常压干燥制备SiO_2气凝胶及其结构、性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SiO_2气凝胶是一类轻质介孔材料,具有超低密度、高孔隙率、高比表面积和低热导率等特点,在许多领域具有潜在的应用前景。传统上,SiO_2气凝胶的制备多采用超临界干燥工艺,但超临界干燥工艺复杂、成本高,而且有一定的危险性。为了实现SiO_2气凝胶的大规模生产以及在诸多领域的实际应用,研究低成本常压干燥工艺制备SiO_2气凝胶非常必要。本文分别以工业硅溶胶、水玻璃和工业废渣粉煤灰为原料,通过常压干燥工艺制备了疏水的介孔SiO_2气凝胶,研究确定了常压干燥工艺中对水凝胶进行一步溶剂交换-表面改性处理的工艺路线;以正硅酸乙酯为原料,通过常压干燥工艺制备了疏水的SiO_2气凝胶薄膜;利用红外光谱(FT-IR)、差热-热重分析(DTA-TG)、X射线衍射分析(XRD)、扫描电镜(SEM)、透射电镜(TEM)和BET吸附等手段对气凝胶的表面基团、热稳定性、微观形貌和结构进行了研究;利用紫外/可见(UV/VIS)分光光度计等初步分析了SiO_2气凝胶对水中甲基橙和三氯甲烷等有机溶剂的吸附性能,以及气凝胶对硫酸庆大霉素药物的吸附和释放性能。
     以工业硅溶胶和水玻璃为硅源,用乙醇/三甲基氯硅烷/庚(己)烷(EtOH/TMCS/Heptane(Hexane))溶液对SiO_2水凝胶进行处理,在常压干燥条件下合成了疏水的介孔SiO_2气凝胶,分析了EtOH/TMCS/Heptane(Hexane)溶液对水凝胶进行一步溶剂交换-表面改性的机理,并对EtOH/TMCS/Heptane(Hexane)和TMCS/HMDSO(六甲基二硅醚)两种改性工艺得到的SiO_2气凝胶的性质进行了比较,探讨了热处理对SiO_2气凝胶的微观形貌、疏水/亲水性、比表面积和孔分布影响。结果表明,用EtOH/TMCS/Heptane(Hexane)对水凝胶进行改性处理更有利于获得大块的低密度SiO_2气凝胶,所合成的SiO_2气凝胶为轻质介孔固体,呈现出海绵状结构,密度0.128~0.197g/cm~3,最可几孔直径7~18 nm,比表面积559~699m~2/g,孔隙率91%-94%,孔隙分布均匀。在150~450℃温度范围内,随热处理温度升高,气凝胶的比表面积、孔体积和孔径逐渐增大;经500℃热处理后,孔体积有所减小,但比表面积达到最大值,气凝胶由疏水性完全转变为亲水性。
     以正硅酸乙酯为硅源,采用溶胶-凝胶法,通过三种不同的工艺常压干燥制备了SiO_2气凝胶薄膜,分析了不同工艺对薄膜结构性质的影响,结果表明,三种工艺均能够获得疏水性较好的SiO_2气凝胶薄膜,涂膜后进行溶剂交换-表面改性的制备工艺能够获得高可见光透过率的气凝胶薄膜。
     以工业废渣粉煤灰为原料,对制备多孔轻质SiO_2气凝胶及超细粉进行了研究,研究了由粉煤灰制备SiO_2气凝胶的两种工艺过程。工艺Ⅰ为:由粉煤灰制得水玻璃后,用硫酸催化得到水凝胶,用去离子水浸泡水凝胶一定时间,再经EtOH/TMCS/Hexane改性和常压干燥后可以制得SiO_2气凝胶超细粉体;随去离子水浸泡时间延长,所得气凝胶的纯度增加,粒度分布范围变窄。工艺Ⅱ为:由粉煤灰制得水玻璃后,首先经过离子交换树脂交换,然后再经胶凝、EtOH/TMCS/Hexane改性和常压干燥,可得到微观形貌和孔分布接近于由工业水玻璃制得的SiO_2气凝胶,比表面积635.19m~2/g,最可几孔直径6.67nm。
     研究了气凝胶对水中染料甲基橙和有机物质三氯甲烷等的吸附性能,经450℃热处理的亲水性SiO_2气凝胶对甲基橙有较高的吸附能力,但亲水性气凝胶在空气中放置一段时间后其吸附性能会有所下降;疏水性气凝胶能够高效吸附三氯甲烷等有机溶剂,吸附后气凝胶的高比表面积和高孔隙率特点不会发生明显变化,因此,疏水性SiO_2气凝胶可以多次反复使用,在水的净化和有机物质吸附方面应用前景广阔。
     研究了SiO_2气凝胶对硫酸庆大霉素的吸附和释放性能,气凝胶的亲水/疏水性程度对药物的吸附和释放性能有重要影响,在450~500℃之间,随热处理温度升高,SiO_2气凝胶对硫酸庆大霉素的吸附能力增强,载药量增加;经500℃处理的SiO_2气凝胶能够均匀吸附药物,吸附载药率可达122.42%,并且具有均匀的药物释放效果。
Silica aerogels are a class of light mesoporous materials with low density, high porosity, high surface area and low thermal conductivity. Because of their unique properties, silica aerogels have great potential application future in many fields. Conventionally silica aerogels have been made by a supercritical drying process. However, supercritical drying process is complicated and expensive, and it is unsafe to a certain extent. In order to actualize the production of silica aerogels on a large scale and practical applications in many fields, research on preparation of silica aerogels via ambient pressure drying at a reasonable cost is very necessary. In this study, using industrial silica sols, water glass and waste residue fly ash as raw materials respectively, hydrophobic mesoporous silica aerogels have been prepared via ambient pressure drying. The routes of one-step solvent exchange-surface modification of the hydrogels in the ambient pressure drying process have been investigated and determined. The surface group, thermal stability, morphology and microstructure of silica aerogels have been investigated by FT-IR, DTA-TG. XRD, SEM, TEM and BET adsorption method. Silica aerogel films have been prepared by ambient pressure drying using tetraethoxysilane (TEOS) as raw materials. The properties of adsorbing methyl orange in the water and organic solvent such as chloroform, as well as loading and releasing of gentamicin sulfate for silica aerogels have been analyzed primarily by UV/VIS spectrometer.
     Using industrial silica sols and water glass as silica sources, hydrophobic silica aerogels have been synthesized via ambient pressure drying by using ethanol/trimethylchlorosilane/ heptane(hexane) (EtOH/TMCS/Heptane(Hexane)) solution for modification of the hydrogel. The mechanism of one-step solvent exchange-surface modification for the hydrogel by EtOH/TMCS/Heptane(Hexane) solution was analyzed, and the comparative study of the properties of silica aerogels prepared by two modification process using EtOH/TMCS /Heptane(Hexane) and TMCS/HMDSO(hexamethyldisiloxane) respectively were conducted. Additionaly, the effects of heat-treatment on the morphology, hydrophobicity, specific surface area and pore size distribution of silica aerogels were discussed. The results indicate that modification treatment of hydrogel using EtOH/TMCS/Heptane(Hexane) is favorable for obtaining monolithic low density silica aerogels. The synthesized silica aerogel is a light-weight mesoporous solid, exhibiting a sponge structure, with the density of 0.128~0.197g/cm~3 and pore diameter 7~18nm. The specific surface area of silica aerogels are 559~699m~2/g, with 91%-94% porosity and uniform pore size distribution. It was found that the specific surface area, pore volume and pore size increased with increasing of heat-treatment temperature at 150-450℃. After heat treatment at 500℃, the pore volume decreased, but specific surface area increased to the highest, and hydrophobicity of silica aerogel turned into hydrophilia completely.
     Using tetraethoxysilane (TEOS) as silica sources, silica aerogel films were prepared via three different ambient pressure drying process by sol-gel method. The influences of different process on the structure and properties of silica aerogel films were analyzed. The results indicate that silica aerogels films with good hydrophobicity could be obtained by three ambient pressure drying process. However, the silica aerogels films prepared by first coating and then solvent exchange-surface modification have better optical transmission.
     Using industrial waste residue fly ash as raw materials, preparation of porous light-weight silica aerogels and ultra-fine powders was studied. Two different processes of preparing silica aerogels from fly ash were investigated. The processⅠis as follows: the obtained waterglass from fly ash was first catalyzed with H2SO4 so as to promote gelation, and then silica aerogel ultra-fine powders could be formed by immersing the hydrogel in the deionized water for a period and succedent modification with EtOH/TMCS/Hexane and ambient pressure drying. With the increasing of immersing time in the deionized water, the purity of silica aerogel increased and particle size distribution became narrow. The processⅡis as follows: the obtained waterglass from fly ash was first ion exchanged with cation exchange resin, and then silica aerogels could be obtained by treating the gel with EtOH/TMCS/Hexane and drying at ambient pressure. The morphology and pore size distribution of the obtained silica aerogels are similar to that of the aerogels prepared from industrial waterglass, with specific surface area 635.19 m~2/g and pore diameter 6.67nm.
     The adsorbability of methyl orange in the water and organic solvent chloroform for silica aerogels were investigated. Hydrophilic silica aerogels heat-treated at 450℃have higher adsorbability of methyl orange. However, the adsorbability of hydrophilic aerogels decreased a little after they were laid in the air for a period. Hydrophobic silica aerogels are capable of adsorbing organic solvents chloroform etc effectually, and the characteristics of high specific surface area and porosity of aerogels almost not changed after adsorption. Thus hydrophobic silica aerogels can be used repetitiously, and the application future is good in the aspect of waste water treatment and organic substance adsorption.
     The adsorption and release of gentamicin sulfate for silica aerogels were investigated. The hydrophilia or hydrophobicity of silica aerogels had important effects on the adsorption and release of drug. In the range of 450-500℃, the adsorbability and drug loading amount of gentamicin sulfate for silica aerogels increased with the increasing of heat treatment temperature. Silica aerogels heat-treated at 500℃could adsorb drug uniformly with a larger drug loading percent of 122.42%, and have a uniform drug releasing rate.
引文
[1] 沈军,王珏,吴翔.气凝胶—一种结构可控的新型功能材料.材料科学与工程,1994,12(3):1-6.
    [2] 王珏,周斌,吴卫东等.硅气凝胶材料的研究进展.功能材料,1995,26(1):15-19.
    [3] Smirnova I, Suttiruengwong S, Arlt W. Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems. J. Non-Crystal. Solids, 2004, 350: 54-60.
    [4] 邓忠生,张哲,翁志农等.SiO_2-TiO_2两元气凝胶的制备及其结构表征.功能材料,2001,32(2):200-202.
    [5] 何文,张旭东,韩丽.Al_2O_3/SiO_2气凝胶纳米粉的制备与表征.中国陶瓷,2000,36(6):4-6.
    [6] 甘礼华,李光明,岳天仪等.超临界干燥法制备Fe_2O_3-SiO_2气凝胶.物理化学学报,1999,15(7):588-592.
    [7] 姚连增,叶长辉,牟季美等.纳米PbS/SiO_2气凝胶介孔组装体的制备及光学特性.无机材料学报,2001,16(1):93-97
    [8] 李文翠,陆安慧,郭树才.炭气凝胶的制备、性能及应用.炭素技术,2001,2:17-20.
    [9] 李冀辉,胡劲松.有机气凝胶研究进展(Ⅱ)—有机气凝胶发现、制备与分析.河北师范大学学报(自然科学版),2001,25(3):374-394.
    [10] Ayers M R, Hunt A J. Synthesis and properties of chitosan-silica hybrid aerogels. J. Non-Crystal. Solids, 2001,285:123-127.
    [11] Akimov Y K. Fields of Application of Aerogels. Instruments and Experimental Techniques, 2003,46(3):287-299.
    [12] Venkateswara Rao A, Nilsen E, Einarsrud M A. Effect of precursors, methylation agents and solvents on the physicochemical properties of silica aerogels prepared by atmospheric pressure drying method. J. Non-Cryst. Solids, 2001,296:165-171.
    [13] Rolison Debra R. and Dunn B. Electrically conductive oxide aerogels: new materials in electrochemistry. J. Mater. Chem.,2001,11:963-980.
    [14] Hrubesh L W. Aerogel applications. J. Non-Cryst. Solids, 1998, 225:335-342.
    [15] Schmidt M, Schwertfeger F. Applications for silica aerogel products. J. Non-Cryst. Solids, 1998, 225:364-368.
    [16] 倪星元,程银兵,马建华等.SiO_2气凝胶柔性保温隔热薄膜.功能材料,2003,34(6):725-727
    [17] Rettelbach Th, Sauberlich J, Korder S, et al. Thermal conductivity of silica aerogel powders at temperatures from 10 to 275 K. J. Non-Cryst. Solids. 1995,186:278-284.
    [18] 王珏,周斌,沈军等.轻质高效保温材料掺杂硅气凝胶.功能材料,1996,27(2):167-170.
    [19] Smith D M, Maskara A, Boes U. Aerogel-based thermal insulation. J. Non-Cryst. Solids, 1998,225:254-259.
    [20] Kuhn J, Gleissner T, Arduini-Schuster M C, et al. Integration of mineral powders into SiO_2 aerogels. J. Non-Cryst. Solids, 1995,186:291-295.
    [21] Kwon Y G, Chol S Y, Kang E S, et al. Ambient-dried silica aerogel doped with TiO_2 powder for thermal insulation. J. Mater. Sci., 2000,35:6075-6079.
    [22] Deng Z S, Wang J, Wu A M, et al. High strength SiO_2 aerogel insulation. J. Non-Cryst. Solids. 1998.225:101-104.
    [23] 王珏,沈军,J.Fricke.高效隔热材料掺TiO_2及玻璃纤维硅石气凝胶的研制.材料研究学报,1995,9(6):568-572.
    [24] 沈军,汪国庆,王珏等.SiO_2气凝胶的常压制备及其热传输特性.同济大学学报(自然科学版),2004,32(8):1106-1100.
    [25] Ackerman W C, Vlachos M, Rouanet S et al. Use of surface treated aerogels derived from various silica precursors in translucent insulation panels. J. Non-Cryst. Solids, 2001, 285: 264-271.
    [26] Reim M, Beck A, Korner W et al. Highly insulating aerogel glazing for solar energy usage. Solar Energy, 2002, 72(1): 21-29.
    [27] Kamiuto K, Miyamoto T, Saitoh S. Thermal characteristics of a solar tank with aerogel surface insulation. Applied Energy, 1999,62:113-123.
    [28] Kim G. S, Hyun S H, Hwang S Wet al. Cost-effective synehtsis of silica aerogels from waterglass/TEOS by ambient drying and their applications. Ceramic Engineering and Science Proceeding, 2002,23(4):73-78.
    [29] Kim G S, Hyun S H. Synthesis of window glazing coated with silica aerogel films via ambient drying. J. Non-Cryst. Solids, 2003,320(1-3):125-132.
    [30] 程银兵,姚兰芳,吴广明.Al/PI/SiO_2多层隔热膜制备与性能研究.材料科学与工程学报,2003,21(2):221-223.
    [31] Beck A, Popp G, Emmeling A, et al. Preparation and characterization of SiO_2 two-step aerogels. J. Sol-Gel Sci., 1994,2:917-920.
    [32] Emmerling A, Petricevic R, Beck A, at al. Relationship between optical transparency and nanostructural features of silica aerogels. J. Non-Cryst. Solids, 1995, 185:240-248.
    [33] Cahill S A. Optical and electronic characterization of sol-gel-derived silica aerogels for display and imaging applications:[Dissertation].Davis:University of California, 1999
    [34] 邓忠生,王珏,陈玲燕.气凝胶应用研究进展.材料导报,1999,13(6):47-49.
    [35] Cho W, Saxena R, Rodriguez O et al. Effects of sintering on dielectric constants of mesoporous silica. Journal of Non-Cryst. Solids, 2004,350: 336-344.
    [36] Kim G S, Sang H. Hyun. Synthesis and characterization of silica aerogel films for inter-metal dielectrics via ambient drying. Thin Solid Films, 2004,460:190-200.
    [37] Martin J, Hosticka B, Lattimer C, et al. Mechanical and acoustical properties as a function of PEG concentration in macroporous silica gels. J. Non-Cryst. Solids, 2001, 285(1-3):222-229.
    [38] Forest L, Gibiat V, Hooley A. Impedance matching and acoustic absorption in granular layers of silica aerogels. J. Non-Cryst. Solids, 2001, 285(1-3):230-235.
    [39] Wagh P B, Ingale S V. Comparison of some physico-chemical properties of hydrophilic and hydrophobic silica aerogels. Ceramics International, 2002, 28:43-50.
    [40] Rao A V, Kuldarni M M. Hydrophobic properties of TMOS/TMES-based silica aerogels. Materials Research Bulletin, 2002, 37(9):1667-1677.
    [41] Kulkarni M M, Seth T, Venkateswara Rao A. Surface chemical modification of silica aerogels using various alkyl-alkoxy/chloro silanes. Applied Surface Science, 2003, 206(1-4):262-270.
    [42] Schwertfetger F, Frank D, Schmidt M. Hydrophobic waterglass based aerogels without solvent exchange or supercritical drying. J. Non-Cryst. Solids, 1998,225(1):24-29.
    [43] Jeong A Y, Goo S M, Kim D P. Characterization of Hydrophobic SiO_2 Powders Prepared by Surface Modification on Wet Gel. J. Sol-Gel Sci. & Tech., 2000,19:483-487.
    [44] 邓忠生,魏建东,吴爱梅等.疏水型SiO_2气凝胶.无机材料学报,2000,15(2):381-384.
    [45] Hrubesh L W, Coronado P R, Satcher J H. Solvent removal from water with hydrophobic aerogels. J. Non-Cryst. Solids, 2001, 285(1-3):328-332.
    [46] 武志刚,赵永样,许临萍等.气凝胶制备进展及其在催化方面的应用.化学研究与应用,2003,15(1):17-20.
    [47] 郝利峰,高志华,阴丽华等.气凝胶的制备及其在催化领域的应用.天然气化工,2005,30(1):49-53.
    [48] 武志刚,赵永祥,许临萍等.在NiO-SiO_2气凝胶催化剂上顺酐液相加氢合成γ-丁内酯.精细化工,2002,19(9):536-537.
    [49] 许静,谢凯,陈一民等.SiO_2/M纳米复合材料的结构及催化性能.化工新型材料,2002,30(5):32-34.
    [50] Schmid L, Rohrer M, Baiker A. A mesoporous ruthenium silica hybrid aerogel with outstanding catalytic properties in the synthesis of N, N-diethylformamide from CO_2, H_2 and diethylamine. Chem. Commun, 1999, 22:2303-2304.
    [51] 王玉栋,甘礼华,郝志显等.气凝胶光催化剂的研究进展.化工科技,2005,13(3):36-40.
    [52] 王玉栋,郝志显,甘礼华等.TiO_2/SiO_2气凝胶对吡啶的光催化降解.应用化学,2004,21(10):1002-1005.
    [53] 许新华,宋伟强,徐叶平等.正丁胺对TiO_2/SiO_2气凝胶光催化活性的影响.同济大学学报,2000,28(5):593-596.
    [54] Wang J, Uma S, Klabunde K J. Visible light photocatalytic activities of transition metal oxide/silica aerogels. Microporous and Mesoporous Materials ,2004,75: 143-147.
    [55] Buisson P, Hernandez C, Pierre M, et al. Encapsulation of lipases in aerogels. J. Non-Cryst. Solids, 2001, 285(1-3):295-302.
    [56] 胡巧开.粉煤灰对甲基橙的吸附研究.上海化工,2004,8:10-12.
    [57] Ahmed M S, Attia Y A. Aerogel materials for photocatalytic detoxificationof cyanide wastes in water. J. Non-cryst. Solids, 1995, 186:402-407.
    [58] Khaleel A, Kapoor P N, Klabunde K J. Nanocrystalline metal oxides as new adsorbents for air purification. Nanostructured Materials, 1999, 11(4):459-468.
    [59] Ahmed M S, Attia Y A. Multi-metal oxide aerogel for capture of pollution gases from air. Applied Thermal Engineering, 1998,18(9-10):787-797.
    [60] Dreyer M. Titanium dioxide aerogels as photocatalysts for indoor air decontamination:[Dissertation]. Norman: Oklahoma University, 2002.
    [61] Mrowiec-Bialon J, Jarzebski A B, Lachowski A I et al. Two-component aerogel adsorbents of water vapour. J. Non-Cryst. Solids, 1998, 225:184-187.
    [62] Power M, Hosticka B, Black E et al. Aerogel as biosensors : viral particle detection by bacteria immobilized on large pore aerogel. J. Non-Cryst. Solids, 2001, 285: 303-308.
    [63] Reynes J, Woignier T, Phalippou J. Permeability measurement in composite aerogels: application to nuclear waste storage. J. Non-Cryst. Solids, 2001, 285(1-3):323-327.
    [64] Woignier T, Reynes J, Phalippou J, Dussossoy J L et al. Sintered silica aerogel: a host matrix for long life nuclear wastes. J. Non-cryst. Solids, 1998,225(1) :353~357.
    [65] Kraume I M. Synthesis of silica aerogels and their application as a drug delivery system: [Dissertation]. Berlin: Technischen Universitat Berlin, 2002.
    [66] Ahola M S, Sailynoja E S, Raitavuo M H et al. In vitro release of heparin from silica xerogels. Biomaterials, 2001,22:2163-2170.
    [67] Kortesuo P, Ahola M, Karisson S et al. Sol-gel-processed sintered silica xerogel as a carrier in controlled drug delivery. J Biomed Mater Res, 1999, 44:162-167.
    [68] Schwertfeger F, Zimmermann A, Krempel H. Use of inorganic aerogels in pharmacy. US Patent, 6280744, 2001
    [69] Smirnova I, Mamic J, and Arlt W. Adsorption of drugs on silica aerogels. Langmuir, 2003, 19: 8521-8525.
    [70] Yang Y M, Wang J W, Tan R X. Immobilization of glucose oxidase on chitosan - SiO_2 gel. Enzyme and Microbial Technology, 2004,34:126-131.
    [71] Jang K Y, Kim K. Study of sol-gel processing for fabrication of hollow silica-aerogel spheres. Journal of Vacuum Science and Technoloy, 1989, A8:1732-1735.
    [72] Tsou P. Silica aerogel captures cosmic dust intact. J. Non-Cryst. Solids, 1995,186: 415-427.
    [73] Golob P. Current status and future perspectives for inert dusts for control of stored product insects. Journal of Stored Products Research, 1997, 33: 69-79.
    [74] Marliere C, Woignier T, Dieudonne P et al. Two fractal strctures in aerogel. J. Non-Crys. Solids, 2001,285(1-3):175-180.
    [75] Reidy R F, Allen A J, S. Krueger. Small angle neutron scattering characterization of colloidal and fractal aerogels. J. Non-Cryst. Solids, 2001,285(1-3):181-186.
    [76] Alkemper J, Buchholz T, Murakami K et al. Solidification of aluminium alloys in aerogel moulds. J Non-Crys. Solids, 1995, 186:395-401.
    [77] 王珏,黎青,沈军等.二步法制备超低密度SiO_2气凝胶.原子能科学技术,1996,30(1):41-45.
    [78] Btinker C J, Keefer K D, Schaefer D W et al. Sol-gel transition in simple silicates Ⅱ. J. Non-Cryst. Solids, 1984,63(1-2):45-49.
    [79] Wagh P B, Begag R, Pajonk G M et al. Comparison of some physical properties of silica aerogel monoliths synthesized by different precursors. Mat. Chem. and Phys.,1999, 57(3):214-218.
    [80] 邓忠生,魏建东,王珏等.超低密度二氧化硅气凝胶制备新方法.原子能科学技术,1999,33(4):314-318.
    [81] 侯贵华.稻壳裂解制备SiO_2气凝胶的研究.无机材料学报,2003,18(2):407-412.
    [82] Bernards T N M, Van Bommel M J, Bonstra A H et al. Hydrolysis-condensation processes of the tetra-alkoxysilanes TPOS, TEOS and TMOS in some alcoholic solvents. J. Non-Cryst. Solids, 1991,134(1-2):1-13.
    [83] Artaki I, Zerda T W, Jonas J. Solvent effects on the condensation stage of the sol-gel process. J. Non-Cryst. Solids, 1986,81(3): 381-395.
    [84] Venkateswara Rao A, Parvathy N N. Effect of gel parameters on monolithicity and density of silica aerogels. J. Mater. Sci.,1993,28:3021-3026.
    [85] Pope E J A, Mackenzie J D. Sol-gel processing of silica Ⅱ. The role of the catalyst. J. Non-Cryst. Solids, 1986, 87:185-198.
    [86] Venkateswara Rao A, Pajonk G M, Parvathy N N. Effect of solvents and catalysts on monolithicity and physical properties of silica aerogels. J. Mat. Sci., 1994, 29(7):1807-1817.
    [87] Stolarski M, Walediewski J, Steininger M et al. Synthesis and characteristic of silica aerogels. Applied Cat. A, 1999,177(2):139-148.
    [88] Land V D, Harris T M, Teeters D C. Processing of low-density silica gel by critical point drying or ambient pressure drying. J Non-Cryst. Solids, 2001,283:11-17.
    [89] Einarsrud M A, Nilsen E. Strengthening of water glass and colloidal sol based silica gels by aging in TEOS. J Non-Crystal Solids, 1998, 226:122-128.
    [90] Haereid S, DaMe M, Lima S, et al. Preparation and properties of monolithic silica xerogels from TEOS-based alcogels aged in silane solutions. J Non-Crystal Solids, 1995, 186(2):96-103.
    [91] Einarsrud M -A, Nilsen E, Haereid S et al. Properties of silica gels aged in TEOS. J. Non-cryst Solids, 1996,204(3):228-234.
    [92] 陈龙武,甘礼华,侯秀红.SiO_2气凝胶的非超临界干燥法制备及其形成过程.物理化学学报,2003,19(9):8 19-823.
    [93] 甘礼华,陈龙武,张宇星.非超临界干燥法制备气凝胶.物理化学学报,2003,19(6):504-508.
    [94] Venkateswara Rao A, Sakhare H M, Tamhankar A E et al. Influence of N-dimethylformamide additive on the physical properties of citric acid catalyzed TEOS silica aerogels. Materials Chemistry and Physics, 1999, 60:268-273.
    [95] 王玉栋,陈龙武,甘礼华等.块状TiO_2/SiO_2气凝胶的非超临界干燥法制备及其表征.高等学校化学学报,2004,25(2):325-329.
    [96] Brinker C J, Prakash S S, Hurd A J. Silica aerogel films at ambient pressure. J. Non-Cryst. Solids, 1995,190(3):264-275.
    [97] Deshpande R, Hua D W, Smith D Met al. Pore structure evolution in silica gel during aging/drying Ⅲ. Effects of surface tension. J. Non-Cryst. Solids, 1992,144:32-44.
    [98] Ziegler, Bernd, Gerber et al. Method of producing inorganic aerogels under subcritical conditions. US Patent, 6017505, 2000.
    [99] Kang S K, Choi S Y. Synthesis of low-density silica gel at ambient pressure: Effect of heat treatment. J. Mater. Sci.,2000, 35:4971-4976.
    [100] Lee C J, Kim G S, Hyun S H. Synthesis of silica aerogels from waterglass via new modified ambient drying. J Mater Sci.,2002,37:2237-2241.
    [101] Pajonk G M, Repellin-Lacroix M, Abouarnadasse S et al. From sol-gel to aerogels and cryogels. J. Non-Cryst. Solids, 1990,121(1-3): 66-67.
    [102] Hrubesh L W, Poco J F. Thin aerogel films for optical, thermal, acoustic and electronic applications. J Non-Cryst. Solids, 1995, 188:46-53.
    [103] 吴广明,鲁鸿雁,王珏等.SiO_2气凝胶薄膜常压制备与强化研究.物理学报,2002,51(1):104-110.
    [104] 王娟,张长瑞,冯坚.SiO_2气凝胶薄膜的性能、应用与制备方法.材料导报,2004,18(1):32-35.
    [105] Jung S B, Park H H. Control of surface residual---OH polar bonds in SiO_2 aerogel film by silylation. Thin Solid Films, 2002,420-421:503-507.
    [106] Prakash S S, Brinker C J, Hurd A J et al. Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shringkage. Nature, 1995, 374:439-443.
    [107] 陈一民,谢凯,盘毅等.钴/SiO_2纳米复合气凝胶的制备及表征.功能材料,2001,32(1):91-92.
    [108] 武志刚,赵永祥,许临萍等.镍含量对NiO/SiO_2气凝胶性能的影响.无机化学学报,2002,18(9):949-952.
    [109] Yao L Z, Ye C H, Mo C M et al. Study of crystallization and spectral properties of PbS nanocrystals doped in SiO_2 aerogel matrix. J Cryst Growth, 2000, 216:147-151.
    [110] 甘礼华,王小兰,郝志显等.TiP_2/SiO_2气凝胶对亚甲基蓝降解的光催化活性.同济大学学报(自然科学版),2005,33(8):1078-1082.
    [111] Kim G S, Hyun S H. Effect of mixing on thermal and mechanical properties of aerogel-PVB composites. J. Mater. Sci., 2003, 38: 1961-1966.
    [112] 邱坚,李坚.超临界干燥制备木材-SiO_2气凝胶复合材料及其纳米结构.东北林业大学学报,2005,33(3):3-5.
    [113] Zhang Q Y, Wang J, Wu G, Shen J, Buddhudu S. Interference coating by hydrophobic aerogel-like SiO_2 thin films. Materials Chemistry & Physics, 2001, 72:56-59.
    [114] 史非,王立久,刘敬肖.纳米介孔SiO_2气凝胶的常压干燥制备及表征.硅酸盐学报,2005,33(8):963-967.
    [115] 何余生,李忠,奚红霞等.气固吸附等温线的研究进展.离子交换与吸附,2004,20(4):376-384
    [116] 姚允斌,谢涛,高敏英.物理化学手册[M].上海:上海科学技术出版社,1985.
    [117] 程传煊.表面物理化学.北京:科学技术文献出版社,1995.
    [118] Lee J H, CHoi S Y, Kim C E. The effects of initial sol parameters on the microstructure and optical transparency of TiO_2-SiO_2 binary aerogels. J Mater. Sci., 1997, 32: 3577-3585.
    [119] 魏建东,邓忠生,薛小松等.亚临界干燥制备疏水SiO_2气凝胶.无机材料学报,2001,16(3):545-549.
    [120] 史非,王立久,刘敬肖等.由粉煤灰制备SiO_2凝胶及超细粉研究.新型建筑材料,2004,6:19-21.
    [121] Venkateswara R A, Kalesh R R. Comparative studies of the physical and hydrophobic properties of TEOS based silica aerogels using different co-precursors. Sci. and Tech. of Adv. Mater., 2003,4(6):509-515.
    [122] Casu M, Casula M F, Corrias et al. Textural characterization of high temperature silica aerogels. J. Non-Cryst. Solids, 2003,315(1-2):97-106.
    [123] 史非,王立久.环境气压干燥技术制备多孔SiO_2气凝胶的研究进展.材料导报,2005,19(4):20-23.
    [124] 史非,王立久,刘敬肖,曾淼.介孔SiO_2气凝胶的常压干燥制备研究,无机化学学报,2005,21(11):1632-1636.
    [125] Fei Shi, Lijiu Wang, Jingxiao Liu. Synthesis and characterization of silica aerogels by a novel fast ambient pressure drying process. Materials Letters, 2006,60(29-30):3718-3722.
    [126] 姜兆华,孙德智,邵光杰等.应用表面化学与技术.哈尔滨:哈尔滨工业大学出版社,2002.
    [127] 孙俊民,韩德馨.粉煤灰的形成和特性及其应用前景.煤炭转化,1999,22(1):10-14.
    [128] 梁忠友.利用粉煤灰制造建材玻璃.玻璃,1998,25(2):45-46.
    [129] 翟玉祥.用粉煤灰制取白炭黑的工艺方法.黑龙江电力技术,1995,17(3):148-151.
    [130] 叶裕中,王鹤寿,方群.利用粉煤灰合成P型沸石.粉煤灰,1995,6:15-18.
    [131] 章西焕,马鸿文,杨静等.利用粉煤灰合成13X沸石分子筛的实验研究.中国非金属矿工业导刊,2003,2:23-25
    [132]王德举,王政国,唐颐.利用粉煤灰合成沸石的研究进展.粉煤灰综合利用,2002,6:32-34.
    [133]王华,宋存义,张强.国外利用粉煤灰合成沸石的研究现状.IM&P化工矿物与加工.2000,7:1-5.
    [134]Chang H L. Chemical conversion of Coal Waste to Micro/Meso Porous Aluminosilicate Materials: [dissertation]. Ann Arbor:Drexel University, 1997
    [135]葛元新.以粉煤灰碱熔融分解物为原料合成4A型沸石.中国资源利用,2003,1:25-27.
    [136]吴德意,孔海南,赵统刚等.合成条件对粉煤灰合成沸石过程中沸石生成和品质的影响.无机材料学报,2005,20(5):1153-1158.
    [137]袁福龙,刘宏,陈福刚等.以稻壳灰为原料生产高模数水玻璃及活性炭的一种新工艺.黑龙江大学自然科学学报,1994,11(3):101-104.
    [138]叶钊,廖骥,赵景总等.明矾渣制水玻璃的研究.福建环境,1995,12(1):26-28.
    [139]郑水林,李杨.用蛋白土为原料制备硅酸钠的研究.非金矿物,1996(3):13-14.
    [140]秦克刚,李淑珍.水玻璃模数的快速测定.理化检验-化学分册,2000,36(10):472.
    [141]祝业梅,李益善.低压湿法生产水玻璃的实验研究.淮南工业学院学报,2001(4):63-65.
    [142]周会成.活化粉煤灰试验研究.河南建材,2003,4:5-6.
    [143]王智,钱觉时,卢浩.石灰对粉煤灰活性激发作用的研究进展.粉煤灰综合利用,1999,(1):27-30.
    [144]李国栋.结构因素对粉煤灰活性激发的影响.粉煤灰综合利用,1998,4:3-7.
    [145]王德平,黄文,陈天丹.多孔微晶玻璃作为药物载体材料的制备及其体外释药研究.无机材料学报,2001,16(6):1195-1198
    [146]张启焕,江昕,闫玉华等.多孔β-TCP陶瓷药物载体结构与性能影响因素.佛山陶瓷,2003,9:33-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700