在兆巴压力下金属卸载熔化相变的直接观测及其动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属冲击熔化线测量一直是动高压研究领域中一个重要的研究课题,在此方面的实验和理论研究工作已经持续了几十年。但在实验条件的控制和理论分析方面还存在一些问题未解决,所以人们对此类实验结果的一致性还未形成共识。目前在动高压领域,测量金属熔化线的方法主要包括冲击熔化和卸载熔化两种方法。其中卸载熔化温度测量主要是借助于金属/窗口界面温度,再获得熔化温度。该研究工作在两个方向取得进展:一是从实验方法上改善金属与窗口之间的接触状况以获得无异常辐射尖峰的真实界面辐射信号;二是从理论方法上建立热传导模型对发生在界面处的物理过程给出正确描述。
     本文通过改进样品制备技术,可重复地获得了无异常尖峰的界面辐射信号,在冲击-卸载熔化压力附近研究了铁/蓝宝石界面辐射特性和界面温度历史,并研究了卸载熔化效应与界面温度历史的关系。论文在以下几个方面取得具有一定创新性结果:
     (1)基本解决了理想接触界面制备问题。本文对金属样品进行了精细的抛光处理,并采用多点同时压靶的方式,先后在多个压力点获得了无尖峰界面辐射信号,基本实现理想接触界面制备过程的可重复性。
     (2)直接观测到由金属熔化相变引起的金属/界面温度变化特征。当金属样品冲击-卸载以后,如果其内部无熔化相变时,界面辐射及界面温度稳定;而当金属样品内部有熔化相变发生时,界面辐射及界面温度呈现不稳定特征:发射率随时间增加同时界面温度缓慢降低。此现象在以往的研究中少见报道。
     (3)建立了熔化相变-热传导耦合模型,解释了实验观测结果。本文结合熔化相变动力学模型与热传导方程对实验现象给出一种理论解释。理论计算所给出的温度变化趋势与实验观测结果一致,据此估计出高温高压下铁熔化相变的成核速率和核长大速率。
The measurement of melting-curve of metals at high pressures is an important topic in field of dynamic high-pressure science, which has been researched for several decades. But some problems are still required to be solved. At present, there are two paths to reach the melt states for metals, which include shock induced melting and unload-induced melting. In the later method, the melting temperature is deduced from the measured temperature of metal/window interface. The challenge is how to get the inierface temperature without the effects of air gap. The achievement were made at two aspects:The first was to improve the contact condition betweem the metal and window, the other was to develop the theoretical model based on heat conduct.
     By improving the technique of sample preparation, in this work the radiation of interface without "peak" feature of air gap is obtained with good repetition. At pressures of shock-release melting, the radiation characteristics and the temperature history of iron/sapphire interface are investigated, and the relationship between the dynamics of release melting and the time dependence of surface temperature is found. In the following aspects this work reaches new results:
     (1) The nearly ideal contacted interface has been prepared. The radiation without "peak" feature was obtained by refined surface polishing and reasonable target assembling at different pressure points. The repeatability of ideally contacted interface preparation was nearly achieved.
     (2) The characteristics of the interface temperature variation was directly observed. After the metal sample being shocked and released, if there was melting phase transition in the metal, the radiation and temperature of the metal/sapphire interface was unsteady,but if there wasn't melting phase transition in the metal, the radiation and temperature of the metal/sapphire interface was steady.This unsteady experimental signal is a new phenomenon.
     (3) Explained the experimental result by establish melting phase transition kinetics-heat conduct equation. This paper explained the unsteady history of radiation and temperature at the metal/sapphire interface by transformation kinetics combined with heat conduction equation. When the result of theoretical calculation was consistent with the result of experiment, the nucleation rate and nuclear growth rate under high temperature and high pressure can be confirmed.
引文
[1]Jephoat A P and Ohson P, Is the inner core of the earth pure iron?, Nature,1987,325:332
    [2]Ahrens T J, Tan H and Bass J D, Analysis of shock temperature data for iron, High Pressure Research,1990,2:145
    [3]Williams Q, Jeanloz R et.al., The melting curve of iron to 250GPa:A constraint on the temperature at earth's center,1987,236:181
    [4]Anderson O L, The high-pressure triple points of iron and their effects on the heat flow from the Earth's core, J. Geophys. Res.,1990,95:21697
    [5]Yoo C S, Holmes N C, Ross M, Webb D J and Pike C, Shock temperatures and melting of iron at Earth core conditions Phys. Rev. Lett,1993,70:3931
    [6]Williams Q, Jeanloz R, Bass J D, Svenson B, Ahrens T J, The melting 574 curve of iron to 250 GPa:A constraint on the temperature at Earth's center[J], Science,1987, 236:181-187
    [7]Boslough M B, A model for time dependence in shock induced thermal radiation of light, J.Appl. Phys.,1985,58:3394
    [8]Schmit D R, Ahrens T J and Svendsen, Shock induced melting and shear banding in single crystal NaCl, J. Appl. Phys.,1988,63:99
    [9]Boehler R, Temperature in the earch's core from melting-point measurements of iron at high static pressure, Nature,1993,363:534
    [10]经福谦,实验物态方程导引(第二版)(M),北京,科学出版社,1999
    [11]谭华,实验冲击波物理导引(M),北京,国防工业出版社,2007,85-95
    [12]Dai C D, Tan H, Geng H Y, Model for assessing the melting on Hugoniots of metals:Al, Pb, Cu, Mo, Fe, and U, J.Appl.Phys,2002,92(9):5019-5026
    [13]Tan H, Dai C D, Zhang L Y, Xu C H, Method to determine the melting temperatures of metals under megabar shock pressures[J], Appl.Phys.Lett,2005,87(221905)
    [14]Asay J R, Use of Time-Resolved Techniques for Dynamic Material Property Measurements (Review and Prospects for the Future), SAND97-3095C
    [15]Asay J R, Hayes D B, Shock compression and release behavior near melt states in Aluminium, J. Appl. Phys.,1975,46:4789
    [16]Catherine M, Pierre H, Shock induced polymorphic transition and melting of Tin, Shock Compression of Condensed Matter,1999,93:96
    [17]Johnson J N, Hayes D B and Asay J R, Equations of state and shock-induced transformation in solid I-solid II-Liquid Bismuth, J. Phys. Chem. Solids,1974,35:501
    [18]John W. Taylor,Residual Temperatures of Shocked Copper, J. Appl. Phys,1963, 34(9):2727-2731
    [19]McQueen R G, Marsh, S.F,Shock wave compression of iron-nickel alloys and the Earth's core,J. Geophys. Res,1966,71:1751-1756
    [20]Urtiew P A. and Grover R, Temperature deposition caused by shock interactions with material interface[J], J. Appl. Phys,1974,45:140-145
    [21]Urtiew PA and Grover R, The melting temperature of magnesium under shock loading[J], J.Appl. Phys,1977,48:1122-1126
    [22]Grover R, Urtiew P A, Thermal Relaxation at Interfaces Following Shock Compression[J], J. Appl. Phys,1974,45:146-145
    [23]古成钢.冲击波后物质界而的热弛豫及铁的冲击温度、熔化温度与熔化规律的研究[D],成都:成都科技人学,1991
    [24]Tang W H, Zhang R Q, Jing F Q and Hu J B, Theoretical investigation of the apparent spectral radiance from the metal/window interface in shock temperature experiments[J],
    J.Appl.Phys,1998,83(5):2469-2472
    [25]Tang W H, Jing F Q, Zhang R Q, Hu J B, New Method for Determining the Shock Temperature of Metals[J], Chinese Physics Letters, (1994),11 (9),569-572
    [26]汤文辉,张若棋,经福谦,胡金彪,冲击压缩下金属/窗口界面热弛豫过程的热阻模型研究,高压物理学报,1993,7(4),247-207
    [27]谭华,金属的冲击波温度测量(Ⅱ)-界面卸载近似[J],高压物理学报,1996,10(3)
    [28]谭华,金属的冲击波温度测量(Ⅲ)-“基板/样品”界面间隙对辐射法测量冲击波温度的影响[J],高压物理学报,1999,13(3)
    [29]谭华,戴诚达,金属的冲击波温度测量(Ⅳ)-“三层介质模型”及其应用[J],高压物理学报,2000,14(2)
    [30]戴诚达,金属冲击温度的辐射法测量问题,高压物理学报,(2006),20(2),113-109
    [31]Hao G Y, Liu F S, Zhang D Y, Zhang M J, Optical emission of directly contacted copper/sapphire interface under shock compression of megabar[J], Appl.Phys.Lett,2007,90(261914)
    [32]郭锦良,刘福生,郝高宇,张明建,张岱宇,薛学东,块状密实铁/蓝宝石界面的冲击温度测量[J],高压物理学报,2008,22(4)
    [33]Mao H, Shu J, Shen G, Hemley R J, Li B, Singh A K, Elasticity and rheology of iron above 220 GPa and the nature of the Earth's inner core, Nature,1998,396:741-743
    [34]谭华,戴诚达,金属的冲击波温度测量(Ⅳ)-“三层介质模型”及其应用[J],高压物理学报,2000,14(2)
    [35]Urtiew P A., Effect of shock loading on transparency of sapphire crystals, Journal of Applied Physics,1974,45 (8):3490-3493
    [36]McQueen R G and Isaak D G, Characterizing windows for shock wave radiation studies, Journal of Geophysical Research,1990,95 (21):753
    [37]周显明,汪小松,李赛男,李俊,李加波,经福谦,强冲击压缩下LiF,Al2O3和LiTaO3单晶的透光性,物理学报,2007,56(8):4965
    [38]Hare D E, Webb D J, Lee S H and Holmes N C, Optical extinction of sapphire shock-loaded to 250-260 GPa, edited by M. D. Furnish, N. N. Thadhani. Y. Horie, 12th APS Topical Conference, Atlanta, Georgia (USA),2002
    [39]Nells WJ,Yoo C S. Issues concerning shock temperature measurements of iron and other metals [J]. J. Geophys.Res.,1990,95:21749
    [40]Carter W J. Hugoniot Equation of State of Some Alkali Halides [J]. High Temperatures High Pressures,1973,5:313-318
    [41]Wise J L,Chhabildas L C. Window Material Studies for Shock2Wave Experiment s [J]. Bul Am Phys Soc,1980,25(4):566-567
    [42]经福谦,陈俊祥,动高压原理与技术.(国防工业出版社,北京,2006)
    [43]Bass J D, Svendsen B, Ahren T J, The temperatures of shock-compressed iron, High Pressure Research in Mineral Physics,1987,393-402
    [44]March S P, LALS Shock Hugoniot Data. (University of California, Berkeley,1980)
    [45]汤文辉,张若棋,冲击温度的理论计算及分析,中国空间科学技术,1997,(4):056-008
    [46]汤文辉,张若棋,物态方程理论及计算概论.(国防科技大学出版社,长沙,1999)
    [47]Tan H and Thomas J, Ahrens, Shock temperature measurements for matals[J], High Pressure Research,1990,2:159-182
    [48]谭华,金属的冲击波温度测量(Ⅰ)——高温计的标定和界面温度的确定,高压物理学报,1994,8(4):254-210
    [49]徐祖耀,相变原理(M),北京,科学出版社,1988
    [50]唐志平,冲击相变(M),北京,科学出版社,2007
    [51]Patashinskii A Z, Pokrovskii V I, Fluctuation theory of phase transition, Pergamon Press, 1979
    [52]于渌,郝柏林,物理(M),1980,9:472
    [53]Cahn R W, Materials science:Melting and the surface, Nature,1986,323,668-669
    [54]徐瑞,荆天辅,材料热力学与动力学(M),哈尔滨,哈尔滨工业大学出版社,2003
    [55]汤文辉,金属冲击温度测量的理论和实验研究(M),北京,中国工程物理研究院,1995
    [56]Maddox J, Melting is merely skin-thick, Nature,1987,330:599
    [57]张洪济,热传导(M),高等教育出版社,北京,1992
    [58]Brown J M, McQueen R G Phase transitions, Gruneisen parameter, and elasticity for shocked iron between 77GPa and 400GPa, J Geophys Res,1986, B91(7):7485-7494
    [59]Carter W J, High Temperature-High Pressures,1973,5(3):133
    [60]Kingery W D, Francl J, Coble R L, Vasilos T, J Amer Cer Scc,1954,37:107
    [61]Luo S N and Thomas J A, Superheating systematics of crystalline solids, Appl.Phys.Lett,2003,82(12):1836-1838
    [62]AITTA A, Iron melting curve with a tricritical point, Journal of Statistical Mechanics: Theory and Experiment (2006) P12015
    [63]Shen G, Mao H K, Hemley R J, Duffy T S and Rivers M L, Melting and crystal structure of iron at high pressures and temperatures Geophys. Res. Lett.1998,25:373
    [64]Sun Y H, Huang H J, Liu F S, Yang M X and Jing F Q, A direct comparison between static and dynamic melting temperature determinations below 100 GPa, Chin.Phys.Lett, 2005,22(8):2002-2004
    [65]Ma Y Z, Somayazulu M, Shen G, Mao H k, Shu J and Hemley R J, X-ray diffraction studies of iron to Earth-core conditions, Phys.Earth.Planet.Inter,2004,143:455
    [66]Nguyen J H and Holmes N C,2004 Melting of iron at the physical conditions of the Earth's core, Nature 427339
    [67]陈文娟,孙维连,杨钰瑛,金相研磨抛光机自动控制系统的研究,现代机械,2003,6:10-11
    [68]孙维连,田振祥,DMP1-自动金相研磨抛光机的性能及应用,理化检验-物理分册,1989,25(10):61-64
    [69]顾美转,工业纯铁金相样品制备中形成的缺陷及消除方法,理化检验-物理分册,2000,14(2):486-487
    [70]Oliver T, Paul D A, Natalya K, Thomas J A, Ma C, Stanislas S, Liu Z X, Sirine F and Nobumichi T, Ultrafast growth of wadsleyite in shock-produced melts and its implications for early solar system impact processes, PNAS,2009,106(33): 13691-13695

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700