第一性原理计算探索高压下缺陷对LiF和AL_2O_3两种晶体的电子结构和光学性质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在冲击波实验中的激光相干、光谱以及温度测量中都需要采用光学窗口材料因此,因此窗口材料在冲击压缩条件下的光学透明性问题是人们特别关注的。因为它将对冲击波实验结果的置信度有重要影响。LiF和Al_2O_3两种晶体在冲击波实验中常常被用作光学窗口材料。因此,研究它们在冲击压缩下光学透明性是否保持的问题对发展冲击波实验的测量技术有重要应用背景,并且对发展冲击波实验测量技术和人们认识自然具有推动作用。本文分为两部分分别对高压下LiF和Al_2O_3电子结构及光学等物理性质进行研究。
     本论文的第一部分主要研究内容及结论:
     一.基于密度泛函理论框架下的第一性原理平面波超软赝势方法,结合局域密度近似(LDA),本文计算了102 GPa下LiF理想晶体、含Li~(-1)和F~(+1)时的电子结构性质和光学性质,结果表明:
     1.空位点缺陷的存在使得LiF能隙中出现了缺陷态。
     2.在可见光范围内,空位点缺陷的存在不会影响LiF的高压光吸收性(吸收系数仍为零)。
     3 .在紫外光波段,Li~(-1)空位存在时在约99~(-1)14 nm波段内出现了弱的吸收;F~(+1)空位存在时在约99-262 nm波段内出现了明显的吸收。
     4. Li~(-1)、F~(+1)两种空位分别存在时对LiF的反射谱和能量失谱产生的影响都集中在紫外光区,与对光吸收产生的影响相似。
     二.利用密度泛函理论框架下的第一性原理平面波超软赝势方法,结合局域密度近似(LDA),还计算了102 GPa压力LiF分别在Li~(-1)及F~(+1)两种空位存在下的反射谱、折射率谱、介电函数和能量损失谱等一些光学性质,并和相同压力下理想晶体的做了比较,结果表明:102 GPa压力下Li~(-1)、F~(+1)两种空位分别存在时对LiF的反射谱和能量失谱产生的影响都集中在紫外光区,与对光吸收产生的影响相似。
     第二部分的主要工作和结果如下:
     1.运用第一性原理方法,计算了不同压力下理想Al_2O_3晶体分别在三个结构相(Corundum相、Rh_2O_3(Ⅱ)相以及CaIrO_3相)下的晶格参数、能带结构等性质,并根据计算结果得出了三个相下晶格参数及能隙随压力变化的关系。结果表明:在0K时,同一结构相下,随着压力的增加其晶格参数是逐渐减小的。三个结构相下的能隙随压力变化的关系是:Corundum相到Rh_2O_3(Ⅱ)相以及Rh_2O_3(Ⅱ)相到CaIrO_3相的结构相变将导致Al_2O_3的带隙有不同程度的减小。另外,还发现在CaIrO_3相区,带隙随压力呈微弱地减小趋势变化,而在Corundum和Rh_2O_3(Ⅱ)相区,带隙随压力却是明显呈现明显的增加趋势。
     2.基于密度泛函理论框架下的第一性原理平面波超软赝势方法,结合局域密度近似(LDA),计算了131.2 GPa压力下不同的点空位缺陷(V_O~0、V_O~(+1)、V_O~(+2)、V_(Al)~0、V_(Al)~(-1)、V_(Al)~(-2)、V_(Al)~(-3))对80个原子的超原胞Al_2O_3在CaIrO_3相结构下晶格参数的影响。计算结果表明:VO0、V_O~(+1)、V_O~(+2)、V_(Al)~0、V_(Al)~(-1)及V_(Al)~(-2)空位点缺陷的存在使其晶格参数增加,但-3价Al空位的存在却没有引起晶格参数的变化。
     3.运用第一性原理方法,计算了131.2 GPa压力下Al_2O_3在CaIrO_3结构相下不同的空位点缺陷(V_O~0、V_O~(+1)、V_O~(+2)、V_(Al)~0、V_(Al)~(-1)、V_(Al)~(-2))对其电子差分态密度的影响。
Optical window materials are used in coherent laser and light spectrum of shock wave experiments, so their optical transparency issues are concerned by people in shock wave experiments. LiF and Al_2O_3 crystals are used optical window materials in shock wave experiments. so it is very important to develop the technique of experimental in shock wave experiments and give people impetus to the understanding of nature. This paper is divided into two parts, studying on some physical and optical properties of LiF and Al_2O_3.
     The main work and results of the first part are as follows:
     Based on the plane-wave pseudopotential method in the frame-work of the density function theory and the local density approximation of Ceperly and Adler by the parametrization of Perdew and Zunger (LDA-CA-PZ), the electronic structures and optical properties of LiF without and with Li~(-1) and F~(+1) vacancies are calculated.
     The results indicate that:
     (1) Presence of the vacancy causes defective states within the band gap of LiF.
     (2) The optical absorption of LiF in the visible-light region is not influenced by the vacancy point-defect (absorption coefficients are still zero).
     (3) In the ultra-violet region, the weak absorption induced by the Li~(-1) vacancy, appears within ~99~(-1)14 nm, and the relative strong absorption, induced by the F~(+1) vacancy, exists at the range of 99-262 nm.
     (4) Effects of the Li~(-1) and F~(+1) vacancy on reflectivity and loss-function are focused on the ultra-violet region, which is similar to those of optical absorption.
     And by using ultra-soft pseudo-potential approach of the plane wave based on the Density-functional theory, the refractive index and reflectivity and dielectric function of LiF without and with Li~(-1) and F~(+1) vacancies under 102 GPa are also calculated and analyzed. The results indicate that: effects of the Li~(-1) and F~(+1) vacancy on reflectivity and loss-function are focused on the ultra-violet region, which is similar to those of optical absorption.
     The main work and results of the second part of the paper are as follows:
     (1)The first principles were used to calculate the effect on lattice constants and band gaps and other properties of perfect Al_2O_3 in three structural phases (Corundum phase and Rh_2O_3(Ⅱ) phase and CaIrO_3 phase under different pressure, and get the relationship between the lattice constants and pressure, at 0K and the same structure phases, with the pressure to increase its lattice constants gradually reduced, it is to say the structure is become more stable. And the band-gap data may be obtained from the corresponding calculated energy-band structures. It is found that Corundum-Rh_2O_3(Ⅱ) and Rh_2O_3(Ⅱ)-CaIrO_3 transitions in alumina at 0 K cause band-gap different level reductions, respectively. The band gap decreases slightly with pressure in the CaIrO_3 phase region but increases in Corundum and Rh_2O_3(Ⅱ) phase regions.
     (2) Based on the plane-wave pseudopotential method in the frame-work of the density function theory and the local density approximation of Ceperly and Adler by the parametrization of Perdew and Zunger (LDA-CA-PZ), the author calculate the effect different point defects of Al_2O_3 (V_O~0、V_O~(+1)、V_O~(+2)、V_(Al)~0、V_(Al)~(-1)、V_(Al)~(-2) )on crystal lattice parameters of Al_2O_3 supercell with 80 atoms under 131.2 GPa pressure. The results indicate that: the lattice parameters of Al_2O_3 become enhance when point defects exist except the -3 price of Al vacancy.
     (3)The first principles were used to calculate the effect different point defects of Al_2O_3 (V_O~0、V_O~(+1)、V_O~(+2)、VAl0、V_(Al)~(-1)、V_(Al)~(-2) )on electronic difference density of states properties of Al_2O_3 in CaIrO_3 structural phases under 131.2 GPa.
引文
[1]Barker L M,Hollenbach R E ,Fibre-optic probe hydrophone for ultrasonic and shock-wave measurements in water. J. Appl. Phys.1970 ,41 4208
    [2]J. Li, et al., J. A shock–induced prase transformation in a LiTaO crystal .Appl. Phys. 2007, 102:083503
    [3]C. S. Yoo et al., Real-Time Observation of a Metastable State duing the Phase Transition in Shocked Cadminm Sulfide.J., Phys. Chem. 1990, 94: 2857
    [4]R. C. McQueen et al.A time-resolved single-pass technique for measuring optical absorpeion coefficients of window materials under 100 Gpa shock pressure., J,Geophys. Res. 1990 ,95, 21753
    [5]周显明、汪小松、李赛男、李俊、李加波、经福谦.强冲击压缩下LiF,Al2O3和LiTaO3单晶的透光性.物理学报2007,56 ,4965
    [6]Wise J L,Chhabildas L C 1986 Shock Compression of Condensed Matter (New York:Elsevier Science Pubilshers) (1985)p441
    [7]Hicks D G,Celliers P M,Collins G W,Eggert J H,Noon S J ,Lonization effect study in the transparent material driven by shock timing technique. Phys.Rev.Lett. 2003, 91 0355021
    [8]Beobler R,Ross M,Boereker D B Phys.Rev.Lett.1997, 78 4589
    [9]Tan H,Ahren T J.An investigation of shock induced temperature rise and melting of bismuth using high-speed optical pyromety. High Press.Res.1990,2 159
    [10]Bess J D,Ahrens T J,Abolson J R,Tan H J.Geophys.Res. 1990,95 21767
    [11]Hereil P L,Mabire C Shock Compression of Condensed Matter (New York:Elsevier Science Pubilslhers) (2002)p1235
    [12]Urtiew P A Crystal structure of a high-pressure/high-temperature phase of alumina by in situ X-ray diffraction. J.Appl.Phys. 1974,45 3490
    [13]He L,Tang M J,Fang Y,Jing F Q ,Origin of the change of the electrical and optical properties in shocked AL2O3 and prediction of an increase in electrical conductivity in MgSiO3 at pressure-temperature conditions of the Earth’s D’’layer .Europhys.Lett. 2008,83 39001
    [14]Meyers M A, Dynamic Behavior of Materials.(Wiley IEEE,New York), (1994)pp413-420
    [15] Mallory H D,McEwan W S J Appl.Phys.1961,32 2421
    [16]史海峰、代雪峰、姬广富、刘红、龚自正、郭永新.高压下单晶LiF的光学及热力学性质的密度泛函理论研究.物理与分子物理学报, 2006,23 262
    [17]李海铭、巫翔、李炯、陈栋梁、储旺盛、吴自玉.高压下LiF和NaF的结构稳定性及其电子和光学性质的第一性原理研究,物理学报.2007,56 3290
    [18] Parr R G, Yang W, Density Functional Theory of Atoms and Molecules, NewYork:Oxford, 1989
    [19] Dreizler R M, Gross E K U. Density Functional Theory, Berlin:Springer-Vertag, 1990
    [20] Pickett W E, Pseudopotential methods in condensed matter applications, Comput Phys Rep. 1989, 9:115
    [21] Ono S., Oganov A. R., Koyama T. and S-himizu H., Earth Planet. [J].Sci. Lett.2006,246: 326
    [22] Hama J. and Suito K., High Temp. [J].Hi- gh Press., 2002 ,34 :323
    [23]Jing F. Q., Introduction to Experimental Equation of State Science [J]. Beijing 1999, pp 302-303
    [24] Lin J. F., Degtyareva O., Prewitt C. T.,D-era P., Sata N.,Gregoryanz E., Mao HK.a-nd Hemley R., Nat. Mater., 2004, 3 :389
    [25] Mashimo T., Tsumoto K., Nakamura K., Noguchi Y., Fukuoka K. and Syono,Y.Shock compression behaviors of boron carbide (BC).[J] Geophys. Res. Lett. 2000, 27 :2021
    [26] Mcqueen R G, Isaak I G. Characterizing Windows for Shock Wave Radiation Stu-dies[ J ]. Journal of Geophysical Researc-h , 1990,95(B13):217532-21765
    [27] Mashimo T., Tsumoto K., Nakamura K., Noguchi Y., Fukuoka K. and Syono, Y[J] Geophys. Res. Lett. 2000, 27 :2021
    [28] Mcqueen R G, Isaak I G. Characterizing Windows for Shock Wave Radiation Stu-dies[ J ]. Journal of Geophysical Researc-h , 1990,95(B13):217532-21765
    [29] Yong Nain Xu, Zhong Quan Gu, XueFu Zhong W.Y.Ching, Ab initio calculation for the neutral and charged O cacancy iin sapphire[ J ] .PRB ,1997, 56, 7277-7282
    [30] Perdew J. P. and Zunger A.,Accurate and simple analytic representation of the alectron-gas correlation energy Phys. Rev. B, 1981,23 5048
    [31]Segall M. D. et al., First-principles simulation: ideas, illustrations and the CASTEP code .J.Phys.: Condens. Matter, 2002 ,14 2717
    [32] Payne M. C. et al., Population analysis of plane-wave electronic structure calculations of bulk materials.Rev. Mod. Phys., 1992,64 1045
    [33] Javier Carrasco, Jose R B, Francesc Illas Theoretical study of bulk and surface oxygen and aluminum vacancy in alpha-Al2O3.PRB 2004
    [34] Holm B., Ahuja R., Yourdshahyan Y., Johansson B. and Lundqvist B. I., Elastic and optical properties ofα- Al2O3,Phys. Rev. B, 59 (1999) 12777
    [35] Walker W C Appl. Opt. 1964.3 1457
    [36] Urtiew P A J.Appl.Phys. 1974.45 3490
    [37] Segall M D et , First-principles simulation: ideas, illustrations and the CASTEP code Phys.Condens.Matter .2002 .14 2717
    [38] Payne M C et al. Rev. Mod.Phys. 1992 . 64 1045
    [39] Perdew J Pand Zunger A. Population analysis of plane-wave electronic structure calculations of bulk materials Phys. Rev. B, 1981.23 5048
    [40] Kohn W. and Sham L Phys.Rev.A 1965.140 1133
    [41] Fischer T H and Almlof J Phys.Chem. 1992.96 9768
    [42] Piacentini M Solid State Commun. 1975.17 697
    [43] Holm B et al., Elastic and optical properties ofα- andκ-Al2O3 Phys. Rev.B 1999.59 12777
    [44]刘恩科.半导体物理学北京:电子工业出版社2003 , P325
    [45]李朋.半导体吸收式光纤温度传感器的探索,2003
    [46]赵婧,透明导电氧化物薄膜包覆荧光粉的研究.2006
    [47]葛庆分,立方氮化硼紫外吸收光谱及能带的研究.2005
    [48] Wu J et al. J. Appl. Phys. 2003 .94 4457
    [50]沈学础.半导体光谱和光学性质(第二版).北京:科学出版社,1992, 20-28;76-91
    [51]Moss T S,Burrell G T,EuisB.SemiconductorOpto-electromics. London:Butterworths,1973
    [52]何林、何旭、房勇、曾明凤、唐明杰、薛学东、压力及缺陷对蓝宝石电子结构的第一性原理研究,四川理工学报,2010-08-20
    [53] Weir S. T., Mitchell A. C. and Nellis W. Minimum metallic conductivity of fluid hydrogenat 140 GPa (1.4 Mbar) [J] Appl. Phys, 1996 ,80 :1522.
    [54]唐明君.对两种固体物质(Al2O3、Cu)的高压行为的研究.2008
    [55]房勇.第一性原理计算空位、间隙对Al2O3高压性质的影响.2009
    [56] Caracas R. and Cohen R. E., Effect of chemistry on the stability and elasticity of the perovskite and post-perovskite phases in the MgSiO3-FeSiO3-Al2O3 system and implications for the lowermost mantle Geophys. Res. Lett., 2005 .32 L06303
    [57] Mashimo T., Tsumoto K., Nakamura K., Noguchi Y., Fukuoka K. and Syono, Y. Transition to a Virtually Incompressible Oxide Phase at a Shock Pressure of 120 GPa (1.2 Mbar): Gd3Ga5O12 [J] Geophys. Res. Lett. 2000, 27 :2021.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700