东北地区垃圾堆场的垃圾降解行为及稳定化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,垃圾堆场在我国的垃圾处理方式中仍占很大比例,我国大多数城市周围都存在着垃圾堆场。这些垃圾堆场不仅占用大量土地、经常发生火灾和爆炸等安全事故,而且对环境的污染与影响非常严重。
     本文以哈尔滨市为例,通过模拟试验和现场采样分析,对东北地区城市生活垃圾堆场中固体垃圾的有机质、生物可降解物(BDM)、总糖、粗纤维及重金属等指标和垃圾渗滤液水质(COD、BOD、可生化性和氨氮)随时间的变化规律以及垃圾堆场的稳定化状况进行了一系列深入的研究,建立了垃圾渗滤液和固体成分各个指标的动力学模型,分析、比较了影响垃圾稳定化的关键因素,并据此对哈尔滨市的垃圾稳定化时间进行了预测。同时,本文还利用基因扩增——变性梯度凝胶电泳(PCR-DGGE)技术对模拟堆场条件下的微生物群落结构进行了研究。
     现场试验部分分别采集了哈尔滨市的四个垃圾堆场的垃圾,并且对不同堆放时间的垃圾中有机质、生物可降解物、总糖和粗纤维以及重金属等指标进行分析,研究各个指标与堆放时间的关系。结果表明:垃圾在堆放10年后,垃圾中有机质、BDM、总糖、粗纤维分别减少了50.77%、43.34%、83.38%、24.49%。通过对东部垃圾场和王岗垃圾场的垃圾进行挖掘试验,对两个垃圾堆场的不同堆放深度的垃圾中有机质、生物可降解物和重金属等指标进行分析,研究各个指标与堆放深度之间的关系。结果表明:固体垃圾有机质、BDM、总糖和粗纤维随垃圾堆放时间的增加而呈现降低的趋势,垃圾中有机质和BDM降解速度随垃圾堆放的深度增加而减缓。
     通过实验室模拟试验研究环境温度对生活垃圾降解的影响,模拟试验温度控制在40℃条件下其垃圾渗滤液各指标和固体垃圾成分各指标达到最大值需要的时间分别比19℃条件下缩短10天和10~20天,结果表明试验范围内环境温度的升高可以缩短垃圾降解的启动时间。实验室模拟试验中40℃试验组的垃圾中有机质和BDM降解率分别是19℃试验组降解率的1.41倍和1.22倍。
     论文通过模拟垃圾堆场试验对不同环境条件下垃圾堆场中的垃圾降解行为进行了研究,结果表明:自然环境条件试验的渗滤液和固体成分指标的降解速度均比人工模拟条件试验装置快。自然环境条件下垃圾渗滤液的COD、BOD的降解率以及氨氮的转化率分别是人工模拟降水条件试验降解率的1.39倍、1.10倍和1.60倍;自然环境条件下垃圾中有机质、BDM的降解率分别是人工模拟降水条件试验降解率的1.29倍和1.60倍。通过对比分析发现,除环境温度外,天然降水、营养物质和溶解氧、微生物以及降解过程中释放的热量散失等因素对垃圾渗滤液和固体垃圾中有机质和BDM的降解均产生重要影响。
     利用PCR-DGGE技术,对人工模拟条件试验装置和自然环境条件试验装置的两个垃圾层内的微生物群落结构进行了研究,结果显示两个模拟试验装置内均有着比较丰富的细菌群落多样性。四个不同样品内存在共同的菌种,而每个样品又存在各自比较优势的菌种。通过DGGE图谱的丰富度分析,发现自然环境条件试验装置内的菌群多样性明显高于人工模拟降水条件试验装置,而下层垃圾堆层的菌群种类多于上层垃圾堆层。通过DGGE图谱的相似性分析,发现人工模拟条件试验装置与自然环境条件试验装置内的微生物由于所处的大环境不同,导致微生物种群差异很大。但随着堆放深度的增加,不同垃圾堆体内菌群相似性却明显随之增加。
     基于生化反应的动力学方程?C?? C e?Kt 0,对模拟试验、垃圾堆场试验的垃圾渗滤液和固体垃圾成分各指标随堆放时间的变化情况进行数学拟合,得到各指标的反应动力学拟合方程,并且得出哈尔滨的渗滤液达到稳定化(COD≤100mg/L,BOD≤30mg/L,氨氮≤15mg/L)所需要的时间为11年,固体垃圾指标达到稳定化(有机质≤7%,BDM≤5%)所需要的时间为19年。
     本研究成果对控制生活垃圾堆场的环境污染、采用生物强化技术加速垃圾堆场的稳定化、以及加速垃圾堆场土地的再利用具有重要的理论意义和实用价值。
At present dumping sites takes up a great proportion in waste treatment method proves. There is a large number of life dumping sites in the vast majority of cities around of China. Not only lots of lands were occupied by dumping sites, but also many events such as fire hazard and explosion often occur in dumping sites. Meanwhile, environment was polluted and impacted very seriously by dumping sites.
     In this paper, Harbin City as an example, we studied on the variation of indexes, such as organic matter, bio-degradable materials(BDM), total sugar, crude fiber, heavy metals and other water quality indicators and landfill leachate(COD, BOD, Bio-degradability and ammonia nitrogen) of solid waste in the life dumping sites of municipal solid waste in northeast regions with the time passing by and studied deeply on the stabilization of the dumping sites through simulation experiments and field sampling and analysis; built dynamic models of landfill leachate and each index of solid components; analyzed and compared key factors influencing on stabilization of waste and accordingly predicted stabilization time of waste and studied on microbial community structure in the dumping sites condition by use of polymerase chain reaction - denaturing gradient gel electrophoresis (PCR-DGGE) technique.
     We collected waste of these four dumping sites in Harbin, and analyzed organic matter, bio-degradable materials, total sugar and crude fiber, as well as indexes of heavy metals, and studied the relation between each indicator and stacking time. The results showed that organic matter in solid waste, BDM, total sugar and crude fiber had reduced by 50.77%, 43.34%, 83.38% and 24.49%, respectively after 10 years waste was dumped. We also analyzed the indexes, such as organic matter, bio-degradable materials and heavy metals in waste piling up in the different depths of these two dumping sites through excavation test in the Dongbu dumping site and the Wanggang dump site, and studied the relation between each index and stack depth. The results showed that the content of the components of solid waste decreased with the increase of stacking time and increased with the increases of stack depth.
     We studied the influence of environmental temperature on degradation of the waste through simulating test. The time that used for indexes of landfill leachate and solid components achieving maximum value when temperature of simulation experiments was 40℃were shortened by 10 and 10~20 days than those at 19℃, respectively. The results showed that starting time of waste degradation was shortened under higher temperature (in the range of test). In the accelerated simulating test, the degradation rate of organic matter and BDM index in solid waste at 40℃was at 19℃1.41 and 1.22 times, respectively. The results showed that waste was easier to degrade with higher temperature.
     In this paper, waste degradation of dumping sites in different environmental conditions was studied through simulation dumping sites tests. The results showed that the degradation of landfill leachate and solid components indexes under natural environmental conditions test device were faster than those under artificial precipitation conditions simulation experimental setup. The degradation rate of COD, BOD and conversion rate ammonia nitrogen of leachate under natural environmental conditions test device was 1.39, 1.10 and 1.60 times those under artificial precipitation conditions simulation experimental setup, respectively. The degradation of organic matter and BDM index in solid waste under natural environmental conditions test device was 1.29 and 1.60 times those under artificial precipitation conditions simulation experimental setup, respectively. Though the analysis and comparison, it is founded that the ambient temperature was not the only critical factor to affect the rate of waste degradation. Some factors such as rainfall, nutrient substance, dissolved oxygen; micro-organisms as well as dissipation of released heat in the process of degradation had much important influence on the degradation of landfill leachate, organic matter in solid waste and BDM.
     We studied the structure of microbial community structure in two different waste layer of artificial precipitation conditions simulation test and natural environmental conditions simulation test by use of PCR-DGGE technology. The results showed that there are rich diversities of microbial communities in these two simulation test devices. The common bacteria existed in four different samples and there were respective comparative advantages bacteria also existed in each sample. It could be seen that diversities of microbial communities of natural environmental conditions simulation test device were better than those of artificial precipitation conditions ones, and the microbial types of the lower layer of trash were more than those of upper’s through abundance analysis of DGGE spectrum. It was found that there is great difference between microbial community under natural environmental conditions and that under artificial precipitation conditions because environment for microorganism growth is different through similarity analysis of DGGE spectrum. Similarity of microbial communities in different waste dump increased obviously with stacking depth.
     Based on biochemical reaction kinetics equation,we carried outmathematical fitting of the changes that landfill leachate and solid comPonents ofall indexes of simulated landfill test and simulated dumP test with time Passing by,and got kinetics fitting equation of each index,and concluded that the required timeof leachate of the dumPing sites in Harbin to achieve stabilization(COD≤100mg/L,BOD≤30mg/L,arnrnonia nitrogen≤15mg/L)was 11 years and the required time ofsolid waste indicators of the dumP in Harbin to achieve stabilization(organicmatter≤7%,BDM≤5%)was 19 years.
     In sununary,we studied landfill leachate,waste of organic matter,BDM,totalsugar,crude fiber and heavy metals of the dumPing sites in Harbin,and the detailsof thes加cture of microbial PoPulations in every waste layer,and further studiedthe stability Process of the dumPing sites.These results Provided a strongtheoretical basis for reuse of the future dumPing sites.
引文
1彭国华,袁铿,彭卫东.城市生活垃圾的危害性和无害化处理.中国公共卫生管理. 2007, 23(5): 476~478
    2 H. Belevi, P. Baccini. Long-Term Behavior of Municipal Solid Waste Landfills. Waste Management & Research. 1989, 7(1): 43~56
    3龙于洋,胡立芳,沈东升等.城市生活垃圾中重金属污染研究进展.科技通报. 2007, 23(5): 760~764
    4安晓雯,杨凤林,仉春华等.大连市城市垃圾填埋场垃圾重金属污染物分析.中央民族大学学报(自然科学版). 2007, 16(3): 206~209
    5彭小红,郑泽根,丁文川等.垃圾填埋场的污染与防治.重庆建筑大学学报. 2007, 29(4): 140~143
    6 Z. Ding, Q. H. Tang, C. Liu, et al. Distribution and Ecological Effect of Mercury in Laogang Landfill Shanghai, China. J Environ Sci. 2007, 19(2):200-204
    7朱爽,刘志斌.垃圾填埋场的环境问题及对策.辽宁工程技术大学学报. 2005, 24(z1): 250~252
    8 A. Sanchez-Chardi, J. Nadal. Bioaccumulation of Metals and Effects of a Landfill in Small Mammals. Part Ii. The Wood Mouse, Apodemus Sylvaticus. Chemosphere. 2007, 70(1): 101~109
    9 R. J. Fairweather, M. A. Barlaz. Hydrogen Sulfide Production during Decomposition of Landfill Inputs. Journal of Environmental Engineering. 1996. 124(4): 353~361
    10 J. M. Owens, D. P. Chynoweth. Biochemical Methane Potential of Municipal Solid Waste (MSW) Components. Environmental Science and Technology. 1993, 27(2): 1~14
    11 K. Fraczek, W. Barabasz. Municipal Landfill Site in Krzyznear Tam-Owassource of Microbiological Factors Harmful to Environment and Human Health. Przegl Lek. 2004, 61(Suppl 3): 36~39
    12徐世春,于兆丽,黄吉慧.固体废弃物的污染防治现状及防治对策.中国科技信息. 2005, (13): 140
    13覃德芹,胡秀莲.城市生活垃圾填埋场对环境及居民健康的影响.安徽预防医学杂志. 2008, 14(6): 432~434
    14 S. Bartolacci, E. Buiatti, V. Pallante, et al. A Study on Mortality around Six Municipal Solid Waste Landfills in Tuscany Region. Epidemiol Prev. 2005, 29(5-6 Suppl): 53~56
    15 E. Pukkala, A. Pnk. Increased Incidence of Cancer and Asthma in Houses Built on a Former Dump Area. Environ Health Perspect. 2001, 109 ( 11 ) : 1121~1125
    16 M. S. Goldberg, J. Siemiatyck, R. Dewar et al. Risks of Developing Cancer Relative to Living Near a Municipal Solid Waste Landfill Site in Montreal, Quebec, Canada. Arch Environ Health. 1999, 54(4): 291~296
    17 S. A. Geschwind, J. A. J. Stolwijk, M. Bracken, et al. Risk of Congenital Malformations Associated With Proximity to Hazardous Waste Sites. American J Epidemiol. 1992, 135(11): 1197~1207
    18 M. Vrijheid, H. Dolk, B. Armstrong, et al. Chromosomal Congenital Anomalies and Residence Near Hazardous Waste Landfill Sites. The Lancet. 2002, 359(9303): 320~322
    19 P. Elliott, D. Briggs, S. Morris, et al. Risk of Adverse Birth Outcomes in Populations Living Near Landfill Sites. Bm J.2001, 323(7309): 363~368
    20孙胜龙,环境污染与控制.北京:化学工业出版社, 2001: 156~184
    21姜华,吴波.城市生活垃圾处理现状、趋势及对策建议.电力环境保护. 2008, 24(1): 50~52
    22毕德纯,任于翎,杨翔华等.城市垃圾处理技术分析与展望.辽宁城乡环境科技. 2004, 24(2): 56~57
    23张亚尊,张磊,张帆.我国城市生活垃圾的处理和发展趋势.中国环境管理干部学院学报. 2007, 17(3): 9~12
    24郝艳红邱丽霞王东愿城市生活垃圾处理方式探讨电力学报2003 18(1): 11~14
    25薛祖源.国外若干城市垃圾的处理现状和动向.现代化工. 2003, 23(5): 57~59
    26毛群英.城市垃圾填埋技术及发展动向.山西建筑. 2008, 34(6): 353~354
    27张进锋,聂永丰.垃圾处理领域的技术发展和启示.环境科学研究. 2006, 19(1): 57~63
    28李建兵.浅谈城市垃圾的处理技术.江西化工, 2007, 3: 28~29
    29李靖华.德国的垃圾处理和垃圾电站.中国电力. 1999, 32(4): 81~85
    30孙立明,黄凯兴, Zhou You.美国城市生活垃圾处理现状及思考.工业安全与环保. 2004, 30(2): 16~19
    31 T. Matsutoetc, R. K. Ham. Residential Solid Waste Generation and Recycling in the U.S.A and Japan. Waste Management and Research. 1990, 8(1):229~242
    32 Materials and Energy from Municipal Waste. Congress of the United States. Office of Technology Assessment. Washington. Dc. 1979: 97
    33 E. B. Berenyi. The Status of Municipal Waste Combustion in the United States. Journal of Hazardous Materials. 1996, 47(1~3): 1~17
    34冷成保,肖波,杨家宽等.国内外城市生活垃圾(MSW)现状.北方环境. 2001, (1): 27~29
    35徐文龙.发达国家城市垃圾处理技术现状与分析. 21世纪<中国城市垃圾问题对策研讨会>论文集. 2000, 11: 110~128
    36白庆中,钟丽锦.城市生活垃圾处理技术及发展方向. 21世纪<中国城市垃圾问题对策研讨会>论文集. 2000, 11: 224~237
    37 M. A. Barlaz, D. M. Schaefer, R. K. Ham. Bacterial Population Development and Characterstics of Refuse Decomposition in a Simulated Sanitary Landfill. Applied and Environmental Microbiology. 1989, 55(1): 55~65
    38 S. F. Sibley, W. C. Butterman. Metals Recycling in the United States, Resources, Conservation and Recycling. 1995, 15(3~4): 259~267
    39 R. M. Hull, U. Krogmann and P. F. Strom. Characterization Of Municipal Solid Waste Reclaimed From A Landfill. Proc Of Eightinternational Waste Management And Landfill Symposium. Iv. 2001, 568~576
    40李晶,华珞,王学江.国内外城市生活垃圾处理的分析与比较.首都师范大学学报(自然科学版). 2004, 25(3): 73~80
    41王海岩,李雪驼,都绛瑛等.城市垃圾处理技术研究近况.环境保护科学. 2001, 27(5): 14~15
    42任曼,卢徐节,王晓泳.我国城市垃圾现状与可持续发展研究.中国资源综合利用. 2008, 26(2): 19~21
    43周立冬,潘俊,钟英鹏等.沈阳市生活垃圾处理现状与对策.环境科学与管理. 2007, 32(6): 15~17
    44于敏.城市垃圾处理与可持续发展.污染防治技术. 2007, 20(4): 50~53
    45孙大鹏,马溪平,肖鹏飞等.城市生活垃圾处理技术探讨.辽宁城乡环境科技. 2004, 24(5): 11~13
    46薛丹丹,刘丹,杨敏等.成都市生活垃圾处理现状及可持续发展对策.广东农业科学. 2008, (11): 100~102
    47杨庆龙.浅论城市生活垃圾的资源化系统.四川环境. 2001, 20(1): 43~45
    48刘冬梅,贾学斌.城市垃圾环境保护综合治理方案研究.黑龙江科技学院学报. 2000, 11(1): 13~16
    49赵文军,汪群慧,孙晓红等.我国城市生活垃圾的处理技术研究.哈尔滨商业大学学报(自然科学版). 2003, 19(1): 63~68
    50王岩,裴宗平,孙晓虎.徐州市生活垃圾处理现状及资源化研究.环境科学与管理. 2007, 32(2): 14~17
    51陈晓艳,杜波.城市生活垃圾处理技术的现状与发展趋势,内蒙古环境科学, 2009, 21(1): 64~67
    52王春丽.兰州市城市生活垃圾的处理现状及对策.科技创新导报. 2008, 6: 191
    53张淑琴,张彭.我国城市垃圾处理现状与改进.科协论坛. 2007, (8): 128~130
    54张学军,云霞,宋虹苇.内蒙古自治区城市生活垃圾处理现状及资源化措施.内蒙古环境科学. 2007, 19(2): 26~28
    55李友平,阐涛涛.城市生活垃圾处理存在的问题及其对策.中国环境科学学会学术年会优秀论文集. 2008, 1318~1320
    56建设部综合计划财务司.中国城市建设统计年报.中国建筑工业出版社,2004,890
    57朱洪宝,蔡秀萍.城市垃圾处理及资源化利用.能源研究与利用. 2005, (2): 43~45
    58赵欣,田宇,汤建化等.我国生活垃圾处理现状分析与技术发展方向研究.广西轻工业. 2008, 24(7): 85~88
    59王树东,张坚,黄兵.云南省生活垃圾处理现状与对策.云南化工. 2007, 34(3): 72~75
    60高原,齐长青.郑州市城市生活垃圾现状及治理对策.环境卫生工程. 2008, 16(4): 25~27
    61李瑜琴.我国城市垃圾处理研究.陕西师范大学学报(自然科学版). 2004, 32( 2): 112~116
    62欧阳培.城市生活垃圾处理现状与处理方式比较研究.再生资源研究. 2007, (4): 33~36
    63田文栋,魏小林,黎军等.城市固体废物的焚烧试验.中国环境科学. 2001, 21(1): 49~53
    64文一波,徐华,彭胜.城市垃圾堆肥化技术与城市垃圾产业. 21世纪<中国城市垃圾问题对策研讨会>论文集. 2000, 11: 181~187
    65袁光钰,匡胜利,曹丽云.我国城市垃圾填埋场降解速率的分析.新疆环境保护. 2000, 22(1): 11~15
    66王罗春.城市生活垃圾填埋场稳定化影响因素概述.上海环境科学. 2000, 19(6): 292~295
    67 G. J. Farquar, F. A. Rovers, Gas Production during Refuse Decomposition. Water Air and Soil Pollution, 1973, 2(4): 483~495
    68 J. F. Rees. The Fate of Carbon Compounds in the Landfill Disposal of Organic Matter. Journal of Chemical Technology and Biotechnology, 1980, 30(1): 161~175
    69 M. A. Barlez, M. W. Milke, R. K. Ham. Gas Production Parameters Ii Sanitary Landfill Simulators. Waste Management and Research. 1987, 5(1): 27~39
    70赵由才,郭兴民,朱琳楠.垃圾填埋场稳定化研究.重庆环境科学. 1994, 16(5): 8~11
    71 H. Belevi, P. Baccini. Long-Term Behavior of Municipal Solid Waste Landfills. Waste Management & Research. 1989, 7: 43~56
    72国家环保总局污染控制司.城市固体废物管理与处理处置技术.北京:中国石化出版社. 2000, 242~245.
    73赵由才,黄仁华,赵爱华等.大型填埋场垃圾降解规律研究.环境科学学报. 2000, 20(6): 733~740
    74 T. J. Bookte, R. K. Ham. Stabilization of Solid Waste in Landfill. J. of Envir. Engrg. 1982, 108(Ee6): 1090~1100.
    75王罗春,赵由才,陆雍森.垃圾填埋场稳定化及其研究现状.城市环境与城市生态. 2000, 13(5): 36~39
    76 Y. C. Zhao, H. Li, J. Wu, et al. Treatment of Leachate by Aged-Refyse-Based Biofilter. Journal of Environment and Pollution. 2002, 128(7): 662~668
    77 Y. C. Zhao, F. Shao. Use of Aged-Refuse Biofiter for the Treatment of Feedlot Wastewaters. Environmental Engineering Science. 2004, 21(3): 349~360
    78朱青山,赵由才,徐迪民.垃圾填埋场中垃圾降解与稳定化模拟讨论.同济大学学报. 1996, 24(5): 596
    79 Y. C. Zhao. Excavation and Characterization of refuse in closrd landfill. Journal of Environmental Sciences. 2002, 14(3): 303~308
    80李华,赵由才.填埋场稳定化垃圾的开采、利用及填埋场土地利用分析,环境卫生工程. 2000, 8(2): 56~57
    81李广魏,张书廷,陈黎明.国外垃圾填埋场再生及对我国填埋场建设的启示.环境保护科学. 2004, 30: 50~53
    82 M. E. Fadel, A. N. Findkaki and J.O. Leckie. Numerical Modeling of Generation and Transport of Gas and Heat in Landfill. Model Formulation. Waste Management & Research. 1996, 14: 483~504
    83 B. Han, B. Jafarpour, V. N. Gallagher, et al. Measuring Seasonal Variations of Moisture in a Landfill With the Partitioning Gas Tracer Test. Waste Management, 2006, 26: 344~355
    84 B. Ozkaya, A. Demir and M. S. Bilgili. Neural Network Prediction Model for the Methane Fraction in Biogas from Field-Scale Landfill Bioreactors. Environmental Modelling & Software, 2007, 22 : 815~822
    85 E. A. Bean, F. A. Rovers and G. J. Farquhar. Solid Waste Landfill Engineering and Design. New Jersev: Prentice Hall. 1995:73~80
    86 J. J. Lee. I. H. Jung, W. B. Lee, et al. Computer and Experimental Simulations of Production of Methane Gas Frommunicipal Solid Waste. Wat. Sci. Tech. 1993, 27(2): 225~234
    87黎青松,郭祥信,梁顺文.城市生活垃圾填埋场产气规律研究.上海环境科学. 1999, 18(6): 270~272
    88焦学军,邵军,杨承休.城市生活垃圾填埋产气规律研究.上海环境科学. 1996, 15(9): 30~33
    89 H. I. Ling, D. Leshchinsky, Y. Mohrl, et al. Estimation of Municipal Solid Waste Landfill Settlement. Journal of Geotechnical and Geoenvironmental Engineering. 1998, 124(1): 21~28
    90 H. D. Sharma, S. P. Lewis and P. L. Sangeeta. Waste Containment Systems, Waste Stabilization and Landfills. Design and Evaluation. John Wiley & Sons. Inc. 1994: 568~584
    91胡敏云,陈云敏.城市生活垃圾填埋场沉降分析与计算.土木工程学报. 2001, 34(6): 88~92
    92 K. S. Watts, J. A. Charles. Settlement Characreristic of Landfill Wastes. Proc. Instn. Civ. Engrs. Geotech. Engng. 1999, 137(20): 225~233
    93 S. K. Rao, L. K. Moulton, and R. K. Seal. Settlement of Refuse Landfills, Geotechnical Practice for Disposal of Solid Waste Materials, Ann Arbor, Mich. 1977: 574~599
    94 M. E. Dodt, M. B. Sweatman, and W. R. Bergstorm. Field Measurement of Landfill Surface Settlement, Geotechnical Practice for Waste Disposal'87. Ann Arbor, Mich, 13, 406~418
    95 D. P. Coduoo, R. Huitric. Monitoring Landfill Movements Using Precise Instruments, Geotechnics of Waste Fills-Theory and Praetiee. Pittsburgh, AP, USA. 1990: 358~370
    96 T. G. Townsend, W. L. Miller, H. J. Lee, et al. Acceleration of Landfill Stabilization Using Leachate Recycle. Jourrnal of Environmental Engineering. ASCE, 1996, 122(4): 263~268
    97 M. Gandolla, L. Dugnani. G. Bressi, et al. The Determination of Subsidence Effects at Municipal Solid Waste Disposal Sites. Proceedings of 6th International Solid Waste Congress and Exhibition. Madrid. 1992: L~17
    98 B. S. Lee, K. H. Hwang and S. Lee. Settlement Characteristic of Municipal Wastes. J. Korean Soe. Of Civl. Engrs., 1995, 15(6): 1773~1782
    99 D. K. Wall, C. Zeiss. Munieipal Landfill Biodegradation and Settlement. Joumal of Environmental Engineering. 1995, 121(3): 214~224
    100 Y. C. Zhao; Z. G. Chen, Q. W. Shi, et al. Monitoring and Long-Term Prediction of Refuse Compositions and Settlement in Large-Scale Landfill. Waste Management and Research. 2001, 19(2): 160~168
    101 M. A. Barlaz. Forest Products Decomposition in Municipal Solid Waste Landfills. Waste Management. 2006, 26: 321~333
    102 R. Saint-Fort. Assessing Sanitary Landfill Stabilization Using Winter and Summer Waste Streams in Simulated Landfill Cells. Journal of Environmental Science and Health-Part a Toxic/Hazardous Substances and Environmental Engineering. 2002, 37(2): 237~259
    103 M. L. Shelley, W. B. Nixon, C. A. Bleckmann, et al. Dynamic Simulation of Landfill Waste Stabilization. Journal of Engineering, 2001, 127 ( 12 ) : 1100~1110
    104 A. Battaglia, F. G. Pohland, P. Fox, et al. Anumerical Modrl of Landfill Stabilization. Environmental Engineering. 1991, 12~17
    105 R. Cossu, R. Raga and D. Rossetti. The PAF Model: an Integrated Approach for Landfill Sustainability. Waste Management. 2003, 23: 37~44
    106 P. J. He, L. M. Shao, X. Qu, et al. Effects of Feed Solutions on Refuse Hydrolysis and Landfill Leachate Characteristics. Chemosphere. 2005, 59:837~844
    107 B. Ozkaya, A. Demir and M. S. Bilgili. Mathematical Simulation and Long-Term Monitoring of Leachate Components from Two Different Landfill Cells. Journal Of Hazardous Materials, 2006,135: 32~39
    108 B. Ozkaya, A. Demir and M. S. Bilgili. Soluble Substrate Concentrations in Leachate Fromfield Scale MSW Test Cells. Journal of Hazardous Materials. 2006, 134: 19~26
    109 K. K. Lee, H. Suk, S. I. Choi, et al. Numerical Evaluation of Landfill Stabilization by Leachate Circulation. Journal of Environmental Engineering. 2001, 127(6) :555~563
    110 T. G. Townsend, W. L. Miller, H. J. Lee, et al. Acceleration of Landfill Stabilization Using Leachate Recycle. Journal of Environmental Engineering. 1996. 122(4): 263~268
    111 Z. Y. Lou, Y. C. Zhao, T. Yuan, et al. Natural Attenuation and Characterization of Contaminants Composition in Landfill Leachate under Different Disposing Ages. Science of the Total Environment 407. 2009, 3385~3391
    112 B. Ozkaya, A. Demir; M. S. Bilgili. Enhanced Stabilization and Methane Potential of Msws in a Field-Scale Landfill with Leachate Recurculation. International Journal of Environment and Pollution. 2004, 21(3): 277~292
    113 K. K. Lee, H. Suk, S. I. Choi, et al. Numerical Evaluation of Landfill Stabilization by Leachate Circulation. Journal of Environmental Engineering. 2001. 127(6): 555~563
    114 D. Richard, R. A. Zimmerman, P. Zavoral. Pilot Landfill Stabilization of MSW With Controlled Water Addition and Leachate Recycle. Proceedings of the International Conference on Solid Waste Technology and Management.1997, 2: 9
    115 C. Zeiss. Landfill Leachate Recirculation Methods-Effects on Leachat Flow Patterns and Degradation. Journal of Environmental Systems. 1999, 27(3): 209~227
    116 K. C. Megowan, F. G. Pohlald, F. M. Saunders, et al. A Microbial Model of Landfill Stabilization. Porc. Joint CSCE-ASCE, Nat. Conf., ASCE, New York. 1988: 704~711.
    117 A. Young. Mathematieal Modeling of Landfill Degradation. J. Chemieal Teehnol. and Bioteehnol. 1989, 46(3): 189~208
    118 T. H. Chen, D. P. Chynoweth and R. Biljetina. Anaerobic Digestion of Municipal Solid Waste in a Nonmixed Solids Concentrating Digestor. Appl. Biochem. Biotechnol., 1990, 25(24): 533~544
    119杨渤京,王洪涛,陆文静等.填埋条件下单组分垃圾厌氧降解特性研究.清华大学学报(自然科学版). 2008, 48(9): 65~68
    120王罗春,赵由才,陆雍森.大型垃圾填埋场垃圾稳定化研究.环境污染治理与设备. 2001, 2(4): 15~17
    121杨玉江,赵由才,张全等.填埋场垃圾可利用组分与填埋时间的定量关系.同济大学学报(自然科学版). 2007, 35(11): 1507~1509
    122杨军,黄涛,杨立中.填埋场渗滤液COD降解曲线的拟和与优化简法.地质灾害与环境保护. 2004, 15(3): 75~78
    123 M. El-Fadel, A. N. Findikakis and J. O. Leckie. Numerical modeling of generation and transport of gas and heat in landfills 1.Model formulation. Waste Management & Research. 1996, 14: 483~504.
    124楼紫阳,柴晓利,赵由才等.生活垃圾填埋场渗滤液性质随时间变化关系研究.环境科学学报. 2007, 27(6): 987~992
    125王罗春,赵由才,陆雍森.垃圾填埋场稳定化评价.环境卫生工程. 2001, 9(4): 157~160
    126任南琪,王爱杰,马放.产酸发酵微生物生理生态学.北京:科学出版社. 2005
    127高淑静,吴凤芝. PCR-DGGE技术在土壤微生物多样性研究中的应用.生物信息学. 2007, 4: 174~175, 189
    128 B. V. Kjellerup, R. H. Veeh, P. Sumithraratne, et al. Monitoring of Microbial Souring in Chemically Treated, Produced-Water Biofilm Systems Using Molecular Techniques. J Ind Microbiol Biotechno. 2005, 32: 163~170
    129 M. P. Maila, P. Randima, K. Dronen, et al. Soilmicrobial Com-munities: Influence of Geographic Location and Hydrocarbon Pollutants. Soil Biology and Biochemistry. 2006, 38(2): 303~310
    130赵璇,王建龙.氯酚污染土壤的生物强化修复及其微生物种群动态变化的分子生物学监测.环境科学学报. 2006, 26(5): 821~827
    131 C. Knief, S. Vanitchung, W. Harvey, et al. Diversity of Methanotrophic Bacteria in Tropical Upland Soils under Different Land Uses. Applied and Environmental Microbiology. 2005, 71: 3826~3831
    132 T. B. Norris, J. M. Wraith, R. W. Castenholz, et al. Soil Microbial CommunityStructure across a Thermal Gradient Following a Geothermal Heating Event. Applied and Environm Ental Microbiology, 2002, 68: 6300~6309
    133 G. Muyzer, E.C.D.Waal, A. G. Uitterlinden. Profiling of Complex Microbial Population by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction-Amplified Genes Encoding for 16S rRNA. Applied Environmental Microbiology. 1993, 59(3): 695~700
    134 K. Ishii, M. Fukui, S. Takii, et al. Microbial Succession During a Composting Process as Evaluated by Denaturing Gradient Gel Electrophoresis Analysis. Journal of Applied Microbiology. 2000, 89(5): 768~777
    135 E. O. Casamayor, H. Schafer, L. Baneras, et al. Identification of and Spatiotem Poral Diferences Between Microbial Assemblages from Two Neighboring Sulfurous Lakes: Comparison by Microscopy and Denaturing Gradient Gel Electrophoresis. Applied and Environmental Microbiology. 2000, 66: 499~508
    136 H. Sekiguchi, M. Watanabe, T. Nakahara, et al. Succession of Bacterial Commun Itystructure Along the Chang Jiang River Determined by Denaturing Gradient Gelelectrophoresis and Clone Library Analysis. Applied and Environmental Microbiology. 2002, 68: 5142~5150
    137 N. Bano, J. T. Hollibaugh. Phylogenetic Compostion of Bacterioplankton Assemblage from the Arcticocean. Applied and Environmental Microbi Ology. 2002, 68: 505~518
    138 B. M. Duineveld, A. S. Rosado, J. D. Elsas, et al. Analysis of the Dynamics of Bacter Ialcommunities in the Rhizophere of the Chrysanthemum Viadenaturing Gradient Gelelectrophoresis and Substrate Utlization Patterns. Applied and Environmental Microbiology. 1998, 64: 4950~4957
    139 E. Smit, P. Leeflang, S. Gommans, et al. Diversity and Seasonal Fluctuati Ons of the Dominant Members of the Bacterial Soil Community in a Wheat Field as Determined by Cultivation and Molecular Methods. Applied and Environmental Microbiology. 2001, 67: 2284~2291
    140 G.. A. Kowalchuk, J. R. Stephen, W. D. Boer, et al. Analysis of Ammonia Oxidizing Bacteria of theβ-Subdivision of the Class Proteobacteria in Coastal Sand Dunes by Denaturing Gradient Gel Electrophoresis and Sequencing of Pcr-Amplified 16s Ribosomal DNA Fragments. Appl. Environ. Microbiol. 1997,63:1489~1497
    141 S. Sharma, Z. Szele, R. Schilling, et al. Influence of Freeze-Thaw Atress on theStructure and Function of Microbial Communities and Denitrifying Populations in Soil. Applied and Environmental Microbiology, 2006, 72: 2148~2154
    142 R. Grifliths, A. S Whiteley, A. G. Donnell, et al. Physiological and Community Responses of Established Grassland Bacterial Populations to Water Stress. Applied and Environmental Microbiology, 2003, 69: 6961~6968
    143陈红歌,胡元森,贾新成等.垃圾填埋场细菌种群空间分布及组成多样性研究.环境科学学报. 2005, 25(6): 809~815
    144刘新春. PCR-DGGE法用于活性污泥系统中微生物群落结构变化的解析闭.生态学报. 2005, 25(4): 842~847
    145 N. Lorenz, T. Hintemann, T. Kramarewa, et al. Response of Microbial Activity and Microbial Community Composition in Soils to Long-Term Arsenic and Cadmium Exposure. Soil Biology&Biochemistry, 2006, 38: 1430~1437
    146 G. Innerebner, B. Knapp, T. Vasara, et al. Traceability of Ammonia-Oxidizing Bacteria in Compost-Treated Soils. Soil Biology&Biochemistry, 2006, 38: 1092~1100
    147 M. Ros, J. A. Pascual, C. Garcia, et al. Hydrolase Activities, Microbial Biomass and Bacterial Community in a Soil after Long-Term Amendment with Different Composts. Soil Biology&Biochediistry. 2006, 38: 3443~3452
    148 C. L. Moyer, J. M. Tiedje, F. C. Dobbs, et al. A Computersimulated Restriction Fragment Length Polymorphism Analysis of Bacterial Small-Subunit rRNA Genes: Efficacy of Selected Tetrameric Restriction Enzymes for Studies of Microbial Diversity in Nature. Appl. Environ.Microbiol. 1996, 62: 2501~2507
    149刘有胜,杨朝晖,曾光明等. PCR-DGGE技术对城市餐厨垃圾堆肥中细菌种群结构分析.环境科学学报. 2007, 27(7): 1151~1156
    150徐大勇,黄为一.人工接种堆肥和自然堆肥微生物区系与分子多态性的变化.生态与农村环境学报. 2006, 22(1): 29~33
    151阚劲松,吴克,俞志敏等.好氧堆肥细菌16S rDNA多态性分析.合肥学院学报(自然科学版). 2008, 18(3): 52~55
    152李玉文,宋丽珠.哈尔滨市生活垃圾处理产业化探讨.环境科学与管理. 2006, 31(5): 72~74
    153王里奥,林建伟,刘元元.城市生活垃圾简易堆放场稳定化周期的研究.上海环境科学. 2003, 22(2): 89~94
    154王静,裴佳钦.生活垃圾简易堆放场的稳定化判别及综合整治.中国资源综合利用. 2006, 24(9): 21~24
    155林建伟,王里奥,陈玲等.三峡库区小型垃圾堆放场生活垃圾的稳定化分析.环境科学与技术,2005, 28(3): 46~47,52
    156王罗春,赵由才,陆雍森.垃圾BDM分析及其应用.环境卫生工程. 2003, 11(1): 6~8
    157李志华,勾红英.城市生活垃圾可生物降解组分降解规律的研究.山西建筑. 2008, 34(29): 339~340
    158龙焰,沈东升,劳慧敏等.填埋场中垃圾降解微生物机理研究进展.浙江大学学报(农业与生命科学版). 2006, 32(l): 9~13
    159 M. A. Barlaz, D. M. Schaeffer and R. K. Ham. Inhibition of Methane Formation from Municipal Refuse in Laboratory Scale Lysimeters. Applied Biochemistry and Biotechnology. 1989, 20(1): 181~205
    160 J. O. Leckie, C. Halvadakis and J. G. Pacey. Landfill Management with Moisture Control. Journal of the Environmental Engineering Division. 1979, 105(Ee2): 337~355
    161 T. T. Onay, F. G. Pohland. In Situ Nitrogen Management in Controlled Bioreactor Landfill. Water Res. 1998, 32(6): 1383~1392
    162 B. V. Kjellerup, R. H. Veeh, P. Sumithraratne, et al. Monitoring of Microbial Souring in Chemically Treated, Produced-Water Biofilm Systems Using Molecular Techniques. J Ind Microbiol Biotechno. 2005, 32: 163~170
    163 S. R. Konstantinov, W. Y. Zhu, B. A. Williams, et al. Effect of Fermentable Carbohydrates on Piglet Facial Bacterial Communities as Revealed by 16s Ribosomal DNA. Fems Microbiology Ecology. 2003, 43(2): 225~235
    164 G. Muyzer, T. Brinkhoff, N. Ulrich, et al. Denaturing Gradient Gel Electrophoresis ( Dgge ) in Microbial Ecology. Molecular Microbial. Ecology Manual. 1998, 3: 1~27
    165高平平,晁群芳,张学礼等. TGGE分析焦化废水处理系统活性污泥细菌种群动态变化及多样性.生态学报. 2003, 23(10): 1963~1969
    166 Y. Miura, M. N. Hiraiwa, T. Ito, et al. Bacterial Community Structures in Mbrs Treating Municipal Wastewater: Relationship between Community Stability and Reactor Performance. Water Research, 2007, 41(3): 627-637
    167王伟东,木质纤维素快速分解菌复合系及有机肥微好氧新工艺.中国农业大学博士论文. 2005年
    168 M. F. Polz and C. M. Cavanaugh. Bias in Template- to- Product Ratios in Multitemplate PCR. Applied and Environmental Microbiology. 1998, 64:3724~3730
    169万波,廖银章,李安明等.城市生活垃圾处理过程中主要生理群的微生物的研究.太阳能学报. 1989, 10(3): 247~253
    170 S. Kamoda, Y. Saburi. Structural and Enzymatical Comparison of Ligno Stilbene-α,β-Dioxygenase Isozymes, I, II, and III, from Pseudomonas Paucimobilis TMY1009. Bioscience and Biotechnology and Biochemical. 1993, (57): 931~934
    171芈振明,高忠爱,祁梦兰等.固体废物的处理与处置.北京:高等教育出版社,1996.
    172 J. R. Holmes. Practical Waste Management. John Wiley and Sons, Chichester, U.K. 1983:205~207

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700