冲击压缩下苯的液—固相变动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液-固相转变是自然界中普遍存在的现象之一,对相变过程的深入研究具有非常重要的科学意义。然而在动态加载条件下观测液-固相转变过程的实验方法仍有待发展和完善。苯在高压下发生液-固相变的快慢问题一直受到人们关注,并长期存在争议。本文利用一级轻气炮加载技术和最近发展的一种透光性在线测量技术,首次实时在线观测到液态苯在多次冲击压缩过程中透光性随时间变化特征。分析表明,导致透光性下降的原因是界面处局部发生液—固相变而引起的光散射效应,且散射特征反映了相变过程的时间弛豫特性,为相变动力学研究提供了重要依据。本文也为深入研究其它透明液体的相变动力学问题,提供了一种可靠性好、灵敏度高、实用性强的实验方法。本文得到如下几个结论:
     1.在准等熵加载过程中,采用光透射在线测量技术首次观测到了液态苯的液-固相变过程,发现相转变在纳秒时间尺度即发生,且整个过程持续时间超过1脚。
     2.热力学计算所得的多次冲击时间点与实验信号中的透射率变化明显的位置符合较好。即在冲击波第一次冲击(0.94Gpa,170℃)样品时,样品的透射率没有发生变化;在被第二次冲击(1.94GPa,240℃)后,样品的透射率开始下降,未观测到明显滞后现象。借助相图和热力学计算发现,在第二次冲击加载下,样品苯的温压状态已经跨入到其固相区,即已达到发生液-固相变的温压条件。因此本文认为实验中所观察到的液态苯在冲击波作用透射率下降现象是由过冷度驱使而发生成核并长大引起。
     3.借助相变动力学模型,对苯在多次冲击过程中的成核长大特性进行初步探讨。发现结晶过程包括早期的冲击成核和后期的过冷成核长大过程,且该过程是一个与时间有关的积累效应。通过实验数据拟合方法,本文首次给出冲击成核密度、过冷成核速率、过冷线性长大速率与成核的临界半径之间的数量关系。
Liquid-solid transitions are certainly among the most widespread in nature and many of them also of importance. Whereas the methods of direct measurement for the process of solidification under shock wave have not been well developed. Kinetics of solidification of liquid benzene under high pressure has attracted much attention of scientists, and it is also one of long-standing disputes. In present work, the gas-gun technique is combined with a recently developed technique of light transmittance, and the time dependence of light transmittance of liquid benzene is directly observed during successive multiply shock-compressions. The analysis shows that the transmittance decreasing is caused by light scattering effects in a non-uniform optical media, which is formed by local liquid-solid transformation during shock compression, and that the features of light scattering reflects both the time relaxation and spacial accumulation of transition process. The arguments whether the liquid-solid transformations happens under multi-shock compression are clarified, and some important experimental proofs are provided for studies of phase transformation kinetics. The main results are as followed:
     1. The liquid-solid transition of benzene was firstly observed by a new developed light transmittance method in process of quasi-isentropic loading. The phase transition is found to happen in time scale of nanoseconds, and the process lasted more than one microsecond.
     2. The durations of multi-shock compressions estimated by the thermodynamic calculation are consistent with those indicated by the light transmission signal. When the benzene was firstly shocked, the light transmittance kept unchanged, but it began to decrease in the process of the second compression. Compared with the theoretical calculation and the phase diagram, the state of the second shock is confirmed to step into the solid phase region of benzene. Therefore, the observed decrease of the light transmittance is interptetted as the occurrence of the nucleation and growth of solification of benzene driven by the shock wave and the super-cooling.
     3. Based on the phase transformation kinetics model, the characteristics of nucleation and growth of solificaton were discussed. It is found that the process of solidification consists of two steps:the nucleation early induced by shock wave and the successive nucleation driven by supper-cooling, and both the number density and radius of nucleus were time-dependent. By fitting the experimental data, the present work firstly determined the quantative relationship among the number density of shock-induced nucleation, the rate of nucleation driven by supper-cooling, the critical radius of nucleus, and its speed of growth.
引文
[1]Matsuda, A., K. Kondo, et al. "Nanosecond rapid freezing of liquid benzene under shock compression studied by time-resolved coherent anti-Stokes Raman spectroscopy." The Journal of Chemical Physics.2006,124:054501
    [2]Root, S. and Y. Gupta. "Optical spectroscopy and imaging of liquid benzene multiply shocked to 13 GPa." Chemical Physics Letters.2007442(4-6):293-297
    [3]Dick, R. "Shock wave compression of benzene, carbon disulfide, carbon tetrachloride, and liquid nitrogen." The Journal of Chemical Physics.1970,197052:6021
    [4]Root, S. and Y. Gupta. "Chemical Changes in Liquid Benzene Multiply Shock Compressed to 25 GPa." The Journal of Physical Chemistry A.2009,113(7):1268-1277
    [5]Ciabini, L., M. Santoro, et al.. "High pressure crystal phases of benzene probed by infrared spectroscopy." The Journal of Chemical Physics.2001,115:3742
    [6]Thiery, M. and J. Leger. "High pressure solid phases of benzene. Ⅰ. Raman and x-ray studies of CH at 294 K up to 25 GPa." The Journal of Chemical Physics.1988,89:4255
    [7]Ellenson, W. and M. Nicol. "Raman spectra of solid benzene under high pressures.' The Journal of Chemical Physics.1974,61:1380
    [8]Adams, D. M. and R. Appleby. "Vibrational spectroscopy at very high pressures. Part 18.-Three solid phases of benzene." Journal of the Chemical Society, Faraday Transactions 2:Molecular and Chemical Physics.1977,73(7):1896-1905
    [9]Thiery, M., D. Fabre, et al.. "High pressure effects on the Raman spectra of solid C6H6." Physica B& C.1986,139:520-522
    [10]李永宏,刘福生,程小理,张明建,薛学东,在冲击波纳秒加载过程中水的结晶相变及其动力学现象.中国科学.2010,40(6)344-352
    [11]Kobayashi, T. and T. Sekine,"In situ Raman spectroscopy of shock-compressed benzene and its derivatives." Physical Review B.2000,62(9):5281-5284
    [12]N. V. Sidorov,Y. N. Krasyukov, and E. I. Mukhtarov, Raman Spectra and Thermal disordering of the crystalline structure of benzene. Journal of Applied Spectroscopy. 1999,66(3)394-400
    [13]Michalski, D., R. Perry, et al. "Additivity of guest and host properties in clathrates:a thermodynamic and Raman spectroscopic investigation of HPTB-based solids." Journal of Physics:Condensed Matter.1996,8:1647.
    [14]Lysne, P. "Nonlinear U (u) Hugoniots of Liquids at Low Pressures." Journal of Chemical Physics.1972,57:492-494.
    [15]Li-wen, X., W. Ru-ju, et al. "High Pressure Raman Study of Phase Transitions on Solid Benzene Using Raman Notch Filter Set." Chinese Physics Letters.1996,13:293.
    [16]Duvall, G. and R. Graham. "Phase transitions under shock-wave loading." Reviews of Modern Physics.1977,49(3):523-579.
    [17]Afanasenkov, A., I. Voskoboinikov, et al. "Study of the character of the transformation of liquid substances in shock waves." Combustion, Explosion, and Shock Waves.1974,10(3):343-349.
    [18]Craven, C., P. Hatton, et al. "The structure and dynamics of solid benzene. I. A neutron powder diffraction study of deuterated benzene from 4 K to the melting point." The Journal of Chemical Physics.1993,98:8236.
    [19]K. Mimura, M. Kato, and R. Sugisaki,. "Shock synthesis of polycyclic aromatic hydrocarbons from benzene:Its role in astrophysical processes." Geophysical research letters.1994,21(18):2071-2074
    [20]K. Mimura. "Synthesis of polycyclic aromatic hydrocarbons from benzene by impact shock:its reaction mechanism and cosmochemical significance." Geochimica et Cosmochimica Acta.1995,59(3):579-591
    [21]Wang, C. and P. Zhang. "The equation of state and nonmetal"Cmetal transition of benzene under shock compression." Journal of Applied Physics.2010,107(8): 083502-083502-083505
    [22]徐祖耀,相变原理[M],北京:科学出版社,1988.p.1-34,412-418
    [23]唐志平 冲击相变[M],北京:科学出版社,2008.P.88-105]
    [24]王静康 化学工程手册[M],结晶.第二版.北京:化学工业出版社,1996
    [25]张世来,刘福生,彭小娟,张明建,李永宏,马小娟,薛学东物理学报2010(已接收)
    [26]Walsh, J. and M. Rice. "Dynamic compression of liquids from measurements on strong shock waves." The Journal of Chemical Physics.1957,26:815
    [27]Williams Q, Jeanloz R, Bass J D, Svenson B, Ahrens T J, The melting 574 curve of iron to 250 GPa:A constraint on the temperature at Earth's center[J], Science,1987, 236:181-187
    [28]于渌,郝柏林,物理(M),1980,9:472
    [29]Klein, R., M. Nourbakhsh, et al. "Visually observed pressure-induced transformation behaviour." Journal of Materials Science.1968,3(6):657-660.
    [30]A.C.Ferrari, J.Robertson. Raman Spectroscopy in Carbons:From Nanotubes to Diamond. The Royal Society, London.2004, p48.
    [31]Matsuda, A. "Thin-Film Silicon-- Growth Process and Solar Cell Application." Japanese journal of applied physics.2004,43(no.12):7909-7920.
    [32]Maillet, J. and N. Pineau. "Thermodynamic properties of benzene under shock conditions." The Journal of Chemical Physics.2008,128:224502.
    [33]Schmidt S C, Moore D S, Schiferl D, Shaner J W. "Backward stimulated Raman scattering in shock-compressed benzene." Physical Review Letters.1983,50(9): 661-664.
    [34]Bridgman, P. "The coagulation of albumen by pressure." Journal of Biological Chemistry.1914,19(4):511.
    [35]Akella, J. and G. C. Kennedy. "Phase Diagram of Benzene to 35 kbar." The Journal of Chemical Physics.1971,55:793.
    [36]Cansell F, Fabre D, Petitet J. "Phase transitions and chemical transformations of benzene up to 550 C and 30 GPa." The Journal of Chemical Physics.1993,99:7300.
    [37]Ciabini L, Gorelli F A, Santoro M, Bini R, Schettino V, Mezour M. "High-pressure and high-temperature equation of state and phase diagram of solid benzene." Physical Review B.2005,72(9):94108
    [38]Block S, Weir C E, Piermarini G J. "Polymorphism in benzene, naphthalene, and anthracene at high pressure." Science.1970,169(3945):586
    [39]Piermarini, G., A. Mighell, et al. "Crystal structure of benzene II at 25 kilobars." Science.1969,165(3899):1250.
    [40]Ciabini, L., M. Santoro, et al. "High pressure photoinduced ring opening of benzene.' Physical Review Letters.2002,88(8):85505.
    [41]Yakusheva, O., V. Yakushev, A.Dremin. "The opacity mechanism of shock-compressed organic liquids." High Temp.-High Press.1971,3:261-266.
    [42]Nicol, M., Johnson. M, Holmes. N,. "Chemiluminescence of shock-pyrolyzed benzene." Physica B& C,1986,139:582-586.
    [43]N.Holmes,G.Otani,P.McCandless,S.Rice, In Proceedings of the Ninth Internationl Symposium on Detonation;ONCR,Arlington,VA,1990.
    [44]Nellis.W,Hamilton.D,Mitchel.A. "Equation of state and optical luminosity of benzene, polybutene, and polyethylene shocked to 210 GPa (2.1 Mbar)." The Journal of Chemical Physics.1984,80:2789.
    [45]李永宏,刘福生,马海云,程小理,张明建,薛学东.."动态加载下石英玻璃的透光性及损伤演化研究.”物理学报.2010,59(3)
    [46]王礼立、余同希、李永池,冲击动力学进展[M],合肥:中国科学技术大学出版 社,1992.P.117-120
    [47]经福谦,实验物态方程导引[M],北京:科学出版社,1999 p.204-209,352-356
    [48]姚启钧,光学教程(第二版)(M),北京:高等教育出版社,2004.p.411-412
    [49]Meyers M A. Dynamic Behavior of Materials. John Wiley and Sons, Inc.,1994
    [50]母国光,战元龄,光学(第二版)(M),北京:高等教育出版社,p.396-398.
    [51]张明建,氢氦及其混合物稠密气体制备技术与状态方程实验研究,西南交通大学硕士毕业论文,2006
    [52]Williams Q, Jeanloz R, Bass J D, Svenson B, Ahrens T J, The melting 574 curve of iron to 250 GPa:A constraint on the temperature at Earth's center[J], Science,1987, 236:181-187
    [53]谭华,实验冲击波物理导引(M),北京:国防工业出版社,2007,p.85-95
    [54]J W Gibbs, Scientific Papers,1, Dover, New York,1961
    [55]J W Chrishan, The Theory of Transformation in Metals and Alloys, Pergamon Press, Oxford,1975
    [56]W. A. Johnson, R. F. Mehl, Trans. AIME.,1939,135,416.
    [57]M. Avrami, J. Chem, Phys,7(1939),1103; 8(1940),212; 9(1941),177.
    [58]李永宏,刘福生,马海云,程小理,马小娟,孙燕云,张明建,薛学东.动态荷载下石英玻璃的透光性及损伤演化研究.物理学报,2010,59,2104
    [59]Wang, M. and P. Huang. "Catalytic power of nontronite, kaolinite and quartz and their reaction sites in the formation of hydroquinone-derived polymers." Applied clay science.1989,4(1):43-57.
    [60]李永宏,刘福生,程小理,张明建,薛学东,冲击加载条件下融石英对水的凝固相变的诱导效应.物理学报(已接收).
    [61]Matsuda A, Nakamura K G, Kondo K. "Time-resolved Raman spectroscopy of benzene and cyclohexane under laser-driven shock compression." Physical Review B.2002,65(17):174116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700