地应力分布规律及其对巷道围岩稳定性影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地应力是引起采矿、水利水电、土木建筑及其他各种地下岩土工程变形和破坏的根本作用力。随着我国煤矿开采深度的加大,由地应力引发巷道围岩失稳、冲击地压事故的危险性愈来愈大,现已成为我国矿山亟待深入研究的重大课题。本文综合应用地应力实测技术、地质力学理论、人工神经网络、粒子群优化理论和数值模拟分析手段对地应力分布规律及其对巷道围岩稳定性的影响进行了系统研究,取得了如下创新性研究成果:
     (1)详细分析了地应力的成因及其影响因素,并以霍州矿区为例,综合运用地质力学理论、地震震源机制解分析和地壳变形GPS测定等方法,进行了矿区地应力场宏观分析。恢复了矿区及邻近区域古地应力场的演变过程,确定了矿区宏观地应力场类型和主压应力轴优势方位分布范围,为验证地应力实测结果的正确性提供了依据。并结合生产实际,系统布置测点,采用应力解除法对整个矿区地应力进行了大规模实测,通过理论分析得到了矿区地应力场的分布规律。
     (2)运用地质力学基本理论建立了区域地应力场力学计算模型,采用不同形式边界荷载条件进行了弹性力学分析,得到了应力分量的表达式。结合霍州矿区实测数据,以曹村和辛置矿为研究区域,对地应力场进行了有限元多元回归反演分析。计算结果表明,该区地应力场以水平应力为主,由于地质构造和岩性差别等原因,最大主应力变化范围较大,并存在应力相对增高地带。
     (3)基于霍州矿区大量的地应力实测数据,采用粒子群优化算法训练BP人工神经网络,建立了地应力预测组合神经网络模型(PSO-BP模型),充分利用神经网络的学习能力,建立了实测测点相关参数与对应点地应力之间的非线性映射,并对李雅庄矿和曹村矿不同位置的地应力分布状态进行了成功预测。
     (4)依据矿区地质资料和实测岩石物理、力学参数,采用数值模拟方法主要就煤道轴向与最大主应力方向夹角α的变化,对巷道顶底板和两帮应力、位移及塑性区范围的影响进行了分析。结果表明最大主应力对巷道围岩稳定性影响显著,得出α> 45°时,巷道围岩应力、位移及塑性区变化幅度突然增大的结论,井下巷道实际破坏情况的统计分析,也证实了上述研究结论。
     (5)充分考虑地应力对巷道围岩稳定性的影响,提出了基于实测地应力的锚杆支护动态设计方法,并成功地用于高应力碎胀围岩巷道锚杆支护设计,取得了良好的支护效果。
Ground stress is the essentially force which arouses deformation and damage in a variety of underground geotechnical engineering. With mining exploration at great depth, the surrounding rock instability and rock burst aroused by ground stress are more and more serious, so, ground stress has become a technical issues needed in-depth study. In this paper, the distribution of ground stress field and its effect on the stability of surrounding rock were studied systematically by using ground stress measurement technology, modern mechanical theory, artificial neural network numerical simulation analysis, and achieves the following research results:
     (1) The causes and influencing factors of stress field were summarized, and in Huozhou coal area, the stress field was analyzed macroscopically by using the theory of geomechanics, analytical method of earthquake focal mechanism solutions and GPS survey of crustal deformation. In the mining area and adjacent regions, the evolution process of the ancient earth's crustal stress field was reproduced. In macroscopic view, the type of stress field belongs to horizontal tectonic stress field and the main compressive stress superiority trend is in the NEE~NWW direction, and can provide evidence for the correctness of the stress measured. Combined with the actual production of the mining area, the stress measured points were arranged systematically, and the stress of Huozhou mining area was measured with stress relieving method. Then, the distribution of the whole mining area was obtained by theoretical calculations and mathematical statistics.
     (2) Based on the theory of geomechanics, the model of regional stress field was established, and the elasticity analysis was carried out with different boundary conditions, and the expressions of stress component were obtained. Combined with the measured data, the Caocun coal mine and Xinzhi coal mine as the study areas, an inverse calculation of the stress field was carried out by using the finite element numerical simulation, and the distribution of stress field was analyzed in great detail. The results show that the stress field relies mainly on horizontal stress, and due to differences in geological structure and lithology and other factors, the range of maximum principal stress is larger, and there are relatively high stress zones.
     (3) Based on the field measured data of stress field, a combination artificial neural network model (PSO-BP model) of stress field prediction was established, with particle swarm optimization algorithm. Giving full play to the self-learning ability of neural network, the nonlinear mapping between relevant parameters of measuring points and the corresponding stress was established, and got the successful forecasting to the ground stress in Liyazhuang coal mine and Caocun coal mine.
     (4) Based on the geological data and mechanical parameters of rock by measured, by using FLAC3D, the effect of the angleαbetween the axial location of roadways and direction of maximum principal stress on stress, displacement and plastic zone in roof and floor was analyzed systematically. The results show that the direction of maximum principal stress has a significant effect on the stability of surrounding rock, and whenα> 45°, the stress, displacement and plastic zone in surrounding rock change increased suddenly. The statistical analysis of the actual destruction of underground roadway also confirmed the conclusions of the study.
     (5) For fully considerating the effect of ground stress on roadway surrounding rock stablity, Dynamic bolt supporting design method based on ground stress measurement is proposed. Based on the results of the study, the bolt support of mining area 10 with expansion broken rock and high stress in Caocun coal mine was designed, and achieved satisfactory supporting effect.
引文
[1]刘允芳,罗超文,龚壁新,等.岩体地应力与工程建设[M].武汉:湖北科学技术出版社,2000.
    [2]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    [3]徐圻.采矿学[M].徐州:中国矿业大学出版社,2003.
    [4]钱鸣高,缪协兴,许家林,等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2003.
    [5]缪协兴,刘卫群,陈占清.采动岩体渗流理论[M].徐州:中国矿业大学出版社,2004.
    [6]于学馥,郑颖人.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983.
    [7]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,1994.
    [8]李造鼎.岩体测试技术[M].北京:冶金工业出版社,1993.
    [9]苏凯之.地应力测量方法[M].北京:地震出版社,1985.
    [10]王连捷,任希飞,丁原辰,等.地应力测量在采矿工程中的应用[M].北京:地质出版社,1994.
    [11]侯明勋,葛修润,王水林.水力压裂法地应力测量中的几个问题[J].岩土力学,2003,(5): 840-844.
    [12]钟方平,楼沩涛,张景森,等.深层地应力测量[J].应用力学学报,2000,9(3).
    [13]康红普,王金华.煤巷锚杆支护理论与成套技术[M].北京:煤炭工业出版社,2006.
    [14] Lieurance,R.S. Stress in foundation at boulder dam[J].Tech.Memo.,Reclamation Denver,1933, 12.
    [15] Guo F.,Morgenstern N R.,Scott J D.Interpretation of hydraulic fracturing pressure: A comparison of eight methods used to identify shut-in pressure[J]. Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1993,30(6):627-630.
    [16] Fairhurst.,C. Methods of determining in-situ stress at great depth [J].Missouri River Div., Corps. Of Engrs., Omaha, Tech.,1968:1-68.
    [17] Haimson,B.C. Hydraulic fracturing in porous and nonporous rock and its potential for determining in-situ stresses at great depth[J]. Missouri River Div.,Corps. Of Engrs., Omaha, Tech.,1968:4-68.
    [18]何满潮.深部开采工程岩石力学的现状及其展望[C].第八次全国岩石力学与工程学术大会论文集,科学出版社,2004,88-96.
    [19] Haimson, B.C., Lee, C.F., and J.H.S.High horizontal stress at Niagara Falls, their measurement, and design of a new hydroelectric plant[M].Stockholm: Proc. Int. Symp. On Rock Stress and Rock Stress Measurements,1983.
    [20]李金锁,彭华,马秀敏,等.大丽线铁路隧道工程地应力三维有限元数值模拟分析[J].岩土工程学报,2006,28(6):800-803.
    [21] Hast,N. The state of stresses in the upper part of the Earth’s crust[J]. Technophysics,1969,8.
    [22] M.E.Duncan Fama,M.J.Pender. Analysis of the hollow inclusion technique for measuring in-situ rock stress[J].Rock Mech.Sci.Geomech.Abstr.,1980,17:137-146.
    [23] CSIR. Instruction manual for the use of CSIR tri-axial rock stress measuring equipment[R]. CSIR Pretoria:1973.
    [24] E.R.Leeman. The determination of the complete state of stress in rock in a single borehole- laboratory and underground measurement[J].Rock Mech. Sci. Geomech.Abstr., 1968, 15:31-56.
    [25] Cai,M. and Blackwood,R.L. A technique for recovery and reuse of CSIRO hollow inclusion cells[J]. Rock Mech.Min.Sci.Geomech.Abstr,1990,28(2):225-228.
    [26]МарковГ.А.地壳上部岩体中水平挤压应力成因和表现规律[M].北京:地质出版社,1987.
    [27]张延新,蔡美峰,王克忠.平顶山一矿地应力分布特征[J].岩石力学与工程学报,2004,23(23): 4033-4037.
    [28] Hooker V.E., Bicker D.L. Over coring equipment and techniques used in rock stress determination[J].U.S. Bureau of Mines Information Circular 8618,1974.
    [29]周思孟.复杂岩体若干岩石力学问题[M].北京:中国水利水电出版社,1998.
    [30]沈明荣.岩体力学[M].上海:同济大学出版社,1999.
    [31]雷扬.空芯包体地应力测量方法简介[J].金川科技,2006,(4):23-25.
    [32] Michibiro, K., Fujiwara, T., and Yoshioka, H. Study on estimating geostress by the Kaiser effect of AE[C]. 26th U.S.Symp. On Rock Mechnics,1985:557-564.
    [33]卢兴宇.关于Kaiser效应和应力方向的初步探讨[J].重庆建筑工程学院学报,1987.
    [34]李文平.牛马司、潘集两矿区现代地应力场及其井巷工程稳定性影响的研究[D].徐州:中国矿业大学,1989:20-30.
    [35]尹菲.声发射测地应力在黄河小浪底等坝址区的应用[J].人民黄河,1990,12(6):47-50.
    [36]黄志鹏,朱可善,郭映忠.关于Kaiser效应方向独立性实验研究[J].长江科学院院报, 1998,15(2).
    [37]吴刚,赵震洋.不同应力状态下岩石材料破坏的声发射特性[J].岩土工程学报,1998,20(2).
    [38]吴振业.环氧树脂三轴应变计与岩体应力测量[J].煤炭学报,1987,(3):38-46.
    [39]蔡美峰.地应力测量中温度补偿方法的研究[J].岩石力学与工程学报,1991,10(3):227-235.
    [40]蔡美峰,彭华,乔兰,等.万福煤矿地应力场分布规律及其与地质构造的关系[J].煤炭学报,2008,33(11):1248-1252.
    [41]张宏伟,李建民,邓智毅.空芯包体地应力测量技术在煤矿中的应用[J].辽宁工程技术大学学报(自然版),2001,20(4):472-473.
    [42]樊荣金.地应力在锚杆支护设计中的应用[J].矿山压力与顶板管理,2004,(1):13-14.
    [43]靳晓光,王兰生,李天斌.地应力测量的应力恢复法试验和数值模拟研究[J].成都理工理工学报,1999,26(3):287-289.
    [44] Enever,J.R., Wooltorton,B.A. Experience with hydraulic fracturing as a means of estimating in situ stress in Australian Coal Basin Sediments[C].Washington: Workshop on Hydraulic Fracturing Stress Measurements,1983:28-44.
    [45]刘长武,翟才旺.地层空间应力场的开采扰动与模拟[M].郑州:黄河水利出版社,2005.
    [46]刘允芳,罗超文,景峰.水压致裂法三维应力测量及修正和工程应用[J].岩土工程学报, 1999,21(4).
    [47] Haimson, B.C. A Comparative of Deep Hydrofracturing and Overcoring Stress Measurements at Six Locations with Particular Interest to the Nevada Test Site[J].Hyraulic Fracturing Stress Measurements,1983.
    [48]徐纪人,赵志新.中国岩石圈应力场与构造运动区域特征[J].中国地质,2006(4):783-790.
    [49]谢富仁,崔效锋,赵建涛.全球应力场与构造分析[J].地学前沿,2003(10):23-27.
    [50]陈彭年,等.世界地应力实测资料汇编[M].北京:地震出版社,1990.
    [51]孙广忠.岩体结构力学[M].北京:科学出版社,1988.
    [52]陶振宇.岩石力学的理论与实践[M].北京:水利出版社,1981.
    [53]王芝银,李云鹏.岩体流变理论及其数值模拟[M].北京:科学出版社,2008.
    [54]陶波,伍法权,郭改梅.地形对水平岩层自重成因地应力场的影响[J].煤田地质与勘探, 2006,34(1):34-36.
    [55]苏生瑞,黄润秋,王士天.断裂构造对地应力场的影响及其工程应用[M].北京:科学出版社,2004.
    [56]刘飞.深部矿井地应力场研究及其在冲击地压预测中的应用[D].徐州:中国矿业大学, 2005:1-10.
    [57]陶振宇.对岩体初始应力的初步认识[J].水文地质工程地质,1980,7(2):1-12.
    [58]冯夏庭.智能岩石力学导论[M].北京:科学出版社,2000.
    [59]杨志法,王思敬,冯紫良.岩土工程反分析原理及应用[M].北京:地震出版社,2002.
    [60]杨林德.岩土工程问题的反演理论与工程实践[M].北京:科学出版社,1996.
    [61]陈胜宏.计算岩体力学与工程[M].北京:中国水利水电出版社,2006.
    [62]陈志敏.不同岩性侧压比随深度变化规律探讨[J].西部探矿工程,2006,(6):99-101.
    [63]朱焕春,陶振宇.不同岩石中的地应力分布[J].地震学报,1999,16(1):49-62.
    [64]金艳丽,刘汉东.初始地应力场反演及回归分析方法研究[J].隧道建设,2004,24(2):6-8.
    [65]王文军.深部矿井工程小区地应力场研究与应用[D].天津:天津大学,2003:1-6.
    [66]戚蓝,丁志宏,马斌,等.初始地应力场多方程回归分析[J].岩土力学,2003,24(增1):137-139.
    [67]艾凯.地应力回归分析与工程运用[J].矿山压力与顶板管理,2005,3:83-84.
    [68]李永松,尹健民,艾凯,等.地应力回归分析方法与工程应用[J].长江科学院报,2006,4:41-43.
    [69]岳晓蕾.大岗山地应力场反演与工程应用研究[D].济南:山东大学,2006:44-54.
    [70]张有天.地应力场的趋势分析[J].水利学报,1984, (4):31-38.
    [71]韩力群.人工神经网络理论、设计及应用[M].北京:化学工业出版社,2007.
    [72]张代远.神经网络新理论与方法[M].北京:清华大学出版社,2006.
    [73]李龙林.初始地应力场的灰色计算模型[J].成都科技大学学报,1990,(2):13-18.
    [74]刘军,何江达,陈方竹,等.岩体初始地应力场的灰色计算模型及应用[J].红水河,2005,(3):61.
    [75]王富玉,高谦,张周平.金川矿区地应力规律与人工神经网络预测研究[J].岩石力学与工程学报,2003,22(增2):2601-2606.
    [76] Ge Hongwei,Liang Yanchun,Liu Wei. Applications of artificial neural networks and genetic algorithms to rock mechanics[J].Rock Mechanics and Engineering,2004,23(9):1542-1550.
    [77]金长宇,马震岳,张运良,等.神经网络在岩体力学参数和地应力场反演中的应用[J].岩土力学,2006,27(8):1263-1266.
    [78]郝哲,刘斌.基于差分法及神经网络的硐室围岩力学参数反分析[J].岩土力学,2003,24(增刊):77-79.
    [79] Yi Da,Xu Mingyi,Chen Shenghong,et. Applications of artificial neural network to back analysis of initial stress field of rock masses[J].Rock and Soil Mechanics, 2004, 25(6):943-945.
    [80] Jia Chao,Liu Ning,Xiao Shufang. Applications of direct displacement inverse analysis to rockmass parameters of caverns[J].Rock and Soil Mechanics,2003,24(3):450-454.
    [81]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.
    [82]王连国,宋杨.底板突水的非线性特征及预测[M].北京:煤炭工业出版社,2001.
    [83]易达,陈胜宏,葛修润.岩体初始应力场遗传算法与有限元反演[J].岩土力学,2004,7: 1077-1080.
    [84]文建华.改进遗传算法地下工程岩体参数反演分析研究[D].武汉:武汉理工大学,2004:9-12.
    [85]朱汉华,孙红月,杨建辉.公路隧道围岩稳定与支护技术[M].北京:科学出版社,2007.
    [86]王连国,李明远,毕善军.高应力构造复杂区煤巷锚注支护试验研究[J].矿山压力与顶板管理,2004,(2):2-4.
    [87]朱德仁,王金华,康红普.巷道煤帮稳定性相似材料模拟试验研究[J].煤炭学报,1998,1: 42-47.
    [88]范宏刚.地应力及其对工程的意义[J].路基工程,2004,3:19-21.
    [89]郭顺清,刘镇书,朱芳队,等.大埋深、高地应力软岩支护研究[J].中州煤炭,2006,(3):5-22.
    [90]夏玉成,侯恩科,薛喜成,等.霍州矿区小断层发育特点初探[J].中国煤田地质,1995,1:14-17.
    [91]李先贵.霍州矿区区域地质构造应力-应变场解析[J].山东科技大学学报,2003, 22 (3):14-16.
    [92]王东辉.霍州矿区深部煤层的三维地震勘探[J].西山科技,2002,5:1-3.
    [93]赵志坚.李雅庄矿355水平软岩大巷破坏原因及其返修[J].山西煤炭,2000,20(2): 27-32.
    [94]王立毅,刘晋琦.李雅庄煤矿软岩大巷支护改革[J].山西煤炭,2003,23(4):21-23.
    [95]戎生权,李凤仪.李雅庄矿2#煤层回采巷道顶板控制技术研究[J].煤矿开采,2006,5:57-58.
    [96] Zoback M.L. Global patterns of tectonic stress [J]. Nature, 1989(341):294-298.
    [97]刘世煌.从实测资料谈地壳近地表岩体中地应力的分布规律[J].水力发电学报, 1990, 28: 83-85.
    [98]白世伟,李光煜.二滩水电站坝区岩体应力场研究[J].岩石力学煜工程学报,1982,1(1):45-55.
    [99]国家地震局地壳应力研究所编译.地应力测量理论研究与应用[M].北京:地震出版社,1987.
    [100]赵德安,陈志敏,蔡小林,等.中国地应力场分布规律统计分析[J].岩石力学与工程学报,2007,26(6):1265-1271.
    [101]沈海超,程远方,王京印,等.断层对地应力场影响的有限元研究[J].大庆石油地质与开发2007,26(2):34-36.
    [102]黄醒春,夏小和,沈为平.断层周边应力场的原位实测及数值反演[J].上海交通大学学报, 1998, 32(12):55-59.
    [103] Brown E T, Hock E. Technical note trends in relationships between measured in-situ stresses and depth[J]. International Journal of Rock Mechanics and Mining Science, 978,15(4):211-215.
    [104] Zoback M.L. First and second order patterns of stress in the lithosphere: the world stress map project [J]. The Journal of Geophysics Research, 1992,97(B8):11703-11728.
    [105]中国煤炭地质总局第四水文地质队.山西省霍州矿区专门水文地质勘察总体设计及实施方案[R].2008,4:1-5.
    [106]杨森楠,杨巍然.中国区域大地构造学[M].北京:地质出版社,1984.
    [107]马文璞.区域构造解析[M].北京:地质出版社,1992.
    [108]程乐团.神火矿区巷道矿压显现规律及围岩控制技术[M].徐州:中国矿业大学出版社, 2006.
    [109]陈子光.岩石力学性质与构造应力场[M].北京:地质出版社,1986.
    [110]胡明星,郭达志,夏玉成.霍州矿区煤层小断层发育规律及其数值模拟[J].中国煤田地质, 1998, 10(3):15-17.
    [111]黄忠贤,王恩福,刘长义,等.构造应力方向与震源机制解[J].地震学报,1980,2(2):147-151.
    [112]陈庆宣,王维襄,孙叶,等.岩石力学与构造应力场分析[M].北京:地质出版社,1998.
    [113]马宗晋.山西临汾地震研究与系统减灾[M].北京:地震出版社,1993.
    [114]武烈,等.山西地震[M].北京:地震出版社,1993.
    [115]范俊喜,马瑾,刁桂苓.由小震震源机制解得到的鄂尔多斯周边构造应力场[J].地震地质, 2003, 25(1):89-96.
    [116]许淮忠,阎明,赵仲和.由多个小地震推断华北地区构造应力场的方向[J].地震学报, 1983, 5(3): 268-278.
    [117]薛宏运,鄢家全.鄂尔多斯地块周围的现代地壳应力场[J].地球物理学报,1984, 27(2): 144-152.
    [118]唐文清.基于GPS监测的青藏高原东部及邻区地壳运动形变特征研究[D].重庆:西南交通大学, 2006:4-10.
    [119]张冬菊.青藏东北缘地壳应力应变场分析与构造活动性研究[D].西安:长安大学,2006: 14-21.
    [120]杨少敏,游新兆,杜瑞林.用双三次样条函数和GPS资料反演现今中国大陆构造形变场[J].大地测量与地球动力学,2002,22(1):68-75.
    [121]江在森,马宗晋,张希,等. GPS初步结果揭示的中国大陆水平应变场与构造变形[J].大地测量与地球动力学,2003,46(3):353-357.
    [122]黄立人,郭良迁.华北北部GPS观测及其结果解释[J].地震地质,1998,20(4):12-18.
    [123] Wang Qi, Zhang Peizhen, T Jeffrey, et al. Present-day crustal deformation in China constrained by global positioning system measurements [J].Science, 2001, 294:574-577.
    [124]张跃刚,胡新康.华北地区地壳水平运动演化特征研究[J].大地测量与地球动力学,2004, 2(24): 56-61.
    [125]江在森,张希,陈兵.华北地区近期水平运动与应力应变场特征[J].地球物理学报,2004, 43(5): 657-665.
    [126]廖椿庭,任希飞,丁原辰,等.金川矿区应力测量与构造应力场[M].北京:地震出版社,1985.
    [127]李方全,陈群策,张志国.原地应力测量方法及原地应力测量的研究领域[J].中国大陆地壳应力环境研究[M],北京:地质出版社,2003.
    [128]蔡美峰.地应力测量原理和方法的评述[J].岩石力学与工程学报,1993,12(3):275-283.
    [129] Haimson,B.C The Hydrofracturing stress measuring method and recent results[J]. Int. J.Rock Mech. MinSci. & Geomech. Abstr ,1978,15(2):167-178.
    [130] Hubert,M K ,Willis D G.. Mechanics of hydraulic fracturing [J]. Trans.AIME, 1957,210(2): 153-166.
    [131]袁亮.深井巷道围岩控制理论及淮南矿区工程实践[M].北京:煤炭工业出版社,2004.
    [132]王连捷,廖椿庭,丁原辰,等.KX-81型空心包体式三轴应力计[A],地质力学文集(八)[C].地质出版社,1990.
    [133] Chunting Liao, Chunshan Zhang, Manlu Wu,et al. Stress change near the Kunlun fault before and after the Ms 8.1 Kunlun earthquake[J]. Geophysical Research Letters,2003,30(20):3-5.
    [134]徐芝纶.弹性力学(第三版)[M].北京:人民教育出版社,1990.
    [135]郑雨天.岩石力学的弹塑性问题[M].北京:煤炭工业出版社,1988.
    [136]安欧.构造应力场[M].北京:地震出版社,1992,4.
    [137]郑雨天.地质力学在水文地质工程地质方面的应用[M].北京:煤炭工业出版社,1988.
    [138]郭怀志,马启超,薛玺成,等.初始应力场的分析方法[J].岩土工程学报,1983,5(3):64-75.
    [139]曾海荣,宋慧珍.三维有限元反演的数学方法[J].地质力学学报,1999,5(1):45-48.
    [140] Guo Huaizhi,Ma Qichao,Xue Xicheng,et al. The analysis method of the initial stress field for rock mass[J].Chinese Journal of Geotechnical Engineering,1983,5(3):64-75.
    [141]邱祥波,李术才,李树忱.三维应力分析方法与工程应用[J].岩石力学与工程学报,2003, 22(10):1613-1617.
    [142]王薇,王连捷刘,乔子江.三维地应力场的有限元模拟及其在隧道设计中的应用[J].地球学报,2004,25(5):587-258.
    [143]潘别桐,黄润秋.工程地质数值法[M].北京:地质出版社,1994.
    [144]张朝晖,李树奎.ANSYS11.0有限元分析理论与工程应用[M].北京:电子工业出版社,2008.
    [145]阚前华,等.ANSYS高级工程应用实例分析与二次开发[M].北京:电子工业出版社,2006.
    [146]祝效华,余志祥,等.ANSYS高级工程有限元分析范例精选[M].北京:电子工业出版社,2004.
    [147]孔广亚,蔡美峰,白晨光.基于神经网络的仿真输出方法在地应力场分析中的应用[J].黄金, 1996,17(11):24-27.
    [148]魏海坤.神经网络结构设计的理论与方法[M].北京:国防工业出版社,2005.
    [149] Hornic K, Stinchcombe M, White H. Multilayer Feedforward Networks are Universal Approximators [J].Neural Networks,1989,(2):359-365.
    [150]冯夏庭,王泳嘉.采矿工程智能系统—人工智能与神经网络在矿业中的应用[M].北京:冶金工业出版社,1994.
    [151]傅鹤林,彭思甜,韩汝才,等.岩土工程数值分析新方法[M].长沙:中南大学出版社,2006.
    [152]王凌,刘波.微粒群优化与调度算法[M].北京:清华大学出版社,2008.
    [153] J.Kennedy, R.C.Eberhart. Particle Swarm Optimization [C].Proc. IEEE Int. Conf. on Neural Networks, IV. Piscataway, IEEE Service Center.,1995:1942-1948.
    [154] R.C.Eberhart, Yuhui Shi. Particle Swarm Optimization: Developments, Applications, and Resources [C].Proc. IEEE Conf.on Evolutionary Computation,IEEE Press,Korea.,2001: 81-86.
    [155]冯建华.基于微粒群算法的油品调和优化研究[D].杭州:浙江大学,2007:15-22.
    [156]高尚,杨静宇.群智能算法及其应用[M].北京:中国水利水电出版社,2006.
    [157]孙明杰.互补问题的粒子群优化算法及其应用[D].徐州:中国矿业大学,2008,6:9-30.
    [158]高海兵,高亮,周驰,等.基于粒子群的神经网络训练算法研究[J].电子学报,2004,9: 1572-1574.
    [159]刘希玉,刘弘.人工神经网络与微粒群优化[M].北京:清华大学出版社,2006.
    [160]何佳.粒子群神经网络在供应链库存管理中的应用研究[D].贵阳:贵州大学,2007:28-30.
    [161]邹喜正,李华祥.构造应力对巷道布置影响的理论分析[J].煤矿设计,1998,10:17-19.
    [162]鲁岩.构造应力场影响下的巷道围岩稳定性原理及其控制研究[D].徐州:中国矿业大学,2008:29-64.
    [163] Itasca Consulting Group Inc. Fast Lagrangian Analysis of Continua in 3 Dimensions User’s Guide[R].Minnesota: Itasca Consulting Group Inc.,2003.
    [164]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社,1995.
    [165]蒋金泉,韩继胜,石永奎.巷道围岩结构稳定性与控制研究[M].北京:煤炭工业出版社,1999.
    [166]张强勇.岩土工程强度与稳定计算及工程应用[M].北京:中国建筑工业出版社,2005.
    [167]杨双锁,康立勋.锚杆支护研究的总结与展望[J].太原理工大学学报,2002,33:376-381.
    [168]漆泰岳.锚杆与围岩相互作用的数值模拟[M].徐州:中国矿业大学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700