茄子单性结实特性评价及单性结实相关基因的表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茄子是喜温蔬菜作物,在温室越冬栽培、塑料大棚早春栽培及春季露地早熟栽培时,开花期常由于低温弱光引起授粉受精不良,导致落花、落果和效益降低。生产上急需耐低温弱光的茄子品种。单性结实性能克服低温引起的落花落果障碍,增强座果能力,提高产量,同时还可改进果实质量、降低栽培成本。本试验在茄子单性结实评价方法、表达特性和遗传规律等研究的基础上,研究其在逆境下的表达效应及其形成的分子机制。
     本试验以单性结实品系为试材,研究了茄子单性结实基因在冬温室、春温室和春露地不同环境条件下的表达效应;在自然低温条件下不同的授粉方式和花粉活力对茄子单性结实形成和果实发育的影响;利用cDNA-AFLP技术,从转录组学方面比较分析了单性结实品系与非单性结实品系果实发育过程中基因表达的差异。其主要研究结果如下:
     1.茄子单性结实品系D-55、D-56、D-62的单性结实性属温度敏感型,其单性结实基因的表达受温度的调控,单性结实基因在日平均最低温度为12.8℃的条件下能完全表达。
     2.单性结实品系比非单性结实品系更耐低温、弱光。通过冬温室、春温室以及早春露地试验表明,茄子单性结实品系及其F1代在自然低温条件下自然授粉时有较高的座果率,在正常的栽培条件下可获得较高的产量,表现出了较强的低温、弱光适应性和生产潜力。单性结实品系可用于耐低温优质茄子新品种的选育和种质材料的创新。
     3.供试单性结实品系的单性结实性与低温下花粉的活力无显著相关。通过分析开花温度、培养温度对茄子花粉活力的影响表明,单性结实品系和非单性结实品系的花粉在日平均最低温度16.1℃时均具有一定的活力,在培养温度18℃下花粉发芽率均较低,为1.88~7.29%,品系间差异不显著。通过低温下茄子的花粉活力、座果率和单性结实率的相关性研究表明,低温下花粉的活力与单性结实现象无显著相关,单性结实并非由于低温下花粉活力下降所致,单性结实的形成与花粉活力无关。
     4.花粉萌发培养基、培养温度和开花温度试验表明,茄子花粉萌发需要一定量的糖分和硼酸作为营养,但浓度过高则会抑制花粉萌发,以0.5%琼脂+ 5%蔗糖+ 10 mg·L-1硼酸的培养基效果最好,花粉萌发率最高。开花温度、培养温度及其交互作用对花粉萌发率的影响达到极显著水平,在低温(开花温度12.6℃、培养温度15℃)下花粉萌发率最低,在25℃培养条件下,花粉萌发率显著提高,25℃是茄子花粉发芽较适宜的温度。
     5.自然授粉、人工授粉和去柱头三种处理不影响单性结实品系果实的正常生长发育。茄子单性结实品系去柱头后果实纵横径的发育速度与自然授粉相比,表现出高度的一致性。单性结实材料在低温条件下未经花粉诱导和受精,其果实可正常生长发育,表明供试单性结实材料果实生长发育所需激素的来源并不依赖于种子的发育。低温下辅助授粉有利于非单性结实基因型果实的座果和生长发育。
     6.应用cDNA-AFLP方法,以茄子子房和果实为研究对象,研究低温和适温下单性结实基因的差异表达。通过120对引物组合的筛选,共分离了92条差异表达的TDFs。其中14条可能与单性结实的形成有关,并成功回收4条,对其进行克隆、测序和序列分析。结果表明:4个TDFs分别与糖荚豌豆的果荚储藏过程中与衰老相关蛋白基因、番茄成熟果实中的cDNA片段、番茄叶片中受外界病原菌诱导的cDNA片段和菜豆的18S rRNA序列有较高的相似性。这些基因可能会对核糖体的结构和合成,以及与果实成熟和衰老相关的蛋白合成产生影响,从而影响种子的形成和果实的膨大。
Eggplant (Solarium melongena L.) is warm required vegetable. In flowering stage low temperature often induced bad pollination and fertitization, induced flower and fruit drop, and reduced income. The low temperature and weak light tolerance varieties are in urgent need in production. Parthenocarpy can conquer flower and fruit drop caused by low temperature, enhance the ability of fruit setting, increase yield, improve fruit qualities and decrease culture cost. The experiment researched the expression effects and its molecular genetic mechanism.
     The parthenocarpic eggplant cultivars were used in this study. This experiment studied the expreesion effects of parthenocarpic cultivars in winter greenhouse, spring greenhouse and spring field, the influence of pollen viability and different pollination methods to the parhenocarpic fruit formation and development. Furthermore, the cDNA-AFLP technology was used to compare and analyze the defferential expression of parthenocarpic cultivars and unparthnocarpic cultivars fruit. The main results were summed as follows:
     1. The parthenocapic lines D-55, D-56 and D-62 are temperature sensitive type. The expression of parthenocarpic gene is contolled by temperature, and the parthenocarpic gene can completely express at the average daily lowest temperature 12.8℃.
     2. Compared with unparthenocarpic cultivars, the parthenocarpic cultivars can tolerant low temperatures and weak light. Though the experiments of winter greenhouse, spring greenhouse and early field, the result showed that parthenocarpic cultivar and its F1 hybridization hold higher ratio of fruit setting under natural pollination, obtain higher yield, revealed adaptabilities for low temperature and weak light, and yield increasing potential. The parthenocapic cultivars can be used for new varieties breeding for low temperature resistance and create new germplasm.
     3. The parthenocarpic characteristic of the parthenocarpic lines have no significant relationship with pollen viability. Though analysis the influence of flowering temperature and culture temperature to pollen viability, the pollen of both parthenocarpic cultivars and unparthenocarpic cultivars have certain viability at the average daily lowest temperature 16.1℃. At the culture temperature 18℃the ratio of pollen germination is lower, it is 1.88~7.29%, and there is no significant differenc among cultivars. Through analysis pollen viability, ratio of fruit setting and ratio of parthenocarpy in low temperature, it revealed that there is no significant correlation between pollen viability and parthenocarpy. Parthenocarpy is not reduced by the decreasing of pollen viability. The formation of parthenocarpy fruit may have no relation with pollen viabity.
     4.The experiment for screening pollen germination medium and culture temperature showed that the germination of eggplant pollen need a certain amount sugar and boric acid, but if the concentration is too high it will hold back germination. The best culture medium is 0.5% agar + 5% sugar + 10mg·L-11 boric acid. it have the highest germination rate. The impacts of florescence temperature, culture temperature and their interaction to pollen germination are very significant. The ratio of germination is the lowest in low temperature, and when the culture temperature is 25℃, the germination rate greatly increased.
     5. The three treatments of natural pollination, controlled pollination and stigma treatment have no influence on parthenocarpic fruit growth and development. The speed of fruit development with stigma treatment was very accordant to the fruit with natural pollination. The parthenocarpic fruit can set and develop normally without pollination and fertilization, the result showed that the hormone for fruit growth and development of tested parthenocarpic cultivars isn’t dependent on the development of seeds. The controlled pollination can help fruit setting and developing of unparthenocarpy cultivars.
     6. cDNA-AFLP approach was used to detect differently expressed genes in ovary and fruit between parthenocarpy and unparthenocarpy cultivars under low temperature and suitable temperature. 120 pairs of primer were used for selective amplification. 92 TDFs were selected for the differential expression in different cultivar or stage. Among 92 TDFs, 14TDFs may related to parthenocarpy, 4 TDFs were cloned and sequenced, and expression patterns of 2 TDFs were conformed by RT-PCR approach. Compared with the publicly available databases, the 4 sequenced TDFs presented some significant similarity with the gene of putative senescence-associated protein, Lycopersicon esculentum maturing fruit gene, the gene of Solanum lycopersicum cDNA sequence, Phaseoleae environmental sample clone 18S ribosomalRNA gene. These genes may affect the structure and synthesis of ribosome, and influence the synthesis of maturing and senescence-associated protein, thus influence the seeds formation and fruit enlargement.
引文
1. 白吉刚,宋明,刘佩英,张盛林,王中凤. 生长素结合蛋白 cDNA 的克隆及其在黄瓜中的表达. 植物学通报,2002, 19(6):705~709.
    2. 陈霄. β 一氨基丁酸诱导番茄根部基因的表达及其功能初步分析[硕士学位论文]. 北京:中国农业科学院,2005.
    3. 陈学好,陶俊,曹碚生. 园艺作物单性结实的类型. 生物学通报,2001, 35(9):6~7.
    4. 陈学,曹碚生. 黄瓜单性结实研究概况. 中国蔬菜,1994, (3): 56~59.
    5. 耿玉韬. 果树的单性结实.福建果树. 1991, (3): 30~34.
    6. 顾均. 单性结实.生物学通报. 1991, (10): 4~5.
    7. 黄昌贤. 番木瓜的单性结果和单性结子问题.植物生理学通讯,1957(2):61~65.
    8. 姜立杰,张开启,张晓明. cDNA-AFLP 技术及其在基因表达研究中的应用.中国生物工程杂志,2003, 23(12):82~86.
    9. 李淑珍. 果树日光温室栽培新技术. 北京:中国农业出版社, 1998,195~196.
    10. 李曙轩. 植物生长调节剂与蔬菜生产. 上海:上海科学技术出版社,1992.
    11. 李植良,黎振兴,黄智文,孙保娟. 我国茄子生产和育种现状及今后育种研究对策. 广东农业科学 2006(1):24~26.
    12. 刘富中,连勇,陈钰辉,宋燕. 温度和蕾期去雄及去柱头处理对茄子单性结实性的影响. 园艺学报,2005, 32(6):1021~1025.
    13. 刘宏宇,秦智伟,周秀艳. 园艺作物单性结实研究进展. 北方园艺,2004(5):4~5.
    14. 吕柳新,林顺权. 果树生殖学导论. 北京:中国农业出版. 1995,132~134.
    15. 毛自朝. 果实专一性启动子驱动 ipt 基因在番茄中的表达及其对番茄果实发育的影响. 科学通报,2002,6:444~448.
    16. 孟新法,王坤范,陈端生. 果树设施栽培. 北京:中国林业出版社, 1996, 75 : 155~195.
    17. 邱似德. 单性结实与激素. 植物生理学通讯, 1984(2):1~5.
    18. 陶懿伟. 风信子花粉活力与育性. 上海交通大学学报(农业科学版)2004, 22(4):416~419.
    19. 田时炳,刘富中,王永清等. 茄子单性结实的遗传分析. 园艺学报,2003. 30(4):413~416.
    20. 田时炳,刘君绍,皮伟,赵晓风,杨治元. 低温下茄子单性结实观察试验初报. 中国蔬菜, 1999(5):28.
    21. 万翔. 茄子单性结实的遗传规律及 AFLP 分子标记研究[硕士学位论文]. 重庆:西南大学,2006,
    22. 王锋.cDNA-AFLP 技术原理及其在研究植物基因差异表达中的应用.生物学通报,2005, 40(7):59~60
    23. 王佳. 黄瓜单性结实和种质资源遗传多样性的 ISSR 分析[硕士学位论文],扬州:扬州大学,2007.
    24. 王蕾,农杆菌介导 iaaM 基因创造单性结实酸浆种质资源[硕士学位论文],哈尔滨:东北农业大学,2007.
    25. 徐娟,张玄兵. 高温对柑桔花粉活力及萌发力的影响. 热带农业科学,1999, 4:18~24.
    26. 薛百耕. 番茄的单性结实. 上海蔬菜,1996,(1):13.
    27. 薛富波,张文彤,田晓燕. SAS8.2 统计应用教程,北京:北京希望电子出版社,2004.
    28. 薛萍. 茄子单性结实习性、生理机制及遗传规律的研究[硕士学位论文],扬州:扬州大学,2006.
    29. 余文贵,徐鹤林,杨荣昌等.影响番茄兼性单性结实及果实发育的因素.园艺学报,1993, 20 (4): 369~373.
    30. 曾骧. 果树生理学. 北京:北京农业大学出版社, 1992, 204.
    31. 张艳君,朱志峰,陆融,徐琼,石琳熙,简序,刘俊燕,姚智. 基因表达转录分析中内参基因的选择. 生物化学与生物物理进展,2007,34(5):546~550.
    32. 张展薇,邱燕萍,向 旭. 荔枝单性结实研究初报.果树科学, 1990, 7(4):234~235.
    33. 张振贤,蔬菜栽培学,北京:中国农业大学出版社,2003,226
    34. 赵伶,日光温室茄子座果率低的原因及对策. 北京农业,2005,12:
    35. Adnan.Matlob.A.N, Kelly W. C. Growth regulator activity and parthenocarpic fruit production in snakemelon and cucumber grown at high temperature. J. Journal of t he American Society for Horticultural Science. 1975, 100(4):406~409
    36. Atherton J G.Rudich J.tomato(郑光华等译). 北京:北京农业大学出版社,1989,87~89,226~228
    37. Bachem C W B, Oomen R J F J , Visser R G F. Transcript imaging with cDNA-AFLP : a step-by- step protocol . Plant Molecular Biology Reporter , 1998.16 : 157~173
    38. Baggett JR, Mansour NS, Kean D. “Oregon star” and “Oregon pride” parthenocarpic tomatos. Hortscience, 1995, 30(3):648~650
    39. Beraldi.D, Picarella.M.E, Soressi.G.P. Mazzucato.A; Fine mapping of the parthenocarpic fruit (pat) mutation in tomato. Theoretical and applied genetics, 2004, 108.( 2) :209~216
    40. Bouquet A; Danglot Y. Inheritance of seedlessness in grapevine (Vitis vinifera L.). Vitis. 1996; 35(1): 35~42
    41. Collonnier C, Sihachakr D. Somatic hybridization for improvement of eggplant (S.Melongena L.). Xth meeting on Genetics and Breeding of Capsicum and Eggplant, Paris, France, September 7~11,1998:195-199
    42. Costa J, Catala S, Botella F. Freda: a new tomato parthenocarpic hybrid. HortScience, 1992, 27(2):185~186
    43. Cuartero J. Problems of determining parthenocarpy in tomato plants. Scientia Hrticulturae. 1987,32: 9~15
    44. Damidaux R, Martinez J. Tomato cold resistance: present statusand future trends. Acta Horticulturae, 1992, 301,73~86
    45. Ercan N, Akilli M. Resasons for parthenocarpy and the effects of various hormone treatments of fruit set in pepino. Scientia Horticul, 1996,66:141~147
    46. FalavignaA, Soressi GP, 1987. Influence of the pat-sha gene on plant and fruit traits in tomato (Lycopersicume sculentum Mill.). In: Modern Trends in Tomato Genetics and Breeding.Proceedings of the 10th Meeting of the EUCARPIA Tomato Working Group, 128
    47. Fernandez-Munoz R, Cuartero J, Gomez-Guillamon ML. Efficiency of bumble bees on the yield and quality of eggplant and tomato grown in unheated greenhouse. Acta Hort 1995,412: 268~274
    48. Ficcadenti N, Sestili S, Pandolfini T, Cirillo C, Rotino GL,Spena A. Genetic engineering of parthenocarpic fruit development in tomato. Mol Breed, 1999,5(2): 463~470
    49. Gustafson F.G, The cause of natural parthenocarpy. Amer.J.of Botany. 1939,26: 135~138
    50. FG Gustafson, Parthenocarpy: natural and artificial. Bot.Rev,1942,8:599~654
    51. Habu Y, Fukada-Tanaka S, Hisatomi Y, Iida S. Amplified restriction fragment length polymorphism-based mRNA fingerprinting using a single restriction enzyme that recognizes a 4-bp sequence. Biochemical and Biophysical Research Communications, 1997, 234 : 516~521
    52. Hall C. B. Scott J.W.,Georg W.L.Jr. Growth of ovaries of parthenocarpic and nonparthenocarpic tomamto genetypes in vitro. HortScience. 1986,21(2):289~291
    53. Hennart JW: Sélection de l’aubergine. PHM Revue Hort 1996,374: 37~40
    54. Restaino F, Onofaro V, Mennella G. Facultative parthenocarpic genotypes of eggplant obtained through induced mutation. Proceedings 13th Eucarpia Congress, Angers, pp. 1992, 297~298
    55. Jia-Long Yao, Yi-Hu Dong, and Bret A. M. Morris, Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor, PNAS 2001, 98:1306~1311
    56. Julain, Crane. Frost resistance and reduction in drop of injured apricot fruits effected by 2, 4, 5-trichlorophenoxyacetic acid. Proc. Amer, Soc. Hort, Sci. 1954, 64:225~231.
    57. Khishnamoorthy HN: Plant Growth Substance Including Application in Agriculture. Tata McGray, New Delhi .1981
    58. Kim I S. Okubo H.,Fujieda K. Studies on partherncarpy in cucummis sativus L Ⅳ.Effects of exogenous growth regulators on inductions of pathenocarpy and endogenous hormone levels in cucumber ovaries. Journal of the Korean Society for Horticultural Science, 1994, 35 (3): 187~195
    59. Kim L S, Okubo H.,Fujieda K. Studies on parthenocarpy in cucummis sativus L. Ⅲ.The Influence of fruiting node and growth temperature on parthenocarpic fruit set in a late parthenocarpy type cucumber. Journal of the Korean Society for Horticultural Science. 1994, 35 (2): 89~94
    60. Krug H. Environmental influences on development, growth and yield. In: Wien HC (ed). The Physiology of Vegetable Crops, pp. 101~180. CAB International, Cambridge (1997)
    61. KUNO SATOSHI,YABE KAZUNORI,Genetic Analysis of Parthenocarpy and Spineless in the F2 Segregating Generation between Parthenocarpy F1 Variety and Spineless Line in Eggplant,Research Bulletin of the Aichi-ken Agricultural Research Center,2005(37):29~33
    62. Lahogue F, This P, Bouquet A. Identification of a codominant scar marker linked to the seedlessness character in grapevine. Theor-appl-genet. Berlin; Springer-Verlag. Oct 1998. v. 97 (5/6). 950~959
    63. LEDBETTER C A, BURGOS L. Inheritance of stenopermocarpic seedlessness in Vitis vinifera L. [J]. The Journal of Heredity,1994, 85(2):157~160
    64. Leopold AC. Auxin uses in the control of flowering and fruiting. Ann. Rev. Plant Physiol, 1958,9:281~310
    65. LIANG P, ARTHUR B P. Differential display of eukary-otic messenger RNA by means of the ploymerase chain reaction [J]. Science,1992,257(14):967~968
    66. Lipari V, Paratore A. Parthenocarpy and auxinic treatments in fruiting of tomato in a cold greenhouse. Acta Hort ,1988 ,229 :307~312
    67. Lipari V, Paratore A: Parthenocarpy and auxinic treatments in fruiting of tomato in a cold greenhouse. Acta Hort 229: 307~312 (1988)
    68. Liu Fuzhong, Lian Yong, Chen Yuhui. Study on characteristics of parthenocarpic germplasm of Eggplant. IPGRI NewsLetter for Asia. The Pacific and Oceania. 2004. No. 45:20~22
    69. LiuD W, Chen S T, LiuH P. Choice of endogenous contro1 for gene expression in nonmall cell lung cancer. EurRespirJ, 2005.26(6):1002~1008
    70. LuK-yanenko AN, Kalloo G. parthenocarpy in tomato, Genetic improvement of tomato, 1991, 14:167~177
    71. Mapelli S. Torti G,Badino M. Effects of GA3 on flowers and fruit-set in a mutant of tomato. HortScience.1979,14(6):736~737
    72. Mapelli S.,Cantoni M., Bricchi D,Influence of pat-2 gene on phytohonnones. Fruit set and fruit yield in Mediter-renean mild climate. Proceedings of the XlIth Eucarpia meeting on tomato genetics and breeding. Plovdiv, Bulgaria, 27-31 July. 1993.8. 95~100 (Abstract)
    73. Mezzetti B, Landi L, Pandolfini T, Spena A. The DefH9-iaaM auxin-synthesizing gene increases plant fecundity and fruit production in strawberry and raspberry. BMC-Biotechnology. 2004, 4(4):
    74. Money T, Reader S, Qu L J, Dunford R P , Moore G, Qu L J. AFLP-based mRNA fingerprinting. Nucleic Acids Research , 1996,24 : 2616~2617
    75. N. Sestili, S. Pandolfini, T. Cirillo, C. Rotino, G.L. Spena, A. Genetic engineering of parthenocarpic fruit development in tomato. Molecular Breeding: New Strategies in Plant Improvement. Dordrecht ; Boston : Kluwer Academic Publishers, c1995~1999. v. 5 (5). 463~470
    76. Nadia Ficcadenti,Sara Sestili,Tiziana Pandolfini,Chiara Cirillo,Giuseppe Leonardo Rotino, Angelo Spena. Genetic engineering of parthenocarpic fruit development in tomato. Molecular Breeding,1999,5 :463~470
    77. Nitch JP. The development of sex expression in cucubit flowers. AmerJBot ,1952 ,39 :32~43
    78. Ogawa Y , Nishikawa S , Inoue N. Productive effects of diferent cytokinins on the fruit growth in cucummis sativus L. the Japanese Society for Horticultural Science, 1990, 59 (3); 597~601
    79. Peterson C. E. Responses of parthenocarpic cucumbers to the auxin transportor, DPX. HortScience, 1974, 9 (3 Ⅱ ):305
    80. Philouze J, Laterrot H,Oamidaux R. Studies on tomato. Rapport d' activite, Stationd' Amelioration des Plantes Maraicheres, 1985-1986. 1987, 73~89
    81. Pike L. M, Peterson C E. 1 Inheritance of parthenocarpy in the cucumber (cucumis sativus L.). Euphytica, 1969, 18, 101~105
    82. Ponti O. M. B.De. Inheritance of parthenocarpy in pickling cucumbers (cucumis sativus L.) and linkage with other characters.Euphytica, l976, 25:633~642
    83. Ponti O. M. De. Breeding parthenocarpy pickling cucumber (cucumis sativus L.). Necessity, Genetical possibilities, Environmental influences,and Selection criteria.Euphytica, l976,25:29~40
    84. QinL, OvermarsB, HelderJ, PopeijusH, VandervoortJR, GroeninkW, VankoertP, SchotsA, BakkerJ, SmantG. An efficient cDNA-Aflp based strategy for the identification of putative pathogenicity factors from the potatocyst_nematode Globodera_Rostochiensis. Molecular Plant Microbe Interactions, 2000. 13(8):830~836
    85. Restaino F, Perrone D, Correale A. New Parthenocarpic genotypes of Eggplant suitable for greenhouse cultivation. In: A. Palloix and MC Daunay. Xth Meeting on Genetics and Breeding of Capsicum and Eggplant. Paris: INRA Paris, 1998. 273
    86. Rotino GL, Perri E, Zottini M, Sommer H, Spena A. Genetic engineering of parthenocarpic plants, Nat biotechnol,1997,15:1398~1401
    87. RudichJ. Parthenocarpy in cucumber as affected by genetic parthenocarpy themo-photoperiod, and femaleness. J Amer Soc Hort ci, 1977, 102(2):225~228
    88. SangduenN, HannaWW. Chromosome and fertility studies on reciprocal crosses between two species of autotetreploid sorghum [J] The J. of Here,1984(75):293~296
    89. Sarma CM, Barman TS. Production of parthenocarpic fruits in brinjal (Solanum melongena Linn.) by the application of_-napthoxyacetic acid. Indian J Hort 1977,34: 422~425
    90. Selvey S, Thompson E W. Mathaei K, eL al Beta-actin an unsuitable internal conLrol for RT-PCR MolCellProbes, 2001, 15(5): 307~311
    91. Suzuki T, Higgins PJ, Crawford D R.Control selection for RNA quanlitation. Biotechniques 2000, 29(2):332~337
    92. COOPER WC, JIA L, GOGGIN FL. Acquired and R-GENE-MEDIATED resistance against the ptotato aphid in tomato. Chemical Ecology, 2004, 30(12) : 2527~2542
    93. Yu WG, Xu HL, Yang RC. Study on factors affecting facultative pathenocarpy and fruit development in tomato.Acta Horticulturae Sinica, 1993, 20(4):369~373
    94. Zhang YX. Pollination with gramma irradiated pollen and development of fruit seeds and parthenogenetic plants in apple. Euphytica, 1991, 54: 101~104

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700