溶质在超临界CO_2及含改性剂的超临界CO_2中扩散系数及其构效关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超临界CO2因其具有临界条件温和、溶解性能良好、绿色无污染、粘度小等优点而作为一种新兴的介质被广泛应用于化工领域。而溶质在超临界流体中的扩散系数是超临界萃取及分离装置的工程放大、流程设计以及工艺优化所必需的基础数据。因此,本文测定了一系列溶质在超临界CO2以及夹带不同改性剂的超临界CO2中的二元及三元无限稀释扩散系数,采用实验测定和量子化学相结合的研究手段从分子层面系统研究超临界流体的物化性质、溶质的构型和性质、改性剂的类型、以及体系中分子间作用力对溶质扩散系数的影响规律,并在此基础上构建了超临界流体中扩散系数的线性溶剂化能模型。
     在15~30MPa,308.15~338.15K的范围内,采用Taylor分散法测定了香芹酮和薄荷酮在超临界CO2以及含有5和10mol%乙醇的超临界CO2中的无限稀释扩散系数。研究表明,二元及三元扩散系数均随温度的升高而增大,随流体压力、密度、粘度以及乙醇摩尔分率的增加而减小。适用于二元体系的扩散系数与流体物化性质的关联方程同样适用于以乙醇为改性剂的三元体系。在21个经验模型中,Funazukuri-Ishiwata-Wakao和He-Yu-1998模型对两种溶质在超临界CO2中的扩散系数具有最好的预测效果,其平均绝对偏差(AAD)小于3.2%。此外,采用多个修正的Stokes-Einstein(SE)模型预测溶质在含有乙醇的超临界CO2中的扩散系数,预测值均大于实验值,并且AAD值随着乙醇分率的增加而增加。这主要是由于模型没有考虑溶质与乙醇缔合后形成体积增大的扩散实体。此外,Dvmond自由体积模型对溶质在CO2以及含乙醇的CO2中的扩散系数均有良好的预测效果,AAD值小于3.21%。
     由于不同的改性剂与溶质间不同类型和强度的相互作用力,使得溶质和改性剂形成体积增大的溶剂化聚集体,导致溶质在含有改性剂的CO2中的扩散系数小于其在纯CO2中的扩散系数。通过引入共溶剂效应参数(Ψ=三元扩散系数/二元扩散系数)可分析溶质与改性剂之间相互作用力的类型和强弱。对于没有氢键能力的改性剂,Ψ值随溶质分子体积增加而减少,主要由于溶质—改性剂间的色散作用力随溶质分子体积增加而增加;对于只具有氢键碱性的改性剂,氢键酸性高的溶质具有小的Ψ值,主要由于溶质—改性剂的氢键作用仅依赖溶质的氢键酸性并随其增加而增加;对于两性改性剂,无论改性剂的氢键酸性大于氢键碱性还是碱性大于酸性,氢键酸性高的溶质具有小的Ψ值,可以推断出溶质的氢键酸性而非氢键碱性对溶质—改性剂间氢键作用起主要贡献。由于溶质—改性剂间相互作用随着压力的增加而减弱,因此溶质的共溶剂效应参数随着压力增加而增加。此外,溶质在含有改性剂的C02中的扩散系数随着改性剂比例的增加而非线性减少,这是具有强相互作用力体系的典型现象。
     无氢键作用溶质在纯CO2以及含改性剂的CO2中的扩散系数主要受溶质分子体积的影响,并且构型比较线性的对位异构体在流体中扩散的最快;而对于有氢键作用溶质而言,溶质氢键官能团的邻位取代基的数目越多、链长越长,氢键官能团的空间位阻就越大,与改性剂的氢键作用就越弱,故而共溶剂效应参数就越大;对于双氢键官能团溶质,邻位同分异构体的分子内氢键会削弱溶质与C02、改性剂分子间氢键,因此其在C02及夹带具有氢键能力改性剂的C02中的扩散系数大于间位同分异构体。
     采用量子化学计算方法分别研究四氢呋喃和甲醇与溶质的相互作用规律,进一步深入揭示分子间相互作用力对扩散系数的影响。研究表明,只有氢键碱性的四氢呋喃与溶质氢键作用的强度仅取决于溶质氢键酸性的大小,相对于香叶醇,酸性大的间氟苯酚与四氢呋喃间形成更强的氢键作用。而无氢键酸性的1,3-二氯苯、左旋香芹酮与四氢呋喃形成弱于氢键作用的范德华作用力,并且分子体积较大且极性较大的左旋香芹酮与四氢呋喃形成更强的范德华作用力;两性改性剂甲醇分别与两性溶质(间氟苯酚、香叶醇)形成两种氢键复合体,甲醇与两性溶质(间氟苯酚、香叶醇)的氢键作用强于只具有氢键碱性的香芹酮,甲醇与1,3-二氯苯形成最弱的范德华作用力;因此,量化计算的结果可以有效解释扩散系数的实验结果:即溶质在含有四氢呋喃和甲醇的CO2中的共溶剂效应参数以间氟苯酚<香叶醇<香芹酮1<,3-二氯苯的顺序依次增加。
     根据23种训练集溶质在超临界CO2中以及含有10mol%四氢呋喃、甲醇的超临界CO2中扩散系数和共溶剂效应参数分别构建了LSER模型,其对12种测试集溶质在三种体系中的扩散系数均有良好的预测效果,模型总的平均绝对偏差(AAD%)分别小于2.45%,3.17%和3.40%。分析模型的回归系数可知,溶质与CO2间的色散作用力显著影响溶质在CO2中扩散系数,而溶质主要作为质子供体与四氢呋喃和甲醇间的氢键作用主要影响溶质在夹带这两种改性剂的超临界CO2中的共溶剂效应参数。
Supercritical carbon dioxide (scCO2) is widely used in chemical industry because scCO2has many superior properties involving accessible critical condition, a stronger solvent power, essentially nontoxic, higher diffusivities. Diffusion coefficient is useful in design, scale-up and optimization of reactors and separators for supercritical fluid extraction or chromatography. Therefore, in this study, infinite dilution diffusion coefficients of a series of solutes in pure and cosolvent modified CO2were measured, and the effects of physicochemical properties of fluid, properties and structure of solutes, the types of cosolvent, intermolecular interaction on the diffusion coefficients in supercritical fluid were investigated systematically by means of a combination of experimental measurement and quantum chemical method from molecular level. On the basis of the above, Linear solvation energy relationship (LSER) model of diffusion coefficients was developed.
     The molecular diffusion coefficients of L-menthone and L-carvone in scCO2and scCO2containing5and10mol%ethanol as a modifier were measured by the Taylor dispersion method over the ranges of temperature from308.15to338.15K and pressure from15to30MPa. It was found that the diffusion coefficients increased almost linearly with temperature and decreased with the solvent pressure, density, viscosity and ethanol mole fraction. Moreover, the correlation relationships between diffusion coefficients and the temperature, pressure, viscosity, and density, which were valid in binary systems were also suitable for ternary systems of carbon dioxide containing modifier. Of several models used to predict experimental data in pure carbon dioxide, the two models of Funazukuri-Ishiwata-Wakao and He-Yu-1998were the best with the AAD less than3.2%. Furthermore, the modified Stokes-Einstein (SE) models overestimated the diffusion coefficients in ethanol modified scCO2with the AAD values increasing with the percentage of ethanol. which were probably due to the increase of the volume of solvation sphere as a true diffusion unit with the percentage of ethanol. Moreover, the free volume model of Dymond is good for predicting the experimental data in pure carbon dioxide and ethanol modified scCO2with the AAD values less than3.2%.
     The clustering of cosolvent molecules around the solute driven by van der Waals' forces and hydrogen-bond interaction between solute and cosolvent resulted in solute cluster with increased effective size. Such solute cluster was considered as a true diffusion unit, leading to slower solute diffusion in ternary systems than in pure CO2. Cosolvent effect parameter, which was defined as the ratio of diffusion coefficient with and without cosolvent, respectively, was introduced to compare the strength of different types of interaction between solute and cosolvent, especially hydrogen bonding. For cosolvent without hydrogen-bond ability, the cosolvent effect parameter decreased with the increase of molecular volume and weight of the solutes, in that the strength of dispersion force with cosolvent increases with their size. For cosolvent with only HBA basicity, the solute with higher HBD acidity had smaller cosolvent effect parameter, due to the fact that the strength of hydrogen-bond interaction between the solute and cosolvent only depended on and increased with the HBD acidity of the solute. For amphiprotic cosolvent, the solute with higher HBD acidity had smaller cosolvent effect parameter, it could be inferred from which that HBD acidity rather than HBA basicity of the solute made a major contribution to the hydrogen-bond interaction between solute and cosolvent. The cosolvent effect parameter increased with pressure, because solute-cosolvent interaction decreased with pressure. Moreover, a nonlinear decrease in diffusion coefficient with the increase of cosolvent concentration was observed, which was typical of the behavior of the system with strong interaction.
     The diffusion coefficients of non-H-bonded solutes in pure and modified supercritical carbon dioxide depended largely on molecular volume, and the para-isomer with more linear structure diffused more quickly. The large value of cosolvent effect parameter for the H-bonded solutes with more and longer-chain substituent group was probably due to the steric hindrance effect provided by substituent group in the ortho position of functional group with hydrogen-bond ability. For Di-H-bonded solute, the diffusion coefficients of ortho-isomer were larger than that of meta-isomer, which could probably be attributed to the fact that intramolecular H-bonding weakened the hydrogen-bond interaction between solute and CO2as well as between solute and cosolvent.
     Quantum chemical methods were employed to investigate the interaction mechanism between cosolvent (tetrahydrofuran, methanol) and solute, which can help to get insight into the effect of intermolecular interaction on diffusion coefficients. It was found that the strength of hydrogen-bond interaction between the solute and tetrahydrofuran, which had only HBA basicity, only depended on the HBD acidity of the solute. Compared to geraniol, the3-fluorophenol with higher HBD acidity formed stronger hydrogen-bond interaction with tetrahydrofuran. Since both1.3-dichlorobenzene and L-carvone had no the HBD acidity, only weak van der Waals'forces could be formed. L-carvone with larger molecular volume and higher polarity formed stronger van der Waals' forces with tetrahydrofuran. Amphiprotic Methanol could form two kinds of hydrogen-bond complexes with amphiprotic3-fluorophenol and geraniol. Relative to L-carvone, the amphiprotic3-fluorophenol and geraniol could form stronger hydrogen-bond interaction with methanol, While, the1.3-dichlorobenzene formed the weakest van der Waals'forces with methanol. The above results from quantum chemical calculation could effectively explain why the cosolvent effect parameter in CO2containing tetrahydrofuran and containing methanol increased in the following order:3-fluorophenol     Based on the diffusion coefficients and cosolvent effect parameters of23training solutes in scCO2and CO2containing10mol%cosolvent (tetrahydrofuran, methanol). the Linear solvation energy relationship (LSER) method was used to develop predictive model. These models for the above three system were validated by making predictions for12test solutes and had good prediction accuracy with the AAD values less than2.45%,3.17%and3.40%, respectively. The coefficients of these models shown that the diffusion coefficients in CO2were strongly dependent on the dispersion force between solute and CO2. and the cosolvent effect parameters in CO2containing10mol%cosolvent (tetrahydrofuran. methanol) were mainly affected by the hydrogen-bond interaction between cosolvent and solute which served as proton donor.
引文
[1]韩步兴.超临界流体科学与技术[M].北京:中国石化出版社,2005.
    [2]朱自强.超临界流体技术—原理和应用[M].北京:化学工业出版社,2000.
    [3]Herrero M, Mendiola J A, Cifuentes A, et al. Supercritical fluid extraction:Recent advances and applications[J]. Journal of Chromatography A,2010,1217(16):2495-2511.
    [4]Taylor L T. Supercritical fluid chromatography for the 21st century [J]. The Journal of Supercritical Fluids,2009,47(3):566-573.
    [5]Ting S S T, Tomasko D L, Foster N R, et al. Solubility of naproxen in supercritical carbon dioxide with and without cosolvents[J]. Industrial & engineering chemistry research,1993,32(7):1471-1481.
    [6]Huang Z, Chiew Y C, Lu W D, et al. Solubility of aspirin in supercritical carbon dioxide/alcohol mixtures[J]. Fluid phase equilibria,2005,237(1):9-15.
    [7]Dobbs J M, Wong J M, Johnston K P. Nonpolar co-solvents for solubility enhancement in supercritical fluid carbon dioxide[J]. Journal of Chemical and Engineering Data,1986,31(3):303-308.
    [8]Ekart M P, Bennett K L, Ekart S M, et al. Cosolvent interactions in supercritical fluid solutions[J]. AIChE journal,1993,39(2):235-248.
    [9]Foster N R, Singh H, Yun S L J, et al. Polar and nonpolar cosolvent effects on the solubility of cholesterol in supercritical fluids[J]. Industrial & engineering chemistry research,1993,32(11): 2849-2853.
    [10]Tsai C C, Lin H, Lee M J. Solubility of CI Disperse Violet 1 in supercritical carbon dioxide with or without cosolvent[J]. Journal of Chemical & Engineering Data,2008,53(9):2163-2169.
    [11]Li J, Jin J, Zhang Z, et al. Solubility of p-toluenesulfonamide in pure and modified supercritical carbon dioxide[J]. Journal of Chemical & Engineering Data,2009,54(3):1142-1146.
    [12]Beckman E J. Supercritical and near-critical CO2 in green chemical synthesis and processing[J]. The Journal of supercritical fluids,2004,28(2):121-191.
    [13]童景山.流体的热物理性质[M].北京:中国石化出版社,1996.
    [14]王绍亭,陈涛.化工传递过程基础[M].北京:化学工业出版社,1997.
    [15]Debenedetti P G, Reid R C. Diffusion and mass transfer in supercritical fluids[J]. AIChE journal, 1986,32(12):2034-2046.
    [16]Higashi H, Iwai Y, Takahashi Y, et al. Diffusion coefficients of naphthalene and dimethylnaphthalene in supercritical carbon dioxide[J]. Fluid phase equilibria,1998,144(1-2):269-278.
    [17]Higashi H, Iwai Y, Oda T, et al. Diffusion coefficients of cetyl alcohol in supercritical carbon dioxide[J]. Journal of chemical engineering of Japan,2005,38(11):865-869.
    [18]Knaff G, Schlunder E U. Diffusion coefficients of naphthalene and caffeine in supercritical carbon dioxide[J]. Chemical engineering and processing,1987,21(2):101-105.
    [19]Lamb D M, Adamy S T, Woo K W, et al. Transport and relaxation of naphthalene in supercritical fluids[J]. The Journal of Physical Chemistry,1989,93(12):5002-5005.
    [20]L C E. Diffusion,Mass Transfer in Fluid System,2ed.[M]. Cambridge:Cambridge University Press, 1992.
    [21]Saad H, Gulari E. Diffusion of liquid hydrocarbons in supercritical CO2 by photon correlation spectroscopy[J]. Berichte der Bunsengesellschaft fur physikalische Chemie,1984,88(9):834-837.
    [22]Tuan D Q, Yener M E, Zollweg J A, et al. Steady-state parallel plate apparatus for measurement of diffusion coefficient in supercritical carbon dioxide[J]. Industrial & engineering chemistry research,1999, 38(2):554-561.
    [23]Tuan D Q, Zollweg J A, Rizvi S S H. Concentration dependence of the diffusion coefficient of lipid in supercritical carbon dioxide[J]. Industrial & engineering chemistry research,1999,38(7): 2787-2793.
    [24]Taylor G. Dispersion of soluble matter in solvent flowing slowly through a tube[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,1953,219(1137):186-203.
    [25]Aris R. On the dispersion of a solute in a fluid flowing through a tube[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,1956.235(1200):67-77.
    [26]Balenovic Z, Myers M N. Giddings J C. Binary Diffusion in Dense Gases to 1360 atm by the Chromatographic Peak-Broadening Method[J]. The Journal of Chemical Physics,1970,52:915.
    [27]Swaid I, Schneider G M. Determination of Binary Diffusion Coefficients of Benzene and Some Alkylbenzenes in Supercritical CO2 between 308 and 328 K in the Pressure Range 80 to 160 bar with Supercritical Fluid Chromatography (SFC)[J]. Berichte der Bunsengesellschaft fur physikalische Chemie, 1979,83(10):969-974.
    [28]Liong K K, Wells P A, Foster N R. Diffusion in supercritical fluids[J]. The Journal of Supercritical Fluids,1991.4(2):91-108.
    [29]Funazukuri T. Kong C Y, Kagei S. Impulse response techniques to measure binary diffusion coefficients under supercritical conditions[J]. Journal of Chromatography A,2004,1037(1):411-429.
    [30]Medina I. Determination of diffusion coefficients for supercritical fluids[J]. Journal of Chromatography A,2012.
    [31]Funazukuri T. Kong C Y. Kagei S. Measurements of binary diffusion coefficients for some low volatile compounds in supercritical carbon dioxide by input-output response technique with two diffusion columns connected in series[J]. Fluid phase equilibria.2002.194:1169-1178.
    [32]Kong C Y. Funazukuri T. Kagei S. Chromatographic impulse response technique with curve fitting to measure binary diffusion coefficients and retention factors using polymer-coated capillary columns[J]. Journal of Chromatography A.2004,1035(2):177-193.
    [33]Funazukuri T, Kong C Y. Murooka N. et al. Measurements of binary diffusion coefficients and partition ratios for acetone, phenol, α-tocopherol. and β-carotene in supercritical carbon dioxide with a poly (ethylene glycol)-coated capillary column[J]. Industrial & engineering chemistry research.2000, 39(12):4462-4469.
    [34]Funazukuri T. Kong C Y. Kagei S. Infinite-Dilution Binary Diffusion Coefficients of 2-Propanone. 2-Butanone.2-Pentanone. and 3-Pentanone in CO2 by the Taylor Dispersion Technique from 308.15 to 328.15 K in the Pressure Range from 8 to 35 MPa[J]. International journal of thermophysics.2000.21(6): 1279-1290.
    [35]Umezawa S. Nagashima A. Measurement of the diffusion coefficients of acetone, benzene, and alkane in supercritical CO2 by the Taylor dispersion method[J]. The Journal of Supercritical Fluids.1992. 5(4):242-250.
    [36]Funazukuri T. Measurements of binary diffusion coefficients of 20 orgganic compounds in CO2 at 313.2 K and 16.0 MPa[J]. Journal of chemical engineering of Japan.1996.29(1):191-192.
    [37]Pizarro C. Suarez-lglesias O, Medina I, et al. Molecular diffusion coefficients of phenylmethanol, 1-phenylethanol,2-phenylethanol,2-phenyl-1-propanol. and 3-phenyl-1-propanol in supercritical carbon dioxide[J]. The Journal of Supercritical Fluids.2008.43(3):469-476.
    [38]Gonzalez L M. Bueno J L. Medina I. Measurement of diffusion coefficients for 2-nitroanisole.1, 2-dichlorobenzene and tert-butylbenzene in carbon dioxide containing modifiers[J]. The Journal of Supercritical Fluids,2002,24(3):219-229.
    [39]Pizarro C, Suarez-Iglesias O, Medina I, et al. Using supercritical fluid chromatography to determine diffusion coefficients of 1,2-diethylbenzene,1,4-diethylbenzene,5-tert-butyl-m-xylene and phenylacetylene in supercritical carbon dioxide[J]. Journal of Chromatography A,2007,1167(2): 202-209.
    [40]Pizarro C, Sua Rez-Iglesias O, Medina I, et al. Binary Diffusion Coefficients of 2-Ethyltoluene, 3-Ethyltoluene, and 4-Ethyltoluene in Supercritical Carbon Dioxide [J]. Journal of Chemical & Engineering Data,2009,54(5):1467-1471.
    [41]Pizarro C, Suarez-Iglesias O, Medina I, et al. Binary diffusion coefficients for 2,3-dimethylaniline, 2,6-dimethylaniline,2-methylanisole,4-methylanisole and 3-nitrotoluene in supercritical carbon dioxide[J]. The Journal of Supercritical Fluids,2009,48(1):1-8.
    [42]Gonzalez L M, Suarez-Iglesias O, Bueno J L, et al. Limiting binary diffusivities of aniline, styrene, and mesitylene in supercritical carbon dioxide[J]. Journal of Chemical & Engineering Data,2007,52(4): 1286-1290.
    [43]Suarez-Iglesias O, Medina I, Pizarro C, et al. Diffusion of benzyl acetate,2-phenylethyl acetate, 3-phenylpropyl acetate, and dibenzyl ether in mixtures of carbon dioxide and ethanol[J]. Industrial& engineering chemistry research,2007,46(11):3810-3819.
    [44]Kong C Y, Funazukuri T, Kagei S. Binary diffusion coefficients and retention factors for polar compounds in supercritical carbon dioxide by chromatographic impulse response method[J]. The Journal of supercritical fluids,2006,37(3):359-366.
    [45]Kong C Y, Takahashi N, Funazukuri T, et al. Measurements of binary diffusion coefficients and retention factors for dibenzo-24-crown-8 and 15-crown-5 in supercritical carbon dioxide by chromatographic impulse response technique[J]. Fluid phase equilibria,2007,257(2):223-227.
    [46]Silva C M, Quadri M B, Macedo E A. Tracer diffusion coefficients of citral and d-limonene in supercritical carbon dioxide[J]. Fluid phase equilibria,2003,204(1):65-73.
    [47]Claudio Filho A, Silva C M, Quadri M B, et al. Infinite dilution diffusion coefficients of linalool and benzene in supercritical carbon dioxide[J]. Journal of Chemical & Engineering Data,2002,47(6): 1351-1354.
    [48]Silva C M, Quadri M B, Macedo E A. Binary diffusion coefficients of α-pinene and β-pinene in supercritical carbon dioxide[J]. The Journal of supercritical fluids,2004,32(1):167-175.
    [49]Wells T, Foster N R, Chaplin R P. Diffusion of phenylacetic acid and vanillin in supercritical carbon dioxide[J]. Industrial & engineering chemistry research,1992,31(3):927-934.
    [50]Dahmen N, Kordikowski A, Schneider G M. Determination of binary diffusion coefficients of organic compounds in supercritical carbon dioxide by supercritical fluid chromatography [J]. Journal of Chromatography A,1990,505(1):169-178.
    [51]Liong K K, Wells P A, Foster N R. Diffusion of fatty acid esters in supercritical carbon dioxide[J]. Industrial & engineering chemistry research,1992,31(1):390-399.
    [52]Liong K K, Wells P A, Foster N R. Diffusion coefficients of long-chain esters in supercritical carbon dioxide[J}. Industrial & Engineering Chemistry Research,1991,30(6):1329-1335.
    [53]Kong C Y, Mori M, Funazukuri T, et al. Measurements of binary diffusion coefficients, retention factors and partial molar volumes for myristoleic acid and its methyl ester in supercritical carbon dioxide[J]. Analytical sciences,2006,22(11):1431-1436.
    [54]Funazukuri T, Kong C Y, Kagei S. Effects of molecular weight and degree of unsaturation on binary diffusion coefficients for lipids in supercritical carbon dioxide[J]. Fluid phase equilibria,2004, 219(1):67-73.
    [55]Kong C Y, Withanage N R W, Funazukuri T, et al. Binary diffusion coefficients and retention factors for γ-linolenic acid and its methyl and ethyl esters in supercritical carbon dioxide[J]. The Journal of supercritical fluids,2006,37(1):63-71.
    [56]Funazukuri T, Kong C Y, Kikuchi T, et al. Measurements of binary diffusion coefficient and partition ratio at infinite dilution for linoleic acid and arachidonic acid in supercritical carbon dioxide[J]. Journal of Chemical & Engineering Data,2003,48(3):684-688.
    [57]Kong C Y, Withanage N R W, Funazukuri T, et al. Binary diffusion coefficients and retention factors for long-chain triglycerides in supercritical carbon dioxide by the chromatographic impulse response method[J]. Journal of Chemical & Engineering Data,2005,50(5):1635-1640.
    [58]Han Y, Yang Y, Wu P. Binary diffusion coefficients of arachidonic acid ethyl esthers, cis-5,8,11, 14.17-eicosapentaenoic acid ethyl esthers, and cis-4,7,10,13,16,19-docosahexanenoic acid ethyl esthers in supercritical carbon dioxide[J]. Journal of Chemical & Engineering Data,2007,52(2): 555-559.
    [59]Rezaei K A, Temelli F. Using supercritical fluid chromatography to determine diffusion coefficients of lipids in supercritical CO2[J]. The Journal of Supercritical Fluids,2000,17(1):35-44.
    [60]Funazukuri T. Kong C Y, Kagei S. Binary diffusion coefficients, partition ratios and partial molar volumes at infinite dilution for [beta]-carotene and [alpha]-tocopherol in supercritical carbon dioxide[J]. The Journal of supercritical fluids,2003,27(1):85-96.
    [61]Mantell C, Rodriguez M, de la Ossa E M. Measurement of the diffusion coefficient of a model food dye (malvidin 3,5-diglucoside) in a high pressure CO2+ methanol system by the chromatographic peak-broadening technique[J]. The Journal of supercritical fluids,2003,25(1):57-68.
    [62]Funazukuri T. Kong C Y, Kagei S. Infinite-dilution binary diffusion coefficient, partition ratio, and partial molar volume for ubiquinone CoQ10 in supercritical carbon dioxide[J]. Industrial & engineering chemistry research.2002,41(11):2812-2818.
    [63]Funazukuri T, Ishiwata Y. Diffusion coefficients of linoleic acid methyl ester, Vitamin K3 and indole in mixtures of carbon dioxide and n-hexane at 313.2 K, and 16.0 MPa and 25.0 MPa[J]. Fluid phase equilibria.1999,164(1):117-129.
    [64]Kong C Y, Nakamura M, Sone K, et al. Measurements of Binary Diffusion Coefficients for Ferrocene and 1.1'-Dimethylferrocene in Supercritical Carbon Dioxide[J]. Journal of Chemical & Engineering Data.2010.
    [65]Kong C Y, Gu Y Y, Nakamura M. et al. Diffusion coefficients of metal acetylacetonates in supercritical carbon dioxide[J]. Fluid Phase Equilibria.2010,297(2):162-167.
    [66]Catchpole O J. King M B. Measurement and correlation of binary diffusion coefficients in near critical fluids[J]. Industrial & engineering chemistry research.1994,33(7):1828-1837.
    [67]Funazukuri T. Kong C Y. Kagei S. Simultaneous determination of binary diffusion coefficients from multiple response curves by chromatographic measurements[J]. Journal of Chromatography A, 2007.1150(1):105-111.
    [68]Noel J M. Erkey C. Bukur D B. et al. Infinite dilution mutual diffusion coefficients of 1-octene and 1-tetradecene in near-critical ethane and propane[J]. Journal of Chemical and Engineering Data,1994, 39(4):920-921.
    [69]Eaton A P. Akgerman A. Infinite-dilution diffusion coefficients in supercritical fluids[J]. Industrial & engineering chemistry research.1997.36(3):923-931.
    [70]Olesik S V, Woodruff J L. Liquid mass-transport theories applied to molecular diffusion in binary and ternary supercritical fluid mixtures[J]. Analytical chemistry,1991,63(7):670-676.
    [71]Sun C, Chen S H. Tracer diffusion in dense ethanol:A generalized correlation for nonpolar and hydrogen-bonded solvents[J]. AIChE journal,1986,32(71):1367-1371.
    [72]Sun C K. J, Chen S H. Tracer diffusion in dense methanol and 2-propanol up to supercritical region: understanding of solvent molecular association and development of an empirical correlation[J]. Industrial & Engineering Chemistry Research,1987,26(4):815-819.
    [73]Plugatyr A, Svishchev I M. Molecular Diffusivity of Phenol in Sub-and Supercritical Water: Application of the Split-Flow Taylor Dispersion Technique[J]. The Journal of Physical Chemistry B, 2011.
    [74]Kopner A, Hamm A, Ellert J, et al. Determination of binary diffusion coefficients in supercritical chlorotrifluoromethane and sulphurhexafluoride with supercritical fluid chromatography (SFC)[J]. Chemical engineering science,1987,42(9):2213-2218.
    [75]Gonzalez L M, Bueno J L, Medina I. Determination of binary diffusion coefficients of anisole,2, 4-dimethylphenol, and nitrobenzene in supercritical carbon dioxide[J]. Industrial & engineering chemistry research,2001,40(16):3711-3716.
    [76]Gonzalez L M, Suarez Iglesias O, Bueno J L, et al. Application of the corresponding states principle to the diffusion in CO2[J]. AIChE Journal,2007,53(12):3054-3061.
    [77]Pizarro C, Sua Rez-Iglesias O, Medina I, et al. Diffusion coefficients of n-butylbenzene, n-pentylbenzene,1-phenylhexane,1-phenyloctane, and 1-phenyldodecane in supercritical carbon dioxide[J]. Industrial & Engineering Chemistry Research,2008,47(17):6783-6789.
    [78]Funazukuri T, Kong C Y, Kagei S. On the measurement of anomalous binary diffusion coefficients in the near-critical region[J]. Industrial & engineering chemistry research,2000,39(3):835-837.
    [79]Lin R, Tavlarides L L. Diffusion coefficients of diesel fuel and surrogate compounds in supercritical carbon dioxide[J]. The Journal of Supercritical Fluids,2010,52(1):47-55.
    [80]Clifford A A, Coleby S E. Diffusion of a solute in dilute solution in a supercritical fluid[J], Proceedings of the Royal Society of London. Series A:Mathematical and Physical Sciences,1991, 433(1887):63-79.
    [81]Levelt Sengers J, Deiters U K, Klask U, et al. Application of the Taylor dispersion method in supercritical fluids[J]. International journal of thermophysics,1993,14(4):893-922.
    [82]Sassiat P R, Mourier P, Caude M H, et al. Measurement of diffusion coefficients in supercritical carbon dioxide and correlation with the equation of Wilke and Chang[J]. Analytical Chemistry,1987, 59(8):1164-1170.
    [83]Smith S A, Shenai V, Matthews M A. Diffusion in supercritical mixtures:CO2+ cosolvent+ solutes[J]. The Journal of Supercritical Fluids,1990,3(4):175-179.
    [84]Lin 1 H, Tan C S. Diffusion of Benzonitrile in CO2-Expanded Ethanol[J]. Journal of Chemical & Engineering Data,2008,53(8):1886-1891.
    [85]Lin I, Tan C S. Measurement of diffusion coefficients of p-chloronitrobenzene in CO2-expanded methanol[J]. The Journal of Supercritical Fluids,2008,46(2):112-117.
    [86]Lee S T, Olesik S V. Comparison of enhanced-fluidity and elevated-temperature mobile phases in reversed-phase high-performance liquid chromatography [J]. Analytical Chemistry,1994,66(24): 4498-4506.
    [87]Souvignet I, Olesik S V. Molecular diffusion coefficients in ethanol/water/carbon dioxide mixtures[J]. Analytical chemistry,1998,70(14):2783-2788.
    [88]Wilke C R, Chang P. Correlation of diffusion coefficients in dilute solutions[J]. AIChE Journal, 1955,1(2):264-270.
    [89]King C J, Hsueh L, Mao K W. Liquid Phase Diffusion of Non-electrolytes at High Dilution.[J]. Journal of Chemical and Engineering Data,1965,10(4):348-350.
    [90]Scheibel E G. Correspondence. Liquid Diffusivities. Viscosity of Gases.[J]. Industrial & Engineering Chemistry,1954,46(9):2007-2008.
    [91]Lusis M A, Ratcliff C A. Diffusion in binary liquid mixtures at infinite dilution[J]. The Canadian Journal of Chemical Engineering,1968,46(5):385-387.
    [92]Hayduk W, Minhas B S. Correlations for prediction of molecular diffusivities in liquids[J]. The Canadian Journal of Chemical Engineering,1982,60(2):295-299.
    [93]Tyn M T, Calus W F. Diffusion coefficients in dilute binary liquid mixtures[J]. Journal of Chemical and Engineering Data,1975,20(1):106-109.
    [94]Reddy K A, Doraiswamy L K. Estimating liquid diffusivity[J]. Industrial & Engineering Chemistry Fundamentals,1967,6(1):77-79.
    [95]Siddiqi M A, Lucas K. Correlations for prediction of diffusion in liquids[J]. The Canadian Journal of Chemical Engineering,1986,64(5):839-843.
    [96]Lai C C, Tan C S. Measurement of molecular diffusion coefficients in supercritical carbon dioxide using a coated capillary column[J]. Industrial & engineering chemistry research,1995,34(2):674-680.
    [97]Hirschfelder J O, Curtiss C F, Bird R B. et al. Molecular theory of gases and liquids[M]. Wiley New York,1954.
    [98]Alder B J, Alley W E, Dymond J H. Studies in molecular dynamics. ⅩⅣ. Mass and size dependence of the binary diffusion coefficient[J]. The Journal of Chemical Physics,1974,61:1415.
    [99]Easteal A J, Woolf L A. Tracer diffusion in hard-sphere liquids from molecular dynamics simulations[J]. Chemical Physics Letters,1990,167(4):329-333.
    [100]Chandler D. Rough hard sphere theory of the self-diffusion constant for molecular liquids[J]. The Journal of Chemical Physics.1975,62(4):1358.
    [101]Chapman S, Cowling T G. The mathematical theory of non-uniform gases:an account of the kinetic theory of viscosity, thermal conduction, and diffusion in gases[M]. Cambridge Univ Pr,1991.
    [102]Bertucci S J, Flygare W H. Rough hard sphere treatment of mutual diffusion in binary liquid mixtures[J]. The Journal of Chemical Physics,1975,63(1):1.
    [103]Dymond J H. Hard-sphere theories of transport properties[J]. Chem. Soc. Rev.,1985,14(3): 317-356.
    [104]Erkey C. Gadalla H. Akgerman A. Application of rough hard sphere theory to diffusion in supercritical fluidst[J]. The Journal of Supercritical Fluids.1990.3(4):180-185.
    [105]Funazukuri T. Wakao N. Application of the Rough Hard Sphere Model to Binary Diffusion Coefficients of Organic Compounds in Dense CO2[J]. Kagaku Kogaku Ronbunshu,1995,21:204.
    [106]Bondi A. van der Waals Volumes and Radii[J]. The Journal of physical chemistry,1964,68(3): 441-451.
    [107]Arends B. Prins K O. Trappeniers N J. Self-diffusion in gaseous and liquid ethylene[J]. Physica A: Statistical and Theoretical Physics.1981,107(2):307-318.
    [108]He C H. Prediction of binary diffusion coefficients of solutes in supercritical solvents[J]. AIChE journal.1997.43(11):2944-2947.
    [109]He C H. Yu Y S. Estimation of infinite-dilution diffusion coefficients in supercritical fluids[J]. Industrial & engineering chemistry research,1997,36(10):4430-4433.
    [110]Dymond J H. Self-diffusion coefficients in dense fluids; the corrected Enskog theory[J]. J. Chem. Soc., Faraday Trans.2,1972,68(0):1789-1794.
    [111]He C H, Yu Y S. New equation for infinite-dilution diffusion coefficients in supercritical and high-temperature liquid solvents[J]. Industrial & engineering chemistry research,1998,37(9): 3793-3798.
    [112]Cohen M H, Turnbull D. Molecular transport in liquids and glasses[J]. The Journal of Chemical Physics,1959,31:1164.
    [113]Fuller E N, Schettler P D, Giddings J C. New method for prediction of binary gas-phase diffusion coefficients[J]. Industrial & Engineering Chemistry,1966,58(5):18-27.
    [114]Funazukuri T, Hachisu S, Wakao N. Measurements of binary diffusion coefficients of C16-C24 unsaturated fatty acid methyl esters in supercritical carbon dioxide[J]. Industrial & engineering chemistry research,1991,30(6):1323-1329.
    [115]Funazukuri T, Ishiwata Y, Wakao N. Predictive correlation for binary diffusion coefficients in dense carbon dioxide[J]. AIChE journal,1992,38(11):1761-1768.
    [116]Higashi H, Iwai Y, Arai Y. Solubilities and diffusion coefficients of high boiling compounds in supercritical carbon dioxide[J]. Chemical engineering science,2001,56(10):3027-3044.
    [117]Liu H, Silva C M, Macedo E A. New equations for tracer diffusion coefficients of solutes in supercritical and liquid solvents based on the Lennard-Jones fluid model[J]. Industrial & engineering chemistry research,1997,36(1):246-252.
    [118]Fei W, Bart H J. Prediction of diffusivities in liquids[J]. Chemical engineering & technology,1998, 21(8):659-665.
    [119]Guggenheim E A. The principle of corresponding states[J]. The Journal of Chemical Physics,1945, 13:253.
    [120]Chen S H, Davis H T, Evans D F. Tracer diffusion in polyatomic liquids. Ⅲ[J]. The Journal of Chemical Physics,1982,77:2540.
    [121]Batschinski A J. Investigations of Internal Friction of Fluids[J]. J. Phys. Chem,1913,643.
    [122]Hildebrand J H. Motions of molecules in liquids:viscosity and diffusivity[J]. Science,1971, 174(4008):490-493.
    [123]Dymond J H. Corrected Enskog theory and the transport coefficients of liquids[J]. The Journal of Chemical Physics,1974,60:969.
    [124]Matthews M A, Akgerman A. Diffusion coefficients for binary alkane mixtures to 573 K and 3.5 MPa[J]. AIChE journal,1987,33(6):881-885.
    [125]He C H, Yu Y S, Su W K. Tracer diffusion coefficients of solutes in supercritical solvents[J]. Fluid phase equilibria,1998,142(1-2):281-286.
    [126]He C H. Infinite-dilution diffusion coefficients in supercritical and high-temperature liquid solvents[J]. Fluid phase equilibria,1998,147(1-2):309-317.
    [127]Fairbanks D F, Wilke C R. Diffusion coefficients in multicomponent gas mixtures[J]. Industrial & Engineering Chemistry,1950,42(3):471-475.
    [128]Perkins L R, Geankoplis C J. Molecular diffusion in a ternary liquid system with the diffusing component dilute[J]. Chemical Engineering Science,1969,24(7):1035-1042.
    [129]Tang Y P, Himmelblau D M. Effective binary diffusion coefficients in mixed solvents[J]. AIChE Journal,1965,11(1):54-58.
    [130]Leffler J, Cullinan Jr H T. Variation of Liquid Diffusion Coefficients with Composition. Binary Systems[J]. Industrial & Engineering Chemistry Fundamentals,1970,9(1):84-88.
    [131]Cloete C E, Smuts T W, De Clerk K. The gas chromatographic determination of binary diffusion coefficients:I. A theoretical design study[J]. Journal of Chromatography A,1976,120(1):1-15.
    [132]Dean W R. The stream-line motion of uid in a curved pipe[J]. Philos. Mag,1928,5:673-695.
    [133]Alizadeh A, Nieto De Castro C A. Wakeham W A. The theory of the Taylor dispersion technique for liquid diffusivity measurements[J]. International Journal of Thermophysics,1980,1(3):243-284.
    [134]Debenedetti P G, Reid R C. Supercritical Fluid Technology, edited by JML Penninger, M. Radosz, MA McHugh and VJ Krukonis 1985 Elsevier Science Publishers BV, Amsterdam—Printed in The Netherlands[J]. Supercritical fluid technology,1985,3:225.
    [135]Lin R, Tavlarides L L. Determination of diffusion coefficients by supercritical fluid chromatography:Effects of mobile phase mean velocity and column orientation[J]. Journal of Chromatography A,2010,1217(26):4454-4462.
    [136]Akgerman A, Erkey C, Orejuela M. Limiting diffusion coefficients of heavy molecular weight organic contaminants in supercritical carbon dioxide[J]. Industrial & engineering chemistry research, 1996,35(3):911-917.
    [137]Silva C M, Macedo E A. Diffusion coefficients of ethers in supercritical carbon dioxide[J]. Industrial & engineering chemistry research,1998,37(4):1490-1498.
    [138]Funazukuri T, Kong C Y, Kagei S. Infinite dilution binary diffusion coefficients of benzene in carbon dioxide by the Taylor dispersion technique at temperatures from 308.15 to 328.15 K and pressures from 6 to 30 MPa[J]. International journal of thermophysics,2001,22(6):1643-1660.
    [139]Galicia-Luna L A, Ortega-Rodriguez A, Richon D. New apparatus for the fast determination of high-pressure vapor-liquid equilibria of mixtures and of accurate critical pressures[J]. Journal of Chemical & Engineering Data,2000,45(2):265-271.
    [140]Sang-Do Yeo, Park S J, Kim J W, et al. Critical properties of carbon dioxide+ methanol,+ ethanol,+ 1-propanol, and-1-butanol[J]. Journal of Chemical & Engineering Data,2000.45(5):932-935.
    [141]Span R, Wagner W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa[J]. Journal of physical and chemical reference data,1996,25:1509.
    [142]Fenghour A, Wakeham W A, Vesovic V. The viscosity of carbon dioxide[J]. Journal of Physical and Chemical Reference Data,1998,27(1):31-44.
    [143]Pohler H, Kiran E. Volumetric properties of carbon dioxide+ethanol at high pressures[J]. Journal of Chemical & Engineering Data,1997.42(2):384-388.
    [144]Zuniga-Moreno A, Galicia-Luna L A. Compressed liquid densities of carbon dioxide+ethanol mixtures at four compositions via a vibrating tube densimeter up to 363 K and 25 MPa[J], Journal of Chemical & Engineering Data,2002.47(2):149-154.
    [145]Funazukuri T. Measurements of binary diffusion coefficients of 20 organic compounds in CO2 at 313.2K and 16.0 MPa[J]. Journal of chemical engineering of Japan,1996,29(1):191-192.
    [146]Funazukuri T, Kong C Y, Kagei S. Binary diffusion coefficients of acetone in carbon dioxide at 308.2 and 313.2 K in the pressure range from 7.9 to 40 MPa[J]. International journal of thermophysics. 2000,21(3):651-669.
    [147]Suarez J J, Bueno J L, Medina I. Determination of binary diffusion coefficients of benzene and derivatives in supercritical carbon dioxide[J]. Chemical engineering science.1993.48(13):2419-2427.
    [148]Grushka E, Kikta Jr E J, Cullinan Jr H T. Binary liquid diffusion prediction in infinitely diluted systems using the ultimate volume approach[J]. The Journal of Physical Chemistry.1976.80(7): 757-761.
    [149]R. H. Perry D W G. Chemical Engineering's Handbook (spanish translation)[M].7th ed ed. Madrid: McGraw-Hill,2001.
    [150]R. R. Weast M J A W. CRC Handbook of Chemistry and Physics[M].
    [151]R. C. Reid J M P B. The properties of gases and liquids[M].4th ed ed. New York:McGraw-Hill. Inc,1987.
    [152]Liu H, Silva C M, Macedo E A. Unified approach to the self-diffusion coeffieients of dense fluids over wide ranges of temperature and pressure-hard-sphere, square-well, Lennard-Jones and real substances[J]. Chemical engineering science,1998,53(13):2403-2422.
    [153]Silva C M, Liu H, Macedo E A. Models for self-diffusion coefficients of dense fluids, including hydrogen-bonding substances[J]. Chemical engineering science,1998,53(13):2423-2429.
    [154]Eckert C A, Ziger D H, Johnston K P, et al. Solute partial molal volumes in supercritical fluids[J]. The Journal of Physical Chemistry,1986,90(12):2738-2746.
    [155]Kim S, Johnston K P. Clustering in supercritical fluid mixtures[J]. AIChE journal,1987,33(10): 1603-1611.
    [156]Zhang J, Lee L L, Brennecke J F. Fluorescence Spectroscopy and Integral Equation Studies of Preferential Solvation in Supercritical Fluid Mixtures[J]. The Journal of Physical Chemistry,1995, 99(22):9268-9277.
    [157]Skarmoutsos I, Dellis D, Samios J. Investigation of the local composition enhancement and related dynamics in supercritical CO2-cosolvent mixtures via computer simulation:the case of ethanol in CO2[J]. Journal of Chemical Physics,2007,126(22):224503.
    [158]Anderson K E, Siepmann J I. Solubility in supercritical carbon dioxide:Importance of the Poynting correction and entrainer effects[J]. The Journal of Physical Chemistry B,2008,112(36):11374-11380.
    [159]Zagrobelny J A, Bright F V. Probing solute-entrainer interactions in matrix-modified supercritical carbon dioxide[J]. Journal of the American Chemical Society,1993,115(2):701-707.
    [160]Liu J, Qin Z, Wang G, et al. Critical properties of binary and ternary mixtures of hexane+methanol, hexane+ carbon dioxide, methanol+ carbon dioxide, and hexane+ carbon dioxide+ methanol[J]. Journal of Chemical & Engineering Data,2003,48(6):1610-1613.
    [161]Reaves J T, Griffith A T, Roberts C B. Critical properties of dilute carbon dioxide+ entrainer and ethane+ entrainer mixtures[J]. Journal of Chemical & Engineering Data,1998,43(4):683-686.
    [162]Wagner Z, Wichterle I. High-pressure vapour--liquid equilibrium in systems containing carbon dioxide,1-hexene, and n-hexane[J]. Fluid phase equilibria,1987,33(1-2):109-123.
    [163]Joung S N, Yoo C W, Shin H Y, et al. Measurements and correlation of high-pressure VLE of binary CO2-alcohol systems (methanol, ethanol,2-methoxyethanoI and 2-ethoxyethanol,[J]. Fluid phase equilibria,2001,185(1):219-230.
    [164]Im J, Bae W, Lee J, et al. Vapor-liquid equilibria of the binary carbon dioxide-tetrahydrofuran mixture system[J]. Journal of Chemical & Engineering Data,2004,49(1):35-37.
    [165]Lim J S, Jung Y G, Yoo K P. High-Pressure Vapor-Liquid Equilibria for the Binary Mixtures of Carbon Dioxide+ Isopropanol (IPA)[J]. Journal of Chemical & Engineering Data,2007,52(6): 2405-2408.
    [166]Bamberger A, Maurer G. High-pressure (vapour+liquid) equilibria in (carbon dioxide+ acetone or 2-propanol) at temperatures from 293 K to 333 K[J]. The Journal of Chemical Thermodynamics,2000, 32(5):685-700.
    [167]Lazzaroni M J, Bush D, Brown J S, et al. High-pressure vapor-liquid equilbria of some carbon dioxide+ organic binary systems[J]. Journal of Chemical & Engineering Data,2005,50(1):60-65.
    [168]Kamlet M J, Taft R W. The solvatochromic comparison method. Ⅰ. The. beta.-scale of solvent hydrogen-bond acceptor (HBA) basicities[J]. Journal of the American chemical Society,1976,98(2): 377-383.
    [169]Taft R W, Kamlet M J. The solvatochromic comparison method.2. The. alpha.-scale of solvent hydrogen-bond donor (HBD) acidities[J]. Journal of the American chemical Society,1976,98(10): 2886-2894.
    [170]Sprunger L M, Proctor A, Acree W E, et al. Correlation and prediction of partition coefficient between the gas phase and water, and the solvents dry methyl acetate, dry and wet ethyl acetate, and dry and wet butyl acetate[J]. Fluid Phase Equilibria,2008.270(1):30-44.
    [171]Sprunger L, Proctor A, Acree Jr W E, et al. Characterization of the sorption of gaseous and organic solutes onto polydimethyl siloxane solid-phase microextraction surfaces using the Abraham model[J]. Journal of Chromatography A,2007,1175(2):162-173.
    [172]Abraham M H, Kumarsingh R, Cometto-Mu Iz J E, et al. The determination of solvation descriptors for terpenes, and the prediction of nasal pungency thresholds[J]. J. Chem. Soc., Perkin Trans. 2,1998, (11):2405-2412.
    [173]Marcus Y. The Properties of Solvents[M]. Chichester:John Wiley & Sons.1998.
    [174]Ting S S T, Tomasko D L, Foster N R, et al. Chemical-physical interpretation of cosolvent effects in supercritical fluids[J]. Industrial & engineering chemistry research,1993,32(7):1482-1487.
    [175]Guclu-ustundag O, Temelli F. Solubility behavior of ternary systems of lipids, cosolvents and supercritical carbon dioxide and processing aspects[J]. The Journal of supercritical fluids,2005,36(1): 1-15.
    [176]Zhang Z, Li W, Jin J, et al. Solubility of p-methylbenzene sulfonic acid in pure and modified supercritical carbon dioxide[J]. Journal of Chemical & Engineering Data,2008.53(2):600-602.
    [177]Lu J G, Kong R, Chan T C. Effects of molecular association on mutual diffusion:A study of hydrogen bonding in dilute solutions[J]. The Journal of chemical physics,1999.110:3003.
    [178]de Lucas A, Gracia I, Rincon J, et al. Solubility determination and model prediction of olive husk oil in supercritical carbon dioxide and cosolvents[J]. Industrial & engineering chemistry research,2007. 46(14):5061-5066.
    [179]Walsh J M, Donohue M D. Hydrogen bonding in entrainer cosolvent mixtures:a parametric analysis[J]. Fluid phase equilibria,1989,52:397-404.
    [180]Sahle-Demessie E, Pillai U R, Junsophonsri S, et al. Solubility of organic biocides in supercritical CO2 and CO2+ cosolvent mixtures[J]. Journal of Chemical & Engineering Data.2003,48(3):541-547.
    [181]Huang Z, Kawi S, Chiew Y C. Solubility of cholesterol and its esters in supercritical carbon dioxide with and without cosolvents[J]. The Journal of supercritical fluids,2004,30(1):25-39.
    [182]Huang Z, Lu W D, Kawi S, et al. Solubility of aspirin in supercritical carbon dioxide with and without acetone[J]. Journal of Chemical & Engineering Data,2004,49(5):1323-1327.
    [183]Kopcak U, Mohamed R S. Caffeine solubility in supercritical carbon dioxide/co-solvent mixtures[J]. The Journal of supercritical fluids,2005,34(2):209-214.
    [184]Abbott A P, Hope E G. Palmer D J. Probing solute clustering in supercritical solutions using solvatochromic parameters[J]. The Journal of Physical Chemistry B.2007,111(28):8119-8125.
    [185]Weast R C. Handbook of Chemistry and Physics[M]. Florida:Chemical Rubber,1981.
    [186]Mφller C, Plesset M S. Note on an approximation treatment for many-electron systems[J]. Physical Review,1934,46(7):618.
    [187]Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B,1988,37(2):785.
    [188]Boys S F, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors[J]. Molecular Physics,1970,19(4):553-566.
    [189]Wong M W, Frisch M J, Wiberg K B. Solvent effects.1. The mediation of electrostatic effects by solvents[J]. Journal of the American Chemical Society,1991,113(13):4776-4782.
    [190]Bell P W, Thote A J, Park Y, et al. Strong Lewis acid-Lewis base interactions between supercritical carbon dioxide and carboxylic acids:effects on self-association[J]. Industrial & engineering chemistry research,2003,42(25):6280-6289.
    [191]Jensen F. Introduction to computational chemistry[M]. Chichester:Wiley,1999.
    [192]Platts J A. Theoretical prediction of hydrogen bond donor capacity [J]. Phys. Chem. Chem. Phys., 2000,2(5):973-980.
    [193]Hunt P A, Kirchner B, Welton T. Characterising the Electronic Structure of Ionic Liquids:An Examination of the 1-Butyl-3-Methylimidazolium Chloride Ion Pair[J]. Chemistry-A European Journal,2006,12(26):6762-6775.
    [194]Lowdin P O. Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems'in the method of configurational interaction[J]. Physical Review,1955,97(6):1474.
    [195]Reed A E, Weinhold F. Natural bond orbital analysis of near-Hartree-Fock water dimer[J]. The Journal of Chemical Physics,1983,78:4066.
    [196]Reed A E, Curtiss L A, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint[J]. Chemical Reviews,1988,88(6):899-926.
    [197]王伟周.几种典型体系分子间相互作用的理论研究[D].四川大学,2004.
    [198]Popelier P L A. Atoms in molecules. An introduction[M]. Harlow, U.K.:Pearson Education,1999.
    [199]Koch U, Popelier P L A. Characterization of C-H-O hydrogen bonds on the basis of the charge density[J]. The Journal of Physical Chemistry,1995,99(24):9747-9754.
    [200]Popelier P L A. Characterization of a dihydrogen bond on the basis of the electron density [J]. The Journal of Physical Chemistry A,1998,102(10):1873-1878.
    [201]Lipkowski P, Grabowski S J, Robinson T L, et al. Properties of the C-H... H Dihydrogen Bond:An ab Initio and Topological Analysis[J]. The Journal of Physical Chemistry A,2004,108(49): 10865-10872.
    [202]Yuan Y, Mosier P D, Zhang Y. Quantitative structure-property relationship (QSPR) model for predicting acidities of ketones[J]. Journal of Biophysical Chemistry,2012,3(1):49-57.
    [203]Robak W, Apostoluk W, Ochromowicz K. Linear Solvation Energy Relationship (LSER) Analysis of Liquid-Liquid Distribution Constants of 8-Hydroxyquinoline and Its Derivatives[J]. Journal of Chemical & Engineering Data,2011.
    [204]Khimeche K, Alessi P, Dahmani A, et al. Activity Coefficients at Infinite Dilution by GLC in Alkanediamines as Stationary Phases[J]. Journal of Chemical & Engineering Data,2011.
    [205]Liao P, Yuan S, Zhang W, et al. Mechanistic aspects of nitrogen-heterocyclic compound adsorption on bamboo charcoal[J]. Journal of Colloid and Interface Science,2012.
    [206]Ogden P B, Coym J W. Retention mechanism of a cholesterol-coated C18 stationary phase:van't Hoff and Linear Solvation Energy Relationships (LSER) approaches[J]. Journal of Chromatography A, 2011.
    [207]D Souza M J, Knapp J A, Fernandez-Bueno G A, et al. Use of Linear Free Energy Relationships (LFERs) to Elucidate the Mechanisms of Reaction of a γ-Methyl-β-alkynyl and an ortho-Substituted Aryl Chloroformate Ester[J]. International journal of molecular sciences,2012,13(1):665-682.
    [208]Sun P, Tan J, Wang H L, et al. QSAR Study on Acute Toxicity to Photobacterium Phosphoreum of Fluorobenzene Derivatives[C]. IEEE,2011.1-4.
    [209]Kamlet M J, Taft R W. Linear Solvation Energy Relationships. Local Empirical Rules-or Fundamental Laws of Chemistry? A Reply to the[J]. Acta Chem. Scand. B.1985.39(8).
    [210]Taft R W, Abraham M H, Doherty R M. et al. The molecular properties governing solubilities of organic nonelectrolytes in water[J].1985.
    [211]Abraham M H. Scales of solute hydrogen-bonding:their construction and application to physicochemical and biochemical processes[J]. Chem. Soc. Rev..1993.22(2):73-83.
    [212]Vitha M, Carr P W. The chemical interpretation and practice of linear solvation energy relationships in chromatography[J]. Journal of Chromatography A,2006,1126(1):143-194.
    [213]Weckwerth J D, Carr P W. Study of interactions in supercritical fluids and supercritical fluid chromatography by solvatochromic linear solvation energy relationships [J]. Analytical chemistry,1998, 70(7):1404-1411.
    [214]Bui H, Masquelin T, Perun T. et al. Investigation of retention behavior of drug molecules in supercritical fluid chromatography using linear solvation energy relationships[J]. Journal of Chromatography A,2008,1206(2):186-195.
    [215]West C, Lesellier E. A unified classification of stationary phases for packed column supercritical fluid chromatography [J]. Journal of Chromatography A.2008.1191(1):21-39.
    [216]West C, Lesellier E. Effects of modifiers in subcritical fluid chromatography on retention with porous graphitic carbon[J]. Journal of Chromatography A.2005,1087(1):64-76.
    [217]Famini G R, Wilson L Y. Using theoretical descriptors in structure-activity relationships: Solubility in supercritical CO2[J]. Journal of physical organic chemistry,1993.6(10):539-544.
    [218]Bush D. Eckert C A. Estimation of solid solubilities in supercritical carbon dioxide from solute solvatochromic parameters[C]. ACS Publications,1997.37-50.
    [219]Saunders R A, Platts J A. Linear free energy relationship analysis of the solubility of solids in supercritical CO2[J]. Journal of Physical Organic Chemistry,2001.14(9):612-617.
    [220]Lagalante A F. Bruno T J. Modeling the water-supercritical CO2 partition coefficients of organic solutes using a linear solvation energy relationship[J]. The Journal of Physical Chemistry B,1998,102(6): 907-909.
    [221]Timko M T, Nicholson B F. Steinfeld J I. et al. Partition coefficients of organic solutes between supercritical carbon dioxide and water:experimental measurements and empirical correlations[J]. Journal of Chemical & Engineering Data.2004.49(4):768-778.
    [222]Lagalante A F. Clarke A M. Bruno T J. Modeling the water-R134a partition coefficients of organic solutes using a linear solvation energy relationship[J]. The Journal of Physical Chemistry B.1998. 102(44):8889-8892.
    [223]Lagalante A F, Clarke A M. Bruno T J. Measurement and Modeling of the Water-R143A Partition Coefficients of Organic Solutes Using a Linear Solvation Energy Relationship[J]. The Journal of Physical Chemistry B.1999.103(34):7319-7323.
    [224]Bush D. Eckert C A. Prediction of solid-fluid equilibria in supercritical carbon dioxide using linear solvation energy relationships[J]. Fluid phase equilibria.1998.150:479-492.
    [225]Suarez-lglesias O, Medina 1. Pizarro C, et al. Modeling of tracer diffusion in liquids when solute-solvent interactions are present[J]. Fluid Phase Equilibria.2007.253(2):155-164.
    [226]Hills E E. Abraham M H. Hersey A, et al. Diffusion coefficients in ethanol and in water at 298 K: Linear free energy relationships[J]. Fluid Phase Equilibria,2011.
    [227]Wang T, Wang X, Smith R L. Modeling of diffusivities in supercritical carbon dioxide using a linear solvation energy relationship[J]. The Journal of supercritical fluids,2005,35(1):18-25.
    [228]West C, Lesellier E, Tchapla A. Retention characteristics of porous graphitic carbon in subcritical fluid chromatography with carbon dioxide-methanol mobile phases[J]. Journal of Chromatography A, 2004,1048(1):99-109.
    [229]Lokajova J, Tesa Ova E, Armstrong D W. Comparative study of three teicoplanin-based chiral stationary phases using the linear free energy relationship model[J]. Journal of Chromatography A,2005, 1088(1):57-66.
    [230]Lesellier E, West C. Combined supercritical fluid chromatographic methods for the characterization of octadecylsiloxane-bonded stationary phases[J]. Journal of Chromatography A,2007, 1149(2):345-357.
    [231]Abraham M H, Chadha H S, Whiting G S, et al. Hydrogen bonding.32. An analysis of water-octanol and water-alkane partitioning and the Δ log p parameter of seiler[J]. Journal of pharmaceutical sciences,1994,83(8):1085-1100.
    [232]Abraham M H, Acree Jr W E. Correlation and prediction of partition coefficients between the gas phase and water, and the solvents dodecane and undecane[J]. New J. Chem.,2004,28(12):1538-1543.
    [233]Sprunger L, Acree Jr W E, Abraham M H. Linear free energy relationship correlation of the distribution of solutes between water and sodium dodecyl sulfate (SDS) micelles and between gas and SDS micelles[J]. Journal of chemical information and modeling,2007,47(5):1808-1817.
    [234]Abraham M H, Ibrahim A, Acree W E. Partition of compounds from gas to water and from gas to physiological saline at 310K:Linear free energy relationships[J]. Fluid phase equilibria,2007,251(2): 93-109.
    [235]Oumada F Z, Roses M, Bosch E, et al. Solute-solvent interactions in normal-phase liquid chromatography:a linear free-energy relationships study[J]. Analytica chimica acta,1999,382(3): 301-308.
    [236]Mintz C, Burton K, Ladlie T, et al. Enthalpy of solvation correlations for organic solutes and gases dissolved in N, N-dimethylformamide and tert-butanol[J]. Journal of Molecular Liquids,2009,144(1-2): 23-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700