石英界面处液态水的冲击结构相变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水作为自然界普遍存在的物质之一,备受人们的关注。因为水广泛的参与到自然界中的物理,化学,生物等作用。尽管人们从很早开始就已经研究水的相关性质,但是到目前为止,水的许多相关领域仍然不被人类所了解。比如水的结冰问题。近年来,利用光谱技术探索常态下界面处水的结构变化发展为一个新的研究方向。这项研究有利于揭示自然界中有水参与的界面作用的机理问题。但是,冲击压缩状态下界面水的结构变化研究依然很少,这是由于在冲击波物理试验中获得物质真实结构信息的困难较大。要求实验的诊断技术必须具有灵敏度高,同步性好的特征。本文采用光透射技术研究了石英/水界面处水的冲击结构相变,并且获得了以下几方面结论:
     (1)石英材料能够作为实验中的透明窗口。本文研究了弹丸速度为350m/s时石英材料的冲击压缩状态,发现石英材料在冲击压缩状态下依然保持良好的透明性,并且在压力卸载过程中,石英材料的透明性没有发生变化。
     (2)界面处水的结构相变与石英界面的特性相关。探索了不同酸碱环境中水/石英界面处水的冲击结构相变,证实界面处样品水的冲击结构相变与石英界面的电场诱导效应密切相关,且受石英界面特性影响较大。
     (3)实验发现了水的冲击结构相变的完整过程。探索了单次冲击条件下界面水的冲击结构相变,发现相变过程明显分为四个阶段,与理论研究的结果一致。
     (4)实验证实了界面水冲击结构相变是高密度水被诱导的结果。实验发现在强酸环境下石英界面表现为中性,但界面水仍然能够发生冲击结构相变,证实水被冲击进入高密度水状态,处于亚稳定性的高密度水被诱导相变。
Water is always caused much attention of scientists because it is one of substances common in nature. And water plays a important role in a wide range of physical, chemical, biological in nature. Although people has been studied water over the past decades, but so far, many related knowledge of the water has not been master by human. Such as the solidification of water. In recent years, the exploring the structure of water under normal conditions at the interface is a new research. The study helps to reveal the mechanism of water participation in the interface action. But there are small people to study the structure changes of water in the interface, which is due to quite difficult to obtain true information in the shock experiment. So the experimental equipment with high sensitivity diagnostic and highly accurate synchronization techniques are needed. In this thesis, we studied the water freezing under shock compression with a novel technique using light transmission measurements and obtained the following conclusions:
     (1) Fused quartz can be used as a transparent window in the experiments. We study the fused quartz state under shock compression, in which the velocity of projectile is350meters per second. Fused quartz remains is transparent in the state of shock compression, and it is confirmed in the uninstall process.
     (2) The phase transition is dependent on the characteristics of quartz in the interface. Water's structure phase transition is explored in various pH environments in water/quartz interface under shock compression. We demonstrate that phase transition is closely related to the electric field of the quartz interface which induced the solidification of water.
     (3) It found the complete process of water's phase transition. The phase transition process was divided into four stages in the interface under single shock compression which is consistent with the theoretical results.
     (4) The experiments confirmed that high-density water was induced into ice under shock compression. At very low pH, the quartz surface is nearly neutral, but water in the interface can still occur to the phase transition. Because high-density water is a metastable liquid in which phase transition occurs more easily.
引文
[1]Kanno, H., R. Speedy and C. Angell. "Supercooling of water to-92 C under pressure." Science.(1975).189(4206):880.
    [2][1]Wernet, P., D. Testemale, J. L. Hazemann, R. Argoud, P. Glatzel, et al. "Spectroscopic characterization of microscopic hydrogen-bonding disparities in supercritical water." The Journal of chemical physics. (2005).123:154503.
    [3]Ohtaki, H. "Effects of temperature and pressure on hydrogen bonds in water and in formamide." Journal of molecular liquids. (2003).103:3-13.
    [4]Zangi, R. and A. E. Mark. "Electrofreezing of confined water." The Journal of chemical physics. (2004).120:7123.
    [5]Cavazzoni, C., G. Chiarotti, S. Scandolo, E. Tosatti, M. Bernasconi, et al. "Superionic and metallic states of water and ammonia at giant planet conditions." Science.(1999).283(5398):44.
    [6]Bertolini, D., M. Cassettari and G. Salvetti. "Nucleation process and solidification rate of supercooled water." Physica Scripta.(1988).38:404.
    [7]Mishima, O. and H. E. Stanley. "Decompression-induced melting of ice IV and the liquid-liquid transition in water." Nature.(1998).392(6672):164-168.
    [8]Choi, E. M., Y. H. Yoon, S. Lee and H. Kang. "Freezing transition of interfacial water at room temperature under electric fields." Physical review letters.(2005). 95(8):85701.
    [9]Mishima, O. and S. Endo. "Melting curve of ice VII." The Journal of chemical physics. (1978).68:4417.
    [10]Du, Q., E. Freysz and Y. R. Shen. "Vibrational spectra of water molecules at quartz/water interfaces." Physical review letters.(1994).72(2):238-241.
    [11]Israelachvili, J. and R. Pashley. "Measurement of the hydrophobic interaction between two hydrophobic surfaces in aqueous electrolyte solutions." Journal of Colloid and Interface Science.(1984).98(2):500-514.
    [12]Lenk, R., M. Bonzon and H. Greppin. "Dynamically oriented biological water as studied by NMR." Chemical physics letters. (1980).76(1):175-177.
    [13]Ostroverkhov, V., G. A. Waychunas and Y. Shen. "Vibrational spectra of water at water/[alpha]-quartz (0 0 0 1) interface." Chemical physics letters.(2004). 386(1-3):144-148.
    [14]Gragson, D., B. McCarty and G. Richmond. "Ordering of interfacial water molecules at the charged air/water interface observed by vibrational sum frequency generation." Journal of the American Chemical Society.(1997).119(26): 6144-6152.
    [15]Gragson, D. and G. Richmond. "Investigations of the structure and hydrogen bonding of water molecules at liquid surfaces by vibrational sum frequency spectroscopy." The Journal of Physical Chemistry B.(1998).102(20):3847-3861.
    [16]Fleischmann, M., P. Hendra, I. Hill and M. Pemble. "Enhanced Raman spectra from species formed by the coadsorption of halide ions and water molecules on silver electrodes." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry.(1981).117(2):243-255.
    [17]Pettinger, B., M. R. Philpott and J. G. Gordon II. "Contribution of specifically adsorbed ions, water, and impurities to the surface enhanced Raman spectroscopy (SERS) of Ag electrodes." The Journal of chemical physics.(1981).74:934.
    [18]Ataka, K., T. Yotsuyanagi and M. Osawa. "Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy." The Journal of Physical Chemistry.(1996). 100(25):10664-10672.
    [19]Toney, M. F., J. N. Howard, J. Richer, G. L. Borges, J. G. Gordon, et al. "Distribution of water molecules at ag (111)/electrolyte interface as studied with surface X-ray scattering." Surface Science.(1995).335:326-332.
    [20]Goldman, N., E. J. Reed, I. F. W. Kuo, L. E. Fried, C. J. Mundy, et al. "Ab initio simulation of the equation of state and kinetics of shocked water." The Journal of chemical physics. (2009).130:124517.
    [21]Hassanali, A. A. and S. J. Singer. "Model for the water-amorphous silica interface:The undissociated surface." The Journal of Physical Chemistry 5.(2007). 111(38):11181-11193.
    [22]Dolan, D. and Y. Gupta. "Time-dependent freezing of water under dynamic compression." Chemical physics letters. (2003).374(5-6):608-612.
    [23]Dolan, D. and Y. Gupta. "Nanosecond freezing of water under multiple shock wave compression:Optical transmission and imaging measurements." The Journal ofchemical physics. (2004).121:9050.
    [24]Dolan, D., J. Johnson and Y. Gupta. "Nanosecond freezing of water under multiple shock wave compression:Continuum modeling and wave profile measurements." The Journal of chemicalphysics.(2005).123:064702.
    [25]Dolan, D., M. Knudson, C. Hall and C. Deeney. "A metastable limit for compressed liquid water." Nature Physics.(2007).3(5):339-342.
    [26]Kim, J., G. Kim and P. S. Cremer. "Investigations of water structure at the solid/liquid interface in the presence of supported lipid bilayers by vibrational sum frequency spectroscopy." Langmuir.(2001).17(23):7255-7260.
    [27]Eftekhari-Bafrooei, A. and E. Borguet. "Effect of surface charge on the vibrational dynamics of interfacial water." Journal of the American Chemical Society. (2009).131(34):12034-12035.
    [28]Asay, D. B. and S. H. Kim. "Evolution of the adsorbed water layer structure on silicon oxide at room temperature." The Journal of Physical Chemistry B.(2005). 109(35):16760-16763.
    [29]Zhang, L., S. Singh, C. Tian, Y. R. Shen, Y. Wu, et al. "Nanoporous silica-water interfaces studied by sum-frequency vibrational spectroscopy." The Journal of chemical physics. (2009).130:154702.
    [30]Ye, S., S. Nihonyanagi and K. Uosaki. "pH-dependent water structure at a quartz surface modified with an amino-terminated monolayer studied by sum frequency generation (SFG)." Chemistry Letters.(2000).29(7):734-735.
    [31]Cogoni, M., B. D'Aguanno, L. Kuleshova and D. Hofmann. "A powerful computational crystallography method to study ice polymorphism." The Journal of chemical physics. (2011).134:204506.
    [32]Polian, A. and M. Grimsditch. "Brillouin scattering from H2O:Liquid, ice Ⅵ, and ice Ⅶ." Physical Review B.(1983).27:6409-6412.
    [33]Kinney, D. R., I. S. Chuang and G. E. Maciel. "Water and the silica surface as studied by variable-temperature high-resolution proton NMR." Journal of the American Chemical Society.(1993).115(15):6786-6794.
    [34]Chuang, I. S. and G. E. Maciel. "Probing hydrogen bonding and the local environment of silanols on silica surfaces via nuclear spin cross polarization dynamics." Journal of the American Chemical Society. (1996).118(2):401-406.
    [35]Chuang, I. S. and G. E. Maciel. "A detailed model of local structure and silanol hydrogen bonding of silica gel surfaces." The Journal of Physical Chemistry B.(1997).101(16):3052-3064.
    [36]Canpolat, M., F. W. Starr, A. Scala, M. R. Sadr-Lahijany, O. Mishima, et al. "Local structural heterogeneities in liquid water under pressure." Chemical physics letters.(1998).294(1-3):9-12.
    [37]Hemley, R., H. Mao, P. Bell and B. Mysen. "Raman Spectroscopy of SiO_ {2} Glass at High Pressure." Physical review letters.(1986).57(6):747-750.
    [38]Walsh, T. R., M. Wilson and A. P. Sutton. "Hydrolysis of the amorphous silica surface. II. Calculation of activation barriers and mechanisms." The Journal of chemical physics.(2000).113:9191.
    [39]Murashov, V. V. "Reconstruction of pristine and hydrolyzed quartz surfaces.' The Journal of Physical Chemistry B.(2005).109(9):4144-4151.
    [40]Duvall, G. and R. Graham. "Phase transitions under shock-wave loading." Rev. Mod. Phys.;(United States).(1911).49(3).
    [41]Rice, M. H. and J. M. Walsh. "Equation of state of water to 250 kilobars." The Journal of chemical physics. (1957).26:824.
    [42]Walsh, J. M. and M. H. Rice. "Dynamic compression of liquids from measurements on strong shock waves." The Journal of chemical physics.(1957). 26:815.
    [43]李永宏.”冲击加载过程中石英诱导水的晶化效应研究.”西南交通大学.(2011).
    [44]李永宏,刘福生,程小理,张明建,薛学东.”冲击加载条件下融石英对水的凝固相变的诱导效应.”Acta Phys.Sin.(2011).60(12):126202.
    [45]Wei, X., P. B. Miranda, C. Zhang and Y. Shen. "Sum-frequency spectroscopic studies of ice interfaces." Physical Review B. (2002).66(8):085401.
    [46]Ye, S., S. Nihonyanagi and K. Uosaki. "Sum frequency generation (SFG) study of the pH-dependent water structure on a fused quartz surface modified by an octadecyltrichlorosilane (OTS) monolayer." Phys. Chem. Chem. Phys. (2001). 3(16):3463-3469.
    [47]Ostroverkhov, V., G. A. Waychunas and Y. Shen. "New information on water interfacial structure revealed by phase-sensitive surface spectroscopy." Physical review letters.(2005).94(4):46102.
    [48]Ehre, D., E. Lavert, M. Lahav and I. Lubomirsky. "Water freezes differently on positively and negatively charged surfaces of pyroelectric materials." Science.(2010).327(5966):672.
    [49]Gavish, M., J. Wang, M. Eisenstein, M. Lahav and L. Leiserowitz. "The role of crystal polarity in alpha-amino acid crystals for induced nucleation of ice." Science.(1992).256(5058):815.
    [50]Chen, Y. W. and H. P. Cheng. "Structure and stability of thin water films on quartz surfaces." Applied physics letters. (2010).97(16):161909-161903.
    [51]施尚春,陈攀森and黄跃.“高速弹丸的磁感应测速方法.”高压物理学报.(1991).5(3):205-214.
    [52]张明建.氢氦及其混合物稠密气体制备技术与状态方程实验研究,西南交通大学.(2006).
    [53]同上[43]
    [54]Brooks, W. P. "Shock-Induced Luminescence in Quartz." Journal of Applied Physics.(1965).36(9):2788-2790.
    [55]Fat'yanov, O., R. Webb and Y. Gupta. "Optical transmission through inelastically deformed shocked sapphire:stress and crystal orientation effects." Journal of Applied Physics.(2005).97:123529.
    [56]Grady, D. E. and L. C. Chhabildas. Shock-wave properties of soda-Lime glass, Sandia National Labs., Albuquerque, NM (United States).(1996).
    [57]Horgan, C. O. Load Diffusion in Linear and Nonlinear Solid Mechanics, DTIC Document.(2001).
    [58]Soper, A. K. "Water and ice." Science.(2002).297(5585):1288.
    [59]Du, Q., E. Freysz and Y. R. Shen. "Surface vibrational spectroscopic studies of hydrogen bonding and hydrophobicity." Science.(1994). 264(5160):826.
    [60]Apetz, R. and M. P. B. Bruggen. "Transparent Alumina: A Light - Scattering Model." Journal of the American Ceramic Society. (2003).86(3):480-486.
    [6]]经福谦.实验物态方程导引,(1999).科学出版社.
    [62]Nagayama, K., Y. Mori, K. Shimada and M. Nakahara. "Shock Hugoniot compression curve for water up to 1 GPa by using a compressed gas gun." Journal of Applied Physics.(2002).91: 476.
    [63]Boehler, R. and G. C. Kennedy. "Pressure dependence of the thermodynamical Gr neisen parameter of fluids." Journal of Applied Physics.(1977).48(10): 4183-4186.
    [64]汤文辉,张若棋.物态方程理论及计算概论,(2008).高等教育出版社.
    [65]Matsumoto, M., S. Saito and I. Ohmine. "Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing." Nature.(2002). 416(6879):409-413.
    [66]Avrami, M. "Granulation, phase change, and microstructure kinetics of phase change. III." The Journal ofchemical physics. (1941).9:177.
    [67]Avrami, M. "Kinetics of phase change. I General theory." The Journal of chemical physics. (1939).7:1103.
    [68]Avrami, M. "Kinetics of phase change. II Transformation-time relations for random distribution of nuclei." The Journal of chemical physics. (1940).8:212.
    [69]Ong, S., X. Zhao and K. B. Eisenthal. "Polarization of water molecules at a charged interface:second harmonic studies of the silica/water interface." Chemical physics letters. (1992).191(3-4):327-335.
    [70]Doolittle, J. and G. Vali. "Heterogeneous Freezing Nucleation in Electric Fields." Journal of Atmospheric Sciences.(1975).32:375-379.
    [71]杨先碧.“让水在室温下结冰.”科学之友:上旬(2006).(004):61-61.
    [72]Xia, X. and M. L. Berkowitz. "Electric-field induced restructuring of water at a platinum-water interface:A molecular dynamics computer simulation." Physical review letters.(1995).74(16):3193-3196.
    [73]Hass, K. C., W. F. Schneider, A. Curioni and W. Andreoni. "The chemistry of water on alumina surfaces:Reaction dynamics from first principles.' Science.(1998).282(5387):265.
    [74]Svishchev, I. M. and P. G. Kusalik. "Crystallization of liquid water in a molecular dynamics simulation." Physical review letters.(1994).73(7):975-978.
    [75]Saitta, A. M. and F. Datchi. "Structure and phase diagram of high-density water: The role of interstitial molecules." Physical Review E.(2003).67(2):020201.
    [76]Kawamoto, T., S. Ochiai and H. Kagi. "Changes in the structure of water deduced from the pressure dependence of the Raman OH frequency." The Journal of chemical physics. (2004).120:5867.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700