冲击条件下苯分子结构变化及稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于含能材料在高温高压状态的性质以及微观结构的变化一直受到人们的广泛关注。但是由于其自身的一些特殊性和实验技术方面的限制,使得科研工作者对该类材料的研究一直没有取得多大的进展。因此,研究者试图从某种与该类物质结构比较类似的物质出发,希望能对该类材料的研究提供一定的借鉴作用。有机物苯,作为最简单、典型的芳香烃化合物,对它在高温高压状态的各种性质及其分子微观结构的变化成为人们研究的热点。但是,由于受到实验技术的限制,对它的研究只能停留在宏观性质方面,在微观结构变化问题上未取得突破。本文利用二级轻气炮加载装置结合瞬态激光拉曼测试技术对液态苯在冲击压缩状态的拉曼光谱进行实时在线观测,通过观测C-C伸缩振动(992cm-1)和C-H伸缩振动(3061cm-1)所对应特征峰在峰形和峰位上的变化,对液态苯在冲击压缩过程中的结构失稳问题给出直接证据。
     本文通过优化靶结构、改变触发方式以及改进散射光收集系统,成功实现了与二级轻气炮相结合的动态拉曼测试系统。并利用该系统对液态苯在7-21GPa压力范围的拉曼光谱进行实时在线观测。实验结果表明,在13GPa以内,拉曼频移随压力的变化线性增加,频移量与分子振动模式有密切关系。首次利用光谱技术澄清了液态苯在13GPa附近的结构变化问题,并对冲击诱导液态苯分子结构的变化机理做出了解释。通过对光谱信号的分析,提出苯在冲击压缩过程中的结构失稳可以分为两个阶段:首先是C-H键断裂(13GPa),接着是C-C键断裂(19GPa)。对于新物质成分做了预测,从实验结果推测,生成物应该是结构类似于石墨的某种碳团簇,而且该物质是不透明的。液态苯的冲击诱导结构变化应该是由压力、温度共同决定的。
The properties and structural transformation of the energetic materials under high temperature and high pressure condition have received extensive attention of people. However, because of some of its own particularities and restrictions in terms of the experimental technology, there are no great progress have been made in the study of these materials for the study of scientific researchers. Therefore, the researchers try to find a kind of substance with a similar structure with energetic materials, hoping to provide certain reference for study of these materials. Benzene as organic compounds, with the most simple, typical structure in aromatic hydrocarbon compounds, so the various properties and molecular microstructure changes under high temperature and high pressure have been researched extensively. But, due to the limitation of experimental technology, only the macroscopic properties were obtained, without a breakthrough on the microstructure change. This paper, the Raman spectra for liquid benzene in a state of shock compression have been observed online by using the two-stage light gas-gun loading device with transient laser Raman test technology, a directed evidence was given for the problem about structural stability of benzene in shock compression experiment through observing the changes in peak shape and peak position for C-C stretching vibration mode(992cm-1) and C-H stretching vibration mode(3061cm-1).
     Based on the optimization of the structure of target, change the way of trigger and improve scattered light collecting system, we successfully realized the combination of two-stage light gas-gun with Raman testing system. And observed Raman spectroscopy online for liquid benzene in the range of7-21GPa using the system. The experimental results show that within the13GPa, Raman frequency shift linearly increased along with the change of pressure, and the magnitude of frequency shift is closely depend on molecular vibration modes. Besides, firstly clarified the structural changes of liquid benzene around13GPa using Raman spectrum technology, and explained the mechanism about the impact induced molecular structural changes of benzene liquid. Through the analysis of spectral signal, put forward the structure instability of benzene in the shock compression process can be divided into two stages: the first is rupture of C-H bond(13GPa), then is C-C bond(19GPa). Do the forecast for the composition of new material, from the experimental results we speculated that the products are a certain kind of carbon clusters which is similar to graphite, and the material is not transparent. The impact induced structural change of liquid benzene should be decided together by pressure and temperature.
引文
[1]袁长迎,李萍,吴国栋,于亚伦,经福谦.苯冲击压缩光谱实验研究.原子与分子物理学报(2006).23(001):45-48.
    [2]J.M.Walsh,M.H.Rice.Dynamic compression of liquids from measurements on strong shock waves.The Journal of Chemical Physics(1957).26:815.
    [3]D.Dolan,Y.Gupta.Time-dependent freezing of water under dynamic compression Chemical Physics Letters(2003).374(5):608-612.
    [4]李永宏,刘福生,程小理,马海云,张明建etal气炮加载实验中光学窗口透射率测量技术及其应用.高压物理学报(2010).(006):467-471.
    [5]G.Duvall,K.Ogilvie,R.Wilson,P.Bellamy,P.Wei.Optical spectroscopy in a shocked liquid.(1982).
    [6]M.Bastea,S.Bastea,R.Becker.High pressure phase transformation in iron under fast compression.Applied Physics Letters(2009).95:241911.
    [7]A.Pakoulev,Z.Wang,D.D.DIott.Vibrational relaxation and spectral evolution following ultrafast OH stretch excitation of water.Chemical Physics Letters(20O3). 371(5):594-600.
    [8]M.Thiery,J.Leger.High pressure solid phases of benzene.I.Raman and x-ray studies of CH at 294 K up to 25 GPa.The Journal of chemical physics(1988). 89:4255.
    [9]陈源福,动态加载下苯的拉曼光谱研究,硕士论文,西南交通大学(2012).
    [10]P.Bridgman. The coagulation of albumen by pressure Journal of Bioogical Chemistry(1914).19(4):511-512.
    [11]J.Akella,G.C.Kennedy.Phase Diagram of Benzene to 35 kbar.The Journal of chemical physics(1971).55:793.
    [12]F.Cansell,D.Fabre,J.P.Petitet. Phase transitions and chemical transformations of benzene up to 550℃and 30 GPa.The Journal of chemical physics(1993).99:7300.
    [13]W.D.Ellenson,M.Nicol. Raman spectra of solid benzene under high pressures. The Journal of Chemical Physics(1974).61.1380.
    [14]D.M.Adams,R.Appleby.Vibrational spectroscopy at very high pressures.Part 38.Three solid phases of benzene. J.Chem.Soc,Faraday Trans.2(1977).73(7): 1896-1905. [15] M.Thiery,.J.Leger.High pressure solid phases of benzene.I.Raman and x-ray studies of CH at 294 K up to 25 GPa.The Journal of chemical physics(1988). 89:4255.
    [16]经福谦,陈俊祥,动高压原理与技术,国防工业出版社,北京,2006.
    [17]S.Schmidt,D.S.Moore,D.Schiferl,J.Shaner. Backward stimulated Raman scattering in shock-compressed benzene.Physical review letters(l983).50(9): 661-664.
    [18]T.Kobayashi,T.Sekine.In situ Raman spectroscopy of shock-compressed benzene and its derivatives.Physical Review B(2000).62(9):5281.
    [19]A.Matsuda,K.Kondo, K.G.Nakamura.Nanosecond time-resolved stimulated Raman spectra of benzene under shock compression up to 4.2 GPa:Observation of liquid-solid phase transition.Japanese journal of applied physics(2004).43(12): L1614-L1616.
    [20]S.Root,Y.M.Gupta. Optical spectroscopy and imaging of liquid benzene Multiply shocked to 13 GPa.Chemical physics letters(2007):293-297.
    [21]陈源福,刘福生,张宁超,赵北京,王军国,etal,瞬态激光拉曼光谱测量系统及其在苯冲击压缩实验测量中的应用.高压物理学报(已接收).
    [22]张树霖,拉曼光谱学与低维纳米半导体.科学出版社,北京,2008.
    [23]L.Rayleigh and Phi.Mag.XLI,1871,274:447.
    [24]Mie.GAnn.Phy.1908,25:377.
    [25]L.Brillouin. Ann.Phy.(Pairs),1922,17:88.
    [26]C.V.Raman, K.S.Krishnan. Nature(1928),121:501.
    [27]李帅新,高启楠,激光拉曼光谱的发展历史、原理以及在催化领域的应用.科技资讯(2008),18.
    [28]R.C.C.Leite, T.E.Scott, T.C.Damen.Physics Review Letter(1969),22:780.
    [29]A.Y.Hirakawa, Tsumi,Science(1975),1 88:359.
    [30]TNakbyashi,H Okamoto,M Tasumi, Journal of Physical Chemistry(1997), 101:7189.
    [31]M Delhaye,Proceeding of the 81h International Conference on Raman Spcctroscopy.John Wiley,Chichester(1982),233.
    [32]Y Narita,T Tadokoro,T Saiki,S Mononobe,M Ohtsu. Near-field Raman spectral measurement of polydiacetylene.Applied Speotroscopy(1 998),52:301.
    [33]D L Jeamaire,R P Van Duyne,Journal of Electroanal Chemistry(1977),84:1.
    [34]杨昌虎,曾晓英,袁剑辉,廖家欣,激光拉曼光谱在水质分析中的应用.中国激光(2008),35(8).1169.
    [35]许以明,拉曼光谱及其在结构生物学中的应用,化学工业出版社,北京,2005.
    [36]王吉有,王闵,刘玲,郝伟,拉曼光谱在考古的应用.光散射学报(2006),18(2),130-133.
    [37]冷爱民,王华秀,阳静,崔建芳,张桂英.激光拉曼光谱在胃癌研究中的应用.中国现代医学杂志(2009).19(013):2015-2019.
    [38]张燕,张鹏翔.显微拉曼光谱在宝石鉴定中的应用.光散射学报(1999).11(1):7-13.
    [39]P.Bridgman. The coagulation of albumen by pressure.Journal of Bioogical Chemistry(1914).19(4):511-512.
    [40]W.D.Ellenson,M.Nicol. Raman spectra of solid benzene under high pressures. The Journal of Chemical Physics(1974).61:1380.
    [41]J.Akella,G.C.Kennedy.Phase Diagram of Benzene to 35 kbar.The Journal of chemical physics(1971).55:793.
    [42]S.Root,Y.Gupta. Chemical Changes in Liquid Benzene Multiply Shock Compressed to 25 GPa.The Journal of Physical Chemistry A(2009).113(7): 1268-1277.
    [43]R. D.Dick, Shock wave compression of benzene, carbon disulfide, carbon tetrachloride, and liquid nitrogen. The Journal of Chemical Physics(1970),52(12): 6021-6032.
    [44]O.V.Yakusheva, et al. The opacity mechanism of shock-compressed organic liquids. High Temp.-High Press 3:261-266.
    [45]N. C. Holmes, GOtani, P.McCandless, S. F. Rice, In Proceedings of the Ninth International Symposium on Detonation; ONCR, Arlington,VA,1990.
    [46]N. Holmes, and R. Chau,Fast time-resolved spectroscopy in shock compressed matter. The Journal of Chemical Physics 119:3316.
    [47]M.Nicol, M. L. Johnson, N. C.Holmes, Chemiluminescence of shock-pyrolyzed benzene.PhysicaB(1986),139&140B,582.
    [48]W. J.Nellis, D. C Hamilton, A. C. Mitchel, Electrical conductivities of methane, benzene, and polybutene shock compressed to 60 GPa (600 kbar). J. Chem. Phys. (2001),115,1015.
    [49]W. J. Nellis, F. H.Ree, R. J.Trainor, A. C. Mitchell,M. B. Boslough, Equation of state and optical luminosity of benzene, polybutene, and polyethylene shocked to 210 GPa (2.1 Mbar).J. Chem. Phys(1984),80,2789.
    [50]Wang, C. and P. Zhang. The equation of state and nonrnetal-metal transition of benzene under shock compression. Journal of applied physics (2010),107(8): 083502-083502-083505.
    [51]彭小娟,冲击加载下液态光学窗口的热物理性质及疏松金属铁的冲击温度测量问题研究.博士论文,西南交通大学(2012),19.
    [52]经福谦,实验物态方程导引.科学出版社,北京.1996.
    [53]郝高宇,无氧铜/蓝宝石界面冲击辐射特性及温度测量研究.硕士论文,西南交通大学,2007.
    [54]谭华,实验冲击波物理导引.国防工业出版社,北京,2007.
    [55]马海云,在强冲击条件下g-C3N4向B-C3N4相变研究.硕士论文,西南交通大学,2011.
    [56]张岱宇,蓝宝石的冲击光辐射及其高压相图.博士论文,西南交通大学.2008.
    [57]张世来,在兆巴压力下金属卸载融化相变的直接观测及其动力学研究.硕士论文,西南交通大学,2010.
    [58]马小娟,冲击高压下物质粘性的实验与数值研究.博士论文,西南交通大学,2010.
    [59]H.Shimizu,N.Saitoh,S.Sasaki.High-pressure elastic properties of liquid and solid krypton to 8 GPa.Physical Review B(1998).57(l):230.
    [60]M.Pravica,O.Grubor-Urosevic,M.Hu,P.Chow,B.Yulga et al. X-ray Raman spectroscopic study of benzene at high pressure.The Journal of Physical Chemistry B(2007).111(40):1 1635-11637.
    [61]P.L.Silvestrelli,F.Ancilotto,F.Toigo. Adsorption of benzene on Si (100) from first principles.Physical Review B(2000).62(3):1596.
    [62]李永宏,刘福生,马海云,程小,马小娟.etal,动态荷载下石英玻璃的透光性及损伤演化研究.物理学报(2010),59.2104.
    [63]Wang,M and P.Huang,Catalytic power of nontronite,kaolinite and quartz and their reaction sites in the formation ofhydroquinone-drivedpolymers.Applied clay science(1989).4(1):43-57.
    [64]李永宏,刘福生,程小理,张明建,薛学东,冲击加载条件下融石英对水的凝固相变的诱导效应.物理学报(2011),60(12),126202.
    [65]A. Mitchell,W. Nellis, Shock compression of aluminum, copper, and tantalum. Journal of Applied Physics(1981).52(5):3363-3374.
    [66]Stanley.P.Marsh,LASL SHOCK HUGONIOTDATA.university of canifornia press,London.
    [67]张明建,氢氦及其混合物稠密气体制备技术与状态方程实验研究.硕士论文,西南交通大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700