone-menthol-pulegone type,②linalool-linalyl acetate type,③limenone-carvone type,④1,8-cineole-globulol type. The M×piperit accessions included two chemotypes, one was high menthone-low menthol type, another was low menthone-high menthol type. The M. longifolia accessions were divided into two chemotype, one was limonene-carvone type, and another was piperitone-isocaryophyllene oxide-piperitenone oxide type. The chemotype of M. suaveolens accessions belonged to piperitenone oxide type. The M. canadensis included two chemotypes:menthol-menthyl acetate type and menthone-menthol type. The chemotype of M×gracilis and M. pulegium L. belonged to limonene-carvone type and menthone-pulegone-menthofuran type respectively. The results showed that there were rich chemotypes among these mint germplasm resources that we collected.
     Correlation analysis between chemotype and chloroplast DNA marker. There was a consistent relationship between chemotype and chloroplast DNA marker, which hinted that there was a certain correlation between chemotype and parent lines.
     6. Analysis on genetic diversity of mint germplasm resources using amplified fragment length polymorphism (AFLP). The similarity coefficient was between0.44and0.91among the mint germplasm resources, and the average similarity coefficient was0.66. The28mint germplasm resources were could be divided into seven groups:①M. spicata-M. suaveolens,②M×piperit,③M. aquatica-M×gracilis,④M.spicata-M. longifolia,⑤M. aquatica,⑥M. canadensis-M.arvensis and⑦M. spicata-M. longifolia. Our results showed that there was rich genomic diversity among these mint germplasm resources.
引文
[1]Lawrence BM. Mint:The Genus Mentha. CRC Press, Boca Raton, FL.,2006.
    [2]芳香原料特写:薄荷脑的历史、消费量、合成、副产品、替代品和衍生物(一).国内外香化信息,2009(4):6.
    [3]芳香原料特写:薄荷脑的历史、消费量、合成、副产品、替代品和衍生物(二).国内外香化信息,2009(5):6-7.
    [7]芳香原料特写:薄荷脑的历史、消费量、合成、副产品、替代品和衍生物(三).国内外香化信息,2009(6):5-6.
    [8]芳香原料特写:薄荷脑的历史、消费量、合成、副产品、替代品和衍生物(三).国内外香化信息,2009(7):5-6.
    [9]芳香原料特写:薄荷脑的历史、消费量、合成、副产品、替代品和衍生物(三).国内外香化信息,2009(8):3-4.
    [10]中国对印度薄荷脑的需求.国内外香化信息,2008(6):6.
    [11]国内薄荷油9月上旬走势.国内外香化信息,2010(9):3-4.
    [12]国内薄荷油近期行情报告.国内外香化信息,2011(3):6.
    [13]国内薄荷油近期行情报告.国内外香化信息,2011(4):6.
    [14]国内薄荷油市场现状分析-难过的一道坎.国内外香化信息,2006(7):4-5.
    [15]国内各地几种产品的行情报价.国内外香化信息,2011(9):5.
    [16]近期国内薄荷市场报告.国内外香化信息,2010(8):5.
    [17]近期国内薄荷油市场报告.国内外香化信息,2010(11):3.
    [18]今日薄荷市场明显回落.国内外香化信息,2004(10):7.
    [19]太和薄荷复兴之路受挫.国内外香化信息,2012(1):5.
    [20]太和基地考察报告.国内外香化信息,2006(9):5-6.
    [21]我国薄荷脑隐退国际市场个中原因要深思.国内外香化信息,2004(10):13.
    [22]我国薄荷育苗其的突破.国内外香化信息,2003(10):11.
    [23]Valtcho, Zheljazkov D. Peppermint productivity and oil composition as a function of nitrogen, growth stage, and harvest time. Agron J,2010(102):24-128.
    [24]Kumar S, Suresh R, Singh V, Singh AK. Economic analysis of menthol mint cultivation in Uttar Pradesh:a case study of Barabanki district. Agricultural Economics Research Review,2011(24):345-350.
    [25]1月11日印度薄荷类产品价格及行情月评.国内外香化信息,2012(1):10.
    [26]2-3月份印度薄荷类产品行情.国内外香化信息,2008(3):12.
    [27]3月份印度薄荷类产品现货/期货行情.国内外香化信息,2007(3):10.
    [28]4月薄荷脑国际市场评估.国内外香化信息,2009(4):5-6.
    [29]4月薄荷脑国际市场评估.国内外香化信息,2009(5):3.
    [30]4月上旬印度薄荷油综合分析以及国内市场走向.国内外香化信息,2007(4):5.
    [31]6月份印度薄荷类产品行情.国内外香化信息,2007(6):9.
    [32]7-8月份印度薄荷类产品行情.国内外香化信息,2008(8):10.
    [33]8-9月份印度薄荷类产品行情.国内外香化信息,2008(9):12.
    [34]8-9月份印度薄荷类产品行情.国内外香化信息,2008(9):8.
    [35]9月15日印度薄荷类产品现货价格及行情月评.国内外香化信息,2011(9):10.
    [36]10~11月份印度薄荷类产品行情.国内外香化信息,2008(11):10.
    [37]10月15日印度薄荷类产品现货价格及行情月评.国内外香化信息,2011(10):8.
    [38]11月19日印度薄荷类产品现货价格及行情月评.国内外香化信息,2011(11):4.
    [39]11月份印度薄荷类产品行情.国内外香化信息,2007(11):11.
    [40]12-1月份印度薄荷类产品行情.国内外香化信息,2008(1):11.
    [41]2007年1月我国精油进出口情况.国内外香化信息,2007(3):7.
    [42]2007年2月我国精油进出口情况.国内外香化信息,2007(4):9.
    [43]2007年3月我国精油进出口情况.国内外香化信息,2007(5):8.
    [44]2007年4月我国精油进出口情况.国内外香化信息,2007(6):6.
    [45]2007年上半年国内部分香料市场动态.国内外香化信息,2007(6):2.
    [46]2007年6月我国精油进出口情况.国内外香化信息,2007(8):9.
    [47]2007年7月我国精油进出口情况.国内外香化信息,2007(9):9.
    [48]2007年8月我国精油进出口情况.国内外香化信息,2007(10):9.
    [49]2007年9月我国精油进出口情况.国内外香化信息,2007(11):8.
    [50]2007年10月我国精油进出口情况.国内外香化信息,2007(12):7.
    [51]2007年11月我国精油进出口情况.国内外香化信息,2008(1):8.
    [52]2008年1月我国精油进出口情况.国内外香化信息,2008(3):9-10.
    [53]2008年2月我国精油进出口情况.国内外香化信息,2008(4):7.
    [54]2008年3月我国精油进出口情况.国内外香化信息,2008(5):7-8.
    [55]2008年4月我国精油进出口情况.国内外香化信息,2008(6):9-10.
    [56]2008年5月我国精油进出口情况.国内外香化信息,2008(7):9-10.
    [57]2008年6月我国精油进出口情况.国内外香化信息,2008(8):6-7.
    [58]2008年7月我国精油进出口情况.国内外香化信息,2008(9):5-6.
    [59]2008年8月我国精油进出口情况.国内外香化信息,2008(10):5-6.
    [60]2008年9月我国精油进出口情况.国内外香化信息,2008(11):6-7.
    [61]2008年10月我国精油进出口情况.国内外香化信息,2008(12):7-8.
    [62]2008年11月我国精油进出口情况.国内外香化信息,2009(1):8-9.
    [63]2009年1月我国精油进出口情况.国内外香化信息,2009(3):8-9.
    [64]印度的薄荷产业(上).香料香精化妆品,2001(1):26-29.
    [65]印度的薄荷产业(下).香料香精化妆品,2001(2):26-29.
    [66]Bahl JR. Quality evaluation of the essential oils of the prevalent cultivars of commercial mint species Mentha arvensis, spicata, cardiaca, citrata and viridis cultivated in Indo-Gangetic plains. In:J. Med. Arom. Plant Sci,2000(22):787-797.
    [67]Anonymous. Super-menthol strain of Japanese mint, CIMAP. In:Newsletter,1983(10):17-18.
    [68]Kumar, Bahl JRS. Screening of genotypes of menthol mint Mentha arvensis for high yields of herbage and essential oil under late cropping conditions of the sub-tropical Indo-Gangetic plains. In:J. Hort. Sci. Biotech,1999(74):680-684.
    [69]Kumar, Bahl JRS. High economic returns from companion and relay cropping of bread wheat and menthol mint in the winter-summer season in north Indian plains. In:Ind. Crops Prod,2002(3):103-114.
    [70]Kumar Kahol SAP. Cultivation of Menthol Mint in India. Central Institute of Medicinal and Aromatic Plants. In:Lucknow,1997(10):1-36.
    [71]Khanuja, Kumar SPS. A menthol tolerant variety Saksham of Mentha arvensis yielding high menthol. In:J. Med. Arom. Plant Sci,2001(23):110-112.
    [72]Patra, Kumar NKS. Damroo-a seed producing menthol mint variety(Mentha arvensis). In:J. Med. Arom. Plant Sci,2001(23):141-145.
    [73]罗光明,邓子超,杨世林.药用植物优良品种选育研究现状.In:中药研究与信息,2003(9):15-18.
    [74]庄文庆.药用植物育种学.北京:农业出版社,1990:20.
    [75]孙学忠.“73—8”薄荷高产栽培技术.上海农业科技,1990(3):31-33.
    [76]罗光明,邓子超,杨世林.药用植物优良品种选育研究现状.In:中药研究与信息,2003(9):15-18.
    [77]杨瑞萍,戴克敏.“海选”薄荷与"73—8”薄荷含油量及油的质量比较.香料香精化妆品,1989(2):1-5.
    [78]Turgeon T, Wright L. Mint. The Genus Mentha. J Nat Prod,2007(70):1834.
    [79]Bohloul Abbaszadeh, Sayed Alireza Valadabadi Hossein. Studying of essential oil variations in leaves of Mentha species. AJPS,2009(3):217-221.
    [80]Rangappa M, Bhardwaj AHL. Yield and Plant Characteristics of Mint Germplasm in Virginia. In:94th Annual International Conference of the American Society for Horticultural Science, Salt Lake City, Utah, USA,1997:211-217.
    [81]方晓志,赵梦晗,高山林.药物生物技术,2005(2):93-97.
    [82]王小刚,卞云云,高山林等.薄荷脱病毒苗的农艺性状和有关生理指标的测定.药物生物技术,2003(2):32-35.
    [83]孙名超,孙爱东.薄荷新品种—淮阴83-1.上海农业科技,1990(3):48.
    [84]周正友,朱建峰.薄荷"80—A—53”的性状及丰产技术.上海农业科技,1993(6):37-39.
    [85]Sobti SN. Interspecific hybrids in Mentha. Proceedings:Plant Sci,1962(1):51-55.
    [86]Nikolaev AGAV. Inheritance of monoterpenoid composition in mint and carrot intraspecific crosses. In:Izv. Akad. Nauk Mold. SSR, Ser. Biol. Khim. Nauk,1977(6):16-21.
    [87]李延华.植物引种驯化集刊(3).北京:科学出版社,1983.
    [88]Deschamps C, Jorge LZ, Humberto RB et al. Seasonal evaluation of essential oil yield of mint species. Cienc. agrotec., Lavras,2008(3):725-730.
    [89]赵朝毅,窦宏涛,蔺锐等.不同的收获时期对椒样薄荷精油产量和品质的影响.陕西农业科学,2012(2):24.
    [90]Isa Telci, Ibrahim Demirtasb, Emine Bayramc et al. Environmental variation on aroma components of pulegone/piperitone rich spearmint(Mentha spicata L.). Ind. Crops Prod,2011(32):588-592.
    [91]Valtcho Zheljazkov D, Tess Astatkieb. Effect of distillation waste water and plant hormones on spearmint growth and composition. In:J Sci Food Agric,2010(91):1135-1141.
    [92]Valtcho D, Zheljazkov TA. Effect of residual distillation water of15plants and three plant hormones on Scotch spearmint(Mentha×gracilis Sole). Ind Crop Prod,2011(33):704-709.
    [93]房海灵,李维林,梁呈元.薄荷属植物的数量分类.In:安徽农业科学,2007(8):115-117.
    [94]Harley RM, Brighton CA. Chromosome numbers in the genus Mentha L. Bot J Linn Soc,1977(74):71-96.
    [95]Henrietta L, Chambers K. Chromosome counts in the Mentha collection at the USDA:ARS National Clonal Germplasm Repository. In,1994:423-432.
    [96]张传军,刘亦肖,肖娅萍.遗传多样性与植物的遗传标记.In:陕西师范大学学报(自然科学版),2006(1):283-286.
    [97]Boussaid, Ben F, Najeh. Genetic diversity in wild Tunisian populations of Menthapulegium L.(Lamiaceae).2004(5):309-327.
    [98]Rovesti P. Recherches sur les essences de quelques chemotypes de Labiees. In: Pharm. Weekblad,1957(92):830-832.
    [99]华永丽,黄璐琦,陈美兰.论药用植物化学型的分类意义、地位及其分类标准.In:中国中药杂志,2009(7):125-129.
    [100]Fatma, Aykut Suer, Yuce Tonk E et al. Chemical and genetic variability of selected Turkish oregano(Origanum onites L.) clones,2010(288):157-165.
    [101]Baghalian K, Maghsodi M, Naghavi MR. Genetic diversity of Iranian madder (Rubia tinctorum) populations based on agro-morphological traits, phyt-ochemical content and RAPD markers. Ind Crop Prod,2010(31):557-562.
    [102]Morone-Fortunato, Montemurro I, Ruta C et al. Essential oils, genetic relationships and in vitro establishment of Helichrysum italicum (Roth) G. Don ssp. italicum from wild Mediterranean germplasm. Ind Crop Prod,2010(32):639-649.
    [103]Sticher, Fluck OAH. Zusmmensetzung von genuinen, extrahierten und destillierten atherischeno len einiger Mentha-Arten. In:Pharm. Acta Helv,1968:411-446.
    [104]Nagasawa T, Umemoto K, Tsuneya T et al. Studies on the wild mints of Tokai districts. Part VII. Essential oils of wild mints containing (t)-menthofuran as a major constituent. Nippon Nogei Kagaku Kaish1976(1):291-293.
    [105]Sivropoulou A, Kokkini S, Lanaras T et al. Antimicrobial activity of mint essential oils. J Agr Food Chem,1995(9):2384-2388.
    [106]Hadjiakhoondi A, Aghel N, Zamanizadeh-Nadgar N et al. Chemical and biological study of Mentha spicaata L. essential oil from Iran. Journal of Pharmaceutical Sciences,2000(1-2):456-460.
    [107]Edris AE, Shalaby AS, Fadel HM et al. Evaluation of a chemotype of spearmint (Mentha spicata L.) grown in Siwa Oasis, Egypt. Eur Food Res Technol,2003(1):74-78.
    [108]周桂新,周自新,周荣汉.东北薄荷的化学型.In:植物资源与环境学报,1995(4):60-62.
    [109]周荣汉,周桂新.亚洲薄荷的两个化学型.In:植物资源与环境学报,1994(3):58-59.
    [110]李祖强,李庆春,罗蕾.滇产薄荷的化学研究.In:云南植物研究,1996(1):115-122.
    [111]Khanuja S, Shasany AK, Srivastava A et al. Assessment of genetic relationships in Mentha species. Euphytica,2000(2):121-125.
    [112]Fenwick AL, Ward SM. Use of random amplified polymorphic DNA markers for cultivar identification in mint. Hortscience,2001(4):761-764.
    [113]Shasany AK, Gupta S, Gupta MK et al. Assessment of menthol mint collection for genetic variability and monoterpene biosynthetic potential. Flavour Frag J,2010(1):41-47.
    [114]Gobert V, Moja S, Colson M et al. Hybridization in the section Mentha (Lamiaceae) inferred from AFLP markers. Am J Bot,2002(12):2017-2023.
    [115]Gobert V, Moja S, Taberlet P et al. Heterogeneity of three molecular data partition phylogenies of mints related to M.×piperita (Mentha; Lamiaceae). Plant Biology,2006(8):470-485.
    [116]乐云辰,吴亚妮,姚雷.不同薄荷品种遗传关系的ISSR分析.In:上海交通大学学报(农业科学版),2008(1):31-34.
    [117]Jiranan Bunsawat, Natalina Elliott And Kate. Phylogenetic of Mentha (Lamiaceae):Evidence from Chloroplast DNA sequences. In:Syst Bot,2004(4):959-964.
    [118]Amelunxen F. Elektronenmikroskopische Untersu-chungen an den Dru senschuppen von Menthapiperita L. In:Plant Med,1965(1):457-473.
    [119]Fahn A. Structure and function of secretory cells. Advances in botanical research,2000(6):37-75.
    [120]Turner Glenn W., Jonathan Gershenzon And, Rodney Croteau B. Development of peltate glandular trichomes of peppermint. In:Plant Physiology,2000(124):665-679.
    [121]Corinna Schmiderer, Sabine Grausgruber-Groger Paolo Grassi. Influence of gibberellin and daminozide on the expression of terpene synthases and on monoterpenes in common sage (Salvia officinalis). In:Journal of Plant Physiology,2010(167):779-786.
    [122]Yuliya Dolzhenko, Cinzia Bertea Andrea M. UV-B modulates the interplay between terpenoids and flavonoids in peppermint (Mentha×piperita L.). In: Journal of Photochemistry and Photobiology B:Biology,2010(100):67-75.
    [123]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the2-ΔΔCt method. Methods,2001(25):402-408.
    [124]Burbott AJ, Loomis WD. Effects of light and temperature on the monoterpenes of peppermint. In:Plant Physiol,1967:20-28.
    [125]Fuyuan Jing, Ling Zhang, Meiya Li et al. Abscisic acid (ABA) treatment increases artemisinin content in Artemisia annua by enhancing the expression of genes in artemisinin biosynthetic pathway. Biologia,2009(64):319-323.
    [126]Rohlf FJ. NTSYS-pc:Numerical taxonomy and multivariate analysis system, version2.1. Exeter Software. In, Setauket, New York, USA.2000.
    [127]Zeven, A C And Zhukovsky. Dictionary of cultivated plants and their centres of diversity Wageningen, The Netherlands:Centre for Agricultural Publishing and Documentation. In,1975(3):219.
    [128]Doyle. J, Doyle J. Isolation of plant DNA from fresh tissue. In:Amer. J. Bot.,1987(75):1238.
    [129]Fatma, Aykut Suer Yuce, Tonk Et et al. Chemical and genetic variability of selected Turkish oregano(Origanum onites L.) clones. Plant Syst Evol,2010(288):157-165.
    [130]Schlotterer C. The evolution of molecular markers-just a matter of fashion? Nat. Rev. Genet,2004(5):63-69.
    [131]Ghada B, Ahmed BA, Khaled C et al. Molecular evolution of chloroplast DNA in fig (Ficus carica L.):footprints of sweep selection and recent expansion. Biochem. Syst. Ecol,2010(38):563-575.
    [133]Artyukova EV, Kozyrenko MM, Kholina AB et al. High chloroplast haplotype diversity in the endemic legume Oxytropis chankaensis may result from independent polyploidization events. Genetica,2011(139):221-232.
    [134]LU Zhen-hua et al. Molecular Phylogeny of the"True citrus fruit trees" group (Aurantioideae, Rutaceae) as inferred from Chloroplast DNA sequence. Agricultural Sciences in China,2011(1):49-57.
    [135]Taberlet. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol. Biol1991(17):1105-1109.
    [136]Thompson. The Clustalx windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res,1997(33):4876-4882.
    [137]Tucker. Mentha canadensis L.(Lamiaceae):a relict amphidiploid from the Lower Tertiary. Taxon,2002(51):703-718.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700