甘油生物转化联产乳酸及其盐析萃取
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1,3-内二醇(1,3-Propanediol,1,3-PD)和乳酸都是应用广泛并具高附加值的大宗生物基化学品,二者均可用于化妆品、药品等领域,且在新型材料领域应用尤为突出。1,3-丙二醇和乳酸分别是聚对苯二甲酸丙二酯(PTT)和聚乳酸的合成单体,市场应用前景广阔。目前,利用微生物发酵生产大宗化学品,大多追求的是单一产品,存在原料利用率低,副产物浪费等问题。本课题组前期研究发现,克雷伯氏杆菌(Klebsiella pneumoniae)代谢甘油不仅能主产1,3-丙二醇,还能副产2,3-丁二醇、乳酸、琥珀酸、乙酸、乙醇等,但甘油转化率不足50%。为提高原料利用率,降低生产成本,本论文通过采用碳酸钠控制发酵过程pH、增加发酵罐二氧化碳的分压(通过减少尾气排放二氧化碳方式)、流加琥珀酸以及以粗甘油为原料来调控克雷伯氏杆菌代谢甘油的过程,提高1,3-丙二醇和乳酸的总产率,实现1,3-丙二醇和乳酸联产。
     首先,采用批式流加发酵方式,以氢氧化钠控制发酵过程pH作为对照,探索了碳酸钠控制发酵过程pH对克雷伯氏杆菌代谢甘油联产1,3-丙二醇和乳酸的克行性。实验结果表明,利用碳酸钠控制发酵过程pH,一方面促进菌体自身生长,另一方面利于1,3-丙二醇和乳酸的联产。其中,发酵过程中菌体OD值最高可达13.6,比对照组提高了25%;发酵33h后,1,3-丙二醇和乳酸浓度分别为79.48g/L,和41.97g/L,分别比对照组提高38%和28%;1,3-丙二醇和乳酸的质量转化率分别为41.46%和21.89%,二者总转化率为63.35%,比对照组提高4%。
     其次,在碳酸钠控制发酵过程pH基础L,分别考察了采用增加发酵罐二氧化碳分压、流加琥珀酸以及以粗甘油为原料的策略来调控克雷伯氏杆菌代谢甘油的过程。实验结果表明,与仅利用碳酸钠控制发酵过程pH相比,增大罐内压力至4kPa(表压)时,菌体的OD值最高为9.6,1,3-丙二醇浓度和乳酸浓度分别为52.81g/L和56.02g/L,质量转化率分别为34.70%和36.85%,总转化率为71.55%;流加琥珀酸时,菌体OD值最高为10.54,1,3-丙二醇浓度和乳酸浓度分别为52.11g/L和54.85g/L,质量转化率分别为33.83%和35.62%,总转化率为69.45%;以粗甘油为发酵原料时,菌体OD值最高为9.61,1,3-丙二醇浓度和乳酸浓度分别为46.67g/L和56.13g/L,质量转化率分别为29.69%和35.71%,总转化率为65.40%。增加发酵罐二氧化碳分压、流加琥珀酸以及以粗甘油为原料不利于碳源流向菌体生长和1,3-丙二醇的生成通路,但有利于其流向乳酸的生成通路,提高了1,3-丙二醇和乳酸的总质量转化率。
     最后,在课题组前期研究发现盐析萃取1,3-丙二醇效果显著的基础上,以乳酸发酵液为对象,探索了盐析萃取乳酸的可行性,以期为利用盐析萃取技术同时分离提取1,3-丙二醇和乳酸奠定基础。通过系统考察乳酸在不同盐析萃取体系中的分配规律,发现K2HPO4/甲醇和K2HPO4/乙醇体系适合分离发酵液中的乳酸。发酵液中乳酸浓度为167g/L时,采用25%(w/w)K2HPO4/26%(w/w)甲醇盐析萃取体系,乳酸的分配系数和回收率分别为4.01和86.0%;采用14%(w/w)K2HPO4/30%(w/w)乙醇盐析萃取体系,乳酸的分配系数和回收率分别为3.23和90.6%.此时上相中残余葡萄糖、菌体和可溶性蛋白的去除率分别达到67.3%、100%和85.9%。实验结果表明,盐析萃取同样适用于分离乳峻,为利用多步盐析萃取从Klebsiella pneumoniae代谢甘油联产1,3-丙二醇和乳酸的发酵液中有效分离目标产物提供了操作上的可能性。
Much attention has recently been paid to the bulk bio-based chemicals, including1,3-propanediol(1,3-PD) and lactic acid, which have tremendously applied in cosmetics, foods, medicines and especially in the production of novel polymers.1,3-Propanediol and lactic acid can be used as the monomer to synthesize polytrimethylene terephthalate (PTT) and polylactic acid (PLA), respectively, which will lead to prospective market. At present, pursuiting of the single product via microbial production is limited by low utilization efficiency of raw materials and the waste of by-products. In the previous research, the by-products in bioconversion of glycerol to1,3-PD by Klebsiellia pneumonia include2,3-butanediol, lactic acid, succinic acid, acetic acid and ethanol. The yield of1,3-PD on glycerol is less than50%. In order to increase the utilization ratio of raw material and reduce the production cost, this paper is focused on improving the yield of1,3-PD and lactic acid. The strategies, such as adjusting the pH of the fermentation process with sodium carbonate, increasing partial pressure of carbon dioxide in the fermentor, adding succinic acid and changing the raw materials, were used to achieve the combined production of1,3-propanediol and lactic acid with improving the total yield.
     Firstly, fed-batch fermentations for the coproduction of1,3-PD and lactic acid by K. pneumoniea were carried out by adjusting the pH with sodium carbonate during fermentation, using sodium hydroxide as control. The results demonstrated that adjusting the pH with sodium carbonate was not only beneficial to promote cell growth, but also increased1,3-PD and lactic acid production. The highest optical density (OD) raised to13.6, which was25%higher than the control. The concentractions of1,3-propanediol and lactic acid were79.48g/L and41.97g/L at33h, increasing by38%and28%respectively, compared to the control. The yields of1,3-PD and lactic acid were up to41.46%and21.89%respectively. The total yield of1,3-PD and lactic acid reached63.35%increasing by4%compared to the control.
     Secondly, based on adjusting the pH with sodium carbonate, the metabolic regulation of the conversion of glycerol to1,3-PD and lactic acid was investigated by increasing partial pressure of carbon dioxide in the fermentor, adding succinic acid and changing the raw materials. When the partial pressure of carbon dioxide in the fermentor was adjusted to4kPa (pressure in meter), the highest OD was9.6, the concentrations of1,3-PD and lactic acid were52.81g/L and56.02g/L respectively, the yields of1,3-PD and lactic acid were34.70%and 36.85%respectively and the total yield was71.55%. When succinic acid was added, the highest OD was10.54, the concentrations of1,3-propanediol and lactic acid were52.11g/L and54.85g/L respectively, the yields of1,3-PD and lactic acid were33.83%and35.62%respectively and the total yield was69.45%. When crude glycerin was used as raw material for fermentation, the highest OD was9.61, the concentrations of1,3-PD and lactic acid were46.67g/L and56.13g/L. The yields of1,3-PD and lactic acid were29.69%and35.71%respectively and the total yield was65.40%. The results revealed that designed strategies were beneficial to improve the total yield of1,3-PD and lactic acid, although against cell growth and1,3-PD accumulation.
     Finally, based on the previous research obtained by salting-out extraction of1,3-PD from fermentation broths efficiently, the feasibility of salting-out extraction of lactic acid was studied to lay the foundation for the separation of the combined production of1,3-propanediol and lactic acid. Different systems composed of hydrophilic organic solvents/inorganic salts were investigated for the extraction ability of lactic acid. The results showed that the systems composed of dipotassium hydrogen phosphate/methanol and dipotassium hydrogen phosphate/ethanol appeared to be favorable. The partition coefficient and recovery of lactic acid reached up to4.01and86.0%for the system composed of25%(w/w) dipotassium hydrogen phosphate and26%(w/w) methanol, when the concentration of lactic acid is167g/L in the fermentation broth. For the system of14%(w/w) dipotassium hydrogen phosphate and30%(w/w) ethanol, the partition coefficient and recovery of lactic acid reached up to3.23and90.6%. The removal ratio of glucose, cells and proteins reached67.3%,100%and85.9%, respectively. The experimental results indicated that the salting-out extraction was also available for the separation of lactic acid, which can provided a possibility for multistep salting-out of1,3-PD and lactic acid from glycerol-based fermentation broths
引文
[1]修志龙.1,3-丙二醇的微生物法生产分析[J].现代化工,1999,19:33-35.
    [2]Xiu Z L, Zeng A P. Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol [J]. Applied Microbiology and Biotechnology,2008,78:917-926.
    [3]Jain M K, Datta R, Zeikus J G. High-value organic acid fermentation-emerging processes and products. Ghose T K, Winkler M (Eds.). Bioprocess Engineering:the first generation chichester [M]. U K:Ellis Horwood Limited.1989.366-372.
    [4]Lunt J. Large scale production, properties and commercial applications of polylactic acid polymers [J]. Polym Deg Stab,1998,59:145-52.
    [5]Lunt J, Shafer A L. Polylactic acid polymers from corn:applications in the textiles industry [J]. J Ind Text,2000,29:191-205.
    [6]许赞珍,欧先金,郭妮妮,等.生物柴油副产物甘油的高附加值利用[J].过程工程学报,2008.8(4):695-702.
    [7]赵光辉,杨忠华,齐泮,等.生物柴油副产甘油的综合利用[J].化工中间体,2009,4:15-18.
    [8]Biebl H, Menzel K, Zeng A P. Microbial production of 1,3-propanediol [J]. Applied Microbiology and Biotechnology.1999,52:289-297.
    [9]李武岳.发酵法生产1,3-丙二醇的基础研究[D].浙江:浙江大学,2010.
    [10]Salminen S, Wright A V, Ouwehand A. Lactic acid bacteria:Microbiology and Functional Aspects, Third Edition [M]. New York:Marcel Dekker Inc,2004.
    [11]Tang X M, Tan Y S. Zhu H. et al. Microbial Conversion of Glycerol to 1,3-Propanediol by an Engineered Strain of Escherichia coli [J]. Applied and Environment Microbiology,2009,75(6): 1628-1634.
    [12]Liu H J, Zhang D J, Xu Y H, et al. Microbial production of 1.3-propanediol from glycerol by Klebsiella pneumoniae under micro-aerobic conditions up to a pilot scale [J]. Biotechnology Letters, 2007,29:1281-1285.
    [13]洪安安,程可可,孙燕,等.代谢甘油高产乳酸的菌种选育及培养基优化[J].微生物学通报,2009,36(8):1195-1199.
    [14]胡维胜.食用级L-乳酸分离精致工艺的研究[D].安徽:合肥工业大学,2005.
    [15]范宁伟,景丽洁,王金全,等.玉米发酵液中乳酸的分离提纯[J].吉林化工学院学报.2005.22(1):7-8.
    [16]Rathin D, Michael H. Lactic acid:recent advances in products processes and technologies-a review [J]. Journal of Chemical Technology and Biotechnology,2006,81:1119-1129.
    [17]Li Z G, Jiang B, Zhang D J. et al. Aqueous two-phase extraction of 1,3-propanediol from glycerol-based fermentation broths [J]. Separation and Purification Technology,2009,66(3):472-478.
    [18]Jiang B, Li Z G, Dai J Y, et al. Aqueous two-phase extraction of 2,3-butanediol from fermentation broths using an ethanol/phosphate system [J]. Process Biochemistry,2009,44(1):112-117.
    [19]杨丙雨,马凤莉.盐析萃取在贵金属分析中的研究和运用[J].贵金属,2009,30(2):57-63.
    [20]Albertsson P A. Partition of cell partieles and mearmoleeules [M]. New York:Wiley-Interseienee, 1986.
    [21]成坚.双水相体系萃取分离技术及其在生物技术中的应用[J].仲恺农业技术学院学报,2000,13(2):52-58.
    [22]Azevedo A M, Rosa P A, Ferreira I F, et al. Downstream processing of human antibodies integrating an extraction capture step and cation exchange chromatography [J]. Journal of Chromatography B, 2009,877:50-58.
    [23]田明玉.双水相萃取白蛋白和酶的初步研究[D].大连:大连理工大学,2009.
    [24]Aparecida B M, Leandro R L, Guilherme M D F. Aqueous two-phase systems:an efficient environmentally safe and economically viable method for purification of natural dye carmine [J]. Journal of Chromatography A,2009,1216:7623-7629.
    [25]Ruchi G, Aparna S, Khare S K, et al. A novel process for extraction of edible oils Enzyme assisted three phase partitioning [J]. Bioresource Technology,2006,98:696-699.
    [26]李梦青.耿艳辉,刘桂敏,等.双水相萃取技术在白藜芦醇提纯工艺中的应用[J].天然产物研究与开发,2006,18:647-64.
    [27]李其祥,史世庄,刘智平,等.盐析萃取工艺处理精苯废酸的研究[J].武汉科技大学学报(自然科学版),2005,28(4):352-353.
    [28]Yun J K, Rajni K. Ba M. Extractive lactic acid fermentation in poly(ethyleneimine)-based aqueous two-phase system [J]. Biotechnology and Bioengineering,1996,50:280-290.
    [29]Planas J, Radstrom P, Tjerneld F, et al. Enhanced production of lactic acid through the use of a novel aqueous two-phase system as an extractive fermentation system [J]. Applied Microbiology and Biotechnology,1996,45:737-743.
    [30]Aydogan O, Bayraktar E, Mehmetoglu U. Aqueous two-phase extraction of lactic acid:optimization by response surface methodology [J]. Separation Science and Technology,2011,66(7):1164-1171.
    [31]张华.双水相/三液相萃取分离天然产物有效成分[D].大连:大连理工大学,2009.
    [32]刘琳.哈茨木霉生物转化盾叶薯蓣中的皂苷及其产物提取分离[D].大连:大连理工大学,2009.
    [33]朱丙田,刘德华,任海玉,等.1,3-丙二醇发酵条件的探索[J].化工冶金,2000,21(4):420-422.
    [34]徐国谦,储炬,王永红,等.不同的中和剂对L(+)-乳酸发酵的影响[J].工业微生物,2007,37(4):1-5.
    [35]李志刚.1,3-丙二醇和2,3-丁二醇的双水相萃取研究[D].大连:大连理工大学.2011.
    [36]王元好.微氧发酵制备1,3-丙二醇及其代谢流量分析[D].大连:大连理工大学,2010.
    [37]Zeng A P, Biebl H, Schlieker H, et al. Pathway analysis of glycerol fermentation by Klebsiella pneumoniae:regulation of reducing equivalent balance and product formation [J]. Enzyme and Microbial Technology,1993,15(9):770-779.
    [38]Xiu Z L, Song B H. Wang Z T. et al. Optimization of dissimilation of glycerol to 1,3-propanediol by Klebsiella pneumoniae in one and two-stage anaerobic cultures [J]. Biochemical Engineering,2004, 19(3):189-197.
    [39]Melchiorsen C R, Jokumsen K V, Villadsen J, et al. Synthesis and posttranslational regulation of pyruvate formate-lyase in Lactococcus lactis [J]. Journal of Bacteriology,2000.182(17):4783-4788.
    [40]San K Y, Bennett G N, Berrios-Rivera S J, et al. Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli [J]. Metabolic Engineering,2002. 4(2):182-192.
    [41]薛学东,李伟,李志敏,等.有机酸对肺炎克雷伯杆菌厌氧代谢甘油的影响[J].高校化学工程学报,2011,25(4):632-636.
    [42]管桂平,王红兵,田杰生.琥珀酸对产酸克雷伯氏菌好氧发酵甘油产1,3-丙二醇的影响[J].食品与发酵工业,2008.34(5):14-16.
    [43]Tanaka K, Yoshikawa R, Ying C, et al. Application of Zeolite T Membrane to Vapor-Permeation-Aided Esterification of Lactic Acid with Ethanol [J]. Chemical Engineering Science,2002,57(9):1577-1584.
    [44]修志龙,宋志远,魏搏超,等.盐析萃取发酵液中有机酸的方法[P].中国:201010511992.6,2010,10,19.
    [45]吴晖,李明阳,刘冬梅,等.鼠李糖乳杆菌发酵生产L-乳酸培养基的优化[J].食品工业科技,2008,29(4):81-84.
    [46]谭平华,林金清,陈培钦,等.C2H5OH-K2HP04-H2O三元体系的溶解度和液液相平衡[J].福建化工,4:45-48.
    [47]牟英,王元好,修志龙,等.高效液相色谱法测定1,3-丙二醇发酵液中的有机酸[J].分析化学.2006,34:183-186.
    [48]Bradford M. A Rapid and Sensitive Method for the Quantification of Microgram Quantities of Protein Utilizing the Principle of Protein-dye Binding [J]. Analytical Biochemistry,1976,72:248-251.
    [49]卢英华,戴深峻,李清彪.有机溶剂萃取法提取乳酸[J].厦门大学学报(自然科学版).1997,36(1):85-90.
    [50]Gao M T, Hirata M, Seki H. et al. Extraction Recovery of Lactic Acid with Di-octyl Amine [J]. Solvent Extraction Research and Development, Japan,2005,12:139-148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700