新型节能Ti包Al复合基体β-PbO_2阳极的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尽管铅合金电极仍然是目前湿法冶炼领域中主要的阳极材料,但其还存在内阻大、析氧电位高、质量大、强度低、易溶解等问题。在电积锌过程中因槽电压过高,造成了约25%~30%的电能被浪费;因电场力的作用易使极板弯曲,造成短路破坏生产的稳定性;因铅阳极的易溶解性,造成了阴极产品品质降低,吨锌约消耗12kg的铅阳极。因此,开发一种导电性好、强度高、耐腐蚀的低成本新型节能阳极材料一直是湿法冶金行业中的重要课题。
     本研究在前期工作基础上提出通过改变电极基体的组成结构来提高阳极性能的思路,并获得国家“863”计划项目和两项国家自然科学基金的资助。本文从提高阳极基体导电性出发,首次选择Ti/Al复合材料作为电极基体,通过降低电极内阻的方法来改善电极性能。并以成本低、附着性强、导电性好的SnO2+Sb2O4为中间过渡层,利用Pb02作为活性层适用于硫酸锌电解体系的特点,设计出了新型节能阳极Ti/Al/Ti/SnO2+Sb2O4/(3-PbO2。其技术思想是:改变传统电极的组成结构模式,采用Ti/Al/Ti层状复合基体结构阳极。通过材料性能叠加效应,利用金属Ti保持阳极高强度、强耐蚀的同时,借助金属Al芯提高电极基体的导电性、均化电流分布。以此增大电解过程中电子在阳极内的传输速率,提高电解系统的反应速率。选择SnO2+Sb2O4为中间过渡层来阻断酸性电解液穿过活性层侵蚀钛基体而造成的电极失效,并且其与基体钛、外层铅的氧化物能够形成固溶体提高基体与表面活性层的结合强度;再通过较佳的Ti/Al复合基体电沉积β-PbO2工艺获得表面形貌较好的活性表层,来提高锌电积中阳极的催化活性、保证阴极产品品质。
     本文的研究工作主要从以下三个方面进行:第一、Ti包A1复合基体界面扩散层的形成机理与性能影响关系。通过SEM、XRD和HRTEM等测试手段分析复合基体界面扩散层组织形貌、物相结构对电极基体导电性能与力学性能的影响;第二、SnO2+Sb2O4中间层和β-PbO2活性层的制备工艺与性能。研究了Ti/Al复合基体电沉积β-PbO2活性层的机理与工艺,采用SEM、XRD及LSV等测试手段研究不同工艺对沉积层物相结构、显微硬度、表面分形维数及电化学性能的影响,揭示各参数对电沉积过程的作用规律;以及研究阳极复合基体制备工艺与活性层沉积工艺匹配对阳极性能的影响;第三、Ti/Al复合基体β-PbO2涂层阳极的生产应用研究。在企业对Ti/Al/Ti/SnO2+Sb2O4/β-PbO2阳极进行锌电积模拟生产试验,并与传统的Pb-1%Ag合金阳极、Al/Pb层状复合阳极、Ti/PbO2阳极进行对比,分析了该复合基体阳极的节能机理。论文主要的研究成果如下:
     (1)通过研究Ti/Al界面扩散层的物相形成机制,获得电阻率最低的界面扩散层为TiAl3单相层,厚度约8501μm左右,其制备工艺条件为:扩散温度540。C,扩散时间90min。并结合实际生产需要,优化出最佳的复合基体Ti、Al板厚度为:Ti为0.3mm, Al为6mm。对Ti/Al复合基体界面扩散层的生长动力学研究表明:扩散温度对其厚度的影响要远远大于时间的影响;从Ti、Al扩散元素浓度与扩散距离的计算中验证了最佳扩散层厚度、物相与实验结论的一致性;获得扩散层的生长动力学方程:y=1.09×1012t3.06027-0.00.587exp(-(RT)/(193252))
     (2)非贵金属SnO2+Sb2O4中间层的相关实验证明:在β-PbO2电沉积工艺中,中间层涂覆次数对β-PbO2沉积层的性能影响最大,其最佳的涂覆次数为15次。
     (3)通过对Ti/Al复合基体电沉积β-PbO2过程的热力学机理分析,获得沉积时溶液的PH值<3.84,电位>0.82。电沉积β-PbO2时,其影响因素的综合作用效果大小为:中间层涂覆次数>电流密度>电沉积时间。最佳β-PbO2活性层的电沉积条件为:电流密度3.3A·dm-2,沉积时间2h。
     (4)研究阳极Ti/Al/Ti/SnO2+Sb2O4/β-PbO2的阻抗谱测试表明:该阳极的内阻可较纯Ti电极降低43%,其活性层的析氧反应电荷传递电阻降低了70%。阳极加速腐蚀寿命长达10.4年,高出纯Ti基体Pb02阳极50%。析氧动力学研究表明:在lmol/L H2SO4溶液中, Ti/Al复合基体Pb02阳极的交换电流密度j0尸是传统Ti基Pb02阳极的15倍;在工业电流密度下(1000A/m2),其析氧超电压η较传统Ti基阳极材料下降了3.3V。
     (5)研究阳极Ti/Al/Ti/SnO2+Sb2O4/β-PbO2在电积锌企业的模拟生产试验结果表明:其在500A·m-2的生产电流密度下槽电压波动较小,均值较传统的Pb-1%Ag合金阳极下降了3.2%;阴极的锌产量也提高了4.5%,且产品含Pb量下降了50.3%;电积电流效率高达88.8%,较传统提高了4.5%;吨锌电耗也同比下降3.2%;阳极腐蚀速率下降42.7%。
     (6)本文从电极基体材料的组成结构改变、力学性能改善及阳极表面β-PbO2活性层形貌优化等影响因素分析了Ti/Al/Ti/SnO2+Sb2O4/β-PbO2阳极的节能机理:Ti/Al复合基体在降低内阻、均化电流分布的同时使得电子在电极内部的传输速率提高,电荷在电极表面的交换速率增大,提高了电极的电化学活性;并且基体导电性的提高改善了电极表面β-PbO2沉积层形貌,增大了阳极的催化活性;同时异相材料Ti、Al复合后将产生12.1mV的反向接触电势,与阳极极化电位反向串联,抑制了极化电位的升高;并且等体积电极质量的减小可以降低阳极的耗材与成本。与此同时,Ti/Al/Ti/SnO2+Sb2O4/β-PbO2阳极在锌电积模拟生产试验中充分体现出其优异的节能效果与经济价值。
Although lead alloy electrodes are still the main anode materials in hydrometallurgy, there exist some problems of high internal resistance, high oxygen evolution potential, high weight, low intensity and high dissolubility. Because of the high bath voltage in the process of Zn electrodeposition, it causes25%~30%electric energy to be wasted, and because of the electric field force, the electrode plates will bend and the stability of production is destroyed. Also because lead anode is easily dissolved, it will cause the low quality of cathode product and a lead anode consumption of12kg per ton of Zn. In consequence, to develop a novel good electrical conductivity, energy-saving, high strength, anti-corrosion and low-cost anode material becomes an important issue in hydrometallurgy industry.
     In this research, the concept that the organization structures of composite substrate are changed to improve the anode performance is proposed base on the early work. And this work was supported by the Development Program of China (National863plans projects) and National High Technology Research and Development. This article embarks from improving conductivity of the substrate, choose Ti/Al composite material as the electrode substrate for the first time, by reducing the electrode impedance to improve the performance.And the low-cost, high adhesive force and good electrical conductivity SnO2+Sb2O4is selected as the intermediate coating.Using PbO2which is suitable for zinc sulfate electrolysis system. The novel energy-saving anode of Ti/Al/Ti/SnO2+Sb2O4/(3-PbO2is proposed. The technology thoughts are as follow:By changing the component and structural pattern of traditional composite and using Ti/Al/Ti anode layered composite matrix structure. Through the performance superposition of titanium aluminum clad, using Ti to keep high strength, strong corrosion resistance of the anode, at the same time, with the help of a metal A1core to improve the conductivity of the electrode substrate, homogenizing current distribution. Augment the transmission rate of electrons in the process of electrolysis, improve the reaction rate of electrolysis system. The SnO2+Sb2O4are selected to be middle layer to enforce the bonding strength between substrate and surface active layer. Also this middle layer can interdict the acid electrolyte to corrode the Ti substrate which is the main cause of electrode degradation. Through better electrodeposition process for β- active layer on Ti/Al composite substrate, to improve the catalytic activity of zinc anode and cathode product quality.
     In this paper, the research work is mainly from the following three aspects:firstly, the influence relationship between synthetic mechanism of composite interface of titanium aluminum clad and performance. With the testing methods of SEM, XRD and HRTEM, the influence of composite substrate interface diffusion layer of microstructure and phase structure to electrical conductivity and mechanical properties of electrode substrate are analyzed; secondly, preparation technology and properties of the SnO2+Sb2O4middle layer and the β-PbO2active layer. Electrodeposition mechanism and process of Ti/Al composite substrate are studied. And testing methods of SEM, XRD and LSV were used to analyzed the sedimentary phase structures, micro hardness, surface fractal dimension and the electrochemical performance in different technologies, and to reveal influence rule of different parameters to electrodeposition process; and the matching between Ti/Al composite substrate preparation process and the electrodeposition process of β-PbO2active layer is studied; thirdly, comparative study on the production application of β-PbO2coated electrode of Ti/Al substrate. The Ti/Al/Ti/SnO2+Sb2O4/β-PbO2anode in enterprise production experiment is simulated. By contrast with conventional Pb-1%Ag alloy anode, Al/Pb laminated composite anode and Ti/PbO2anode, energy saving mechanism of it is also analyzed. The study results are as following:
     (1) The phase formtion mechanism of interfacial diffusion layer is researched. And TiAl3single phase layer is the lowest resistivity of interface diffusion layer of which preparation process conditions is540℃diffusion temperature and90min diffusion holding time. The best optimized thickness of Ti and Al plates are:0.3mm and6mm, respectively. The results of the growth kinetics of composite substrate interface diffusion layer show that diffusion temperature on the influence of its thickness is far greater than the influence of the time; the optimum diffusion layer thickness, phase and experimental results were confirmed by the calculation of Ti and Al element concentration and diffusion distance; and the growth of diffusion layer dynamic equation is y=1.09×1012t306027-0.00358T exp(-(RT)/(193252)).
     (2) The related experiments of non-precious metals SnO2+Sb2O4middle layer shows that: coating number of times have the most influence on β-PbO2electrodeposition layer in the following electrodeposition technology, and its optimized coating number of times is15.
     (3) Through analysis the rmodynamic mechanism of P-PbCO2electrodeposition process on Ti/Al composite substrate shows that the conditions of solution are as follows:PH value<3.84, potential<0.82V. When electrodepositing P-PbO2, the influence factors of comprehensive effect are as follows:number of middle layer coating> current density> electrodeposition time; The best conditions of P-PbO2electrodeposition are as follows:current density3.3A·dm-2, electrodeposition time2h.
     (4) The impedance spectrum test of Ti/Al/Ti/SnO2+Sb2O4/β-PbO2anode shows that:Internal resistance of the anode can be reduced by43%than pure Ti electrodes, its active layer of oxygen evolution reaction of the charge transfer resistance is reduced by70%. Anodes in an acidic environment have a better stability, long life of10.4years, and50%pure Ti substrate PbO2electrode higher. The oxygen kinetics show that the exchange current density j0is the traditional Ti-based PbO2electrode15times in lmol/L H2SO4solution; the oxygen overvoltage η was down3.3V from traditional anode material under industrial current density (1000A/m2).
     (5) The simulated test results of the novel Ti/Al/Ti/SnO2+Sb2O4/β-PbO2anode in enterprise show that under500A·m-2current density, the fluctuation of bath voltage is small and the mean value of bath voltage has fallen by3.2%compared with traditional Pb-1%Ag alloy anode; Zinc yield on cathode is increased by4.5%, Pb content in production is reduced by50.3%, the current efficiency of electrolysis is88.8%which is up4.5%to conventional electrode; Single-tons zinc of power consumption is reduced by3.2%, corrosion rate of anode is reduced by42.7%.
     (6) From influencing factors that changing of substrate materials mechanics and optimizing the β-PbO2active coating, analyzes the anode energy-saving mechanism of Ti/Al/Ti/SnO2+Sb2O4/β-PbO2in this paper:Ti/Al composite substrate reduces the internal resistance and homogenizes the current distribution, at the same time, it makes the transfer rate of internal electron and electrochemical activity of electrode increasing. And the improvement of electrical conductivity is improved sediments morphology of (3-PbO2on the surface of electrode, increased the catalytic activity of anode. After bonding heterogeneous materials of Ti and Al, the composite substrate will produce12.1mV reverse contact potential, which is the anodic polarization potential series-opposing, and suppress the increase of polarization potential. Meanwhile, the decrease of the electrode quality can reduce the consumption and cost of. The novel anode of Ti/Al/Ti/SnO2+Sb2O4/β-PbO2gives full expression to its excellent energy saving effect and economic value in the test of zinc production simulation.
引文
[1]W.H.Dennis. Metallurgy of the Non-ferrous Metals SIR ISAAC Pitman and Bons Ltd.[M]. London, 1961
    [2]A.W.Fletcher. Extn and Refining Inst of Metallurgists Review Course Series. 1970,11(4)
    [3]P.G.Thornhill, E. Wigstol, G.Van Weert.The Falconbridge Matte Leach Process[J]. J. Metals,1971,23(7):13-18
    [4]罗婕,田学达,魏学峰.深海锰结核资源的研究进展[J].中国锰业,2004,22(4):6-9
    [5]R.Sridhar, W.E.Jones, J.S.Warner. Extraction of Copper, Nickel and Cobalt from Sea Nodules[J]. J.Metals,1976,4:32-37
    [6]孟波,王吉坤,张红耀.锌冶金技术的发展概况[J].云南冶金,2010,39(2):99
    [7]Felder A, Prengaman R D. Lead alloys for permanent anode in the nonferrous metals industry[J]. J. Metals, 2006,58(10):28-31
    [8]Ivanov I. Increased current efficiency of zinc electrowinning in the presence of metal impurities by addition of organic inhibitors [J]. Hydrometallurgy, 2004, 72(1):73-78
    [9]张招贤,赵国鹏,罗小军.钛电极学导论[M].北京:冶金工业出版社,2008
    [10]张冬.锌电极用惰性阳极的研究现状[J].云南冶金,2008,37(6):48-19
    [11]郭夭立.低银阳极在锌电极中使用实践[C].第八届全国铅锌冶金生产技术及产品应用学术年会议文集,2001
    [12]吕少祥,戴曦.降低锌电积直流电耗生产实践[J].有色金属(冶炼部分),2001,(06):13-15
    [13]陈国华,王光信.电化学方法应用[M].北京:化学工业出版社,2003
    [14]彭根芳.锌电积直流电耗的实证分析与优化探讨[J].有色冶炼节能,2003,20(2):1 7-20
    [15]增子异.最近の亚铅製錬の進步と展望.东京:日本鉱業会,1981,2:78
    [16]增子异.最近の亚铅製錬の進步と展望.东京:日本鉱業会,1981,2:83
    [17]龟谷博.最近の亚铅製錬の進步と展望.东京:日本鉱業会,1981,2:82
    [18]蒋良兴,衷水平,赖延清.电流密度对锌电积用Pb-Ag平板阳极电化学行为的影响.物理化学学报,2010,26(09):2369-2374
    [19]陈康宁.金属阳极.上海:华东师范大学出版社,1989
    [20]张招贤.钛电极工学.北京:冶金工业出版社,2002
    [21]Beer H B. The invention and industrial development of metal anodes[J]. J Electrochem Soc,1980,127(8):303c-308c
    [22]Guan, Y.J., Xia, Y. Review on plasma electrolytic deposition. Adv. Mech,2004, 34(2):237-250
    [23]F. Pico, J. Ibanez, T.A.Centeno. RuO2 center dot Xh(2)O/NiO composites as electrodes for electrochemical capacitors-Effect of the RuO2 content and the thermal treatment on the specific capacitance [J]. Electrochim. Acta, 2006:4693
    [24]Yu. V. Pleskov, Yu.E. Evstefeeva, A.M.Baranov. Threshold effect of admixtures of platinum on the electrochemical activity of amorphous diamond-like carbon thin films[J]. Diamond and Ralated Materials. 2002,11(8):1518-1522
    [25]Shih-W Lee, Frank G. Shi, Sergey D. New copper seed-layer enbancement process metrology for advance dual-damascene interconnects [J]. J. Electron. Mater.,2003,32(4):272-277
    [26]RR Moskalyk, A Alfantazi, AS tombalakian. Anode effects in electrowinning[J]. Minerals Engineering, 1999,12(1):65-73
    [27]E. Mahe', D.Devilliers. Surface modification of titanium substrates for the preparation of noble coated anodes [J]. Electrochim. Acta, 2002,46:629-636
    [28]Chu DB, Shen GX, Zhou XF, et al. Electrocatalytic activity of nanocrystalline TiO2 films modified Ti electrode[J]. Chem.J. Chin. Univ.,2002,23:678-681
    [29]Zhu DB, Wang. E W, Wei. Y J. Elecrocatalytic activities and preparation of nanocrystalline TiO2-Pt modified electrode[J]. Acta Phys. Chim. Sin.,2004, 20(02):182-185
    [30]Petr Zuman, James F. Rusling. Polarographic studies of adsorption on mercury electrodes. Encyclopedia of Surface and Colloid Science, 2002:4143-4161
    [31]J.P. Gueneau de Mussy, J.V. Macpherson, J.L. Delplancke. Characterization and Behaviour of Ti/TiO2/Noble Metal Anodes[J]. Electrochim. Acta, 2003,48:1131-1141
    [32]Mozota J, Conway.B.E. Modification of apparent electrocatalysis for anodic chlorine evolution on electrochemically conditioned oxide films at iridium anodes[J]. J. Electrochem. Soc.,1981,128(10):2142-2149
    [33]唐电,林黄.失效分析方法在钛阳极中的应用[J].氯碱工业,1990.6:39-42
    [34]Payne DJ, Egdell R G, Hao JS. Why is lead dioxide metallic[J]. Chemical Physicas Letters, 2005 411 (1-3):181-185
    [35]Payne DJ, Egdell R G, Law DSL. Experimental and theoretical study of the electronic structures of α-PbO2 and β-PbO2[J]. Journal of Materials Science, 2007,17,267-277
    [36]Payne DJ, Egdell R G,Olicellig PA. Nature of electronic states at the Fermi level of metallicβ-PbO2 revealed by hard x-ray photoemission spectroscopy[J]. Physical Review B: condensed matter and materials physics,2007, 75(15):153102(1-4)
    [37]Carr JP, Hampson NA. Lead dioxide electrode[J]. Chemical Reviews. 1972, 72(6):679-703
    [38]Mindt W. Electrical Properties of Electrodeposited PbO2 Film[J]. Journal of the Electrochemical Society.1969,116(8):1076-1080
    [39]Jirkovsky J, Hoffmannov'a M., Krtil P.J. Nickel surface anodic oxidation and electrocatalysis of oxygen evolution[J]. Electrochem.Soc, 2006,153:E111-E118
    [40]Feng J, Johson DC. Electrocatalysis of anodic oxygen-transfer reactions:titanium substrates for pure and doped lead dioxide films[J]. Journal of the Electrochemical Society, 1991,138(11):3328-3337
    [41]Casellato U,Cattarin S.Preparation of porous PbO2 electrodes by electrochemical depositionofcomposites[J]. Electrochimica Acta, 2003,48(27):3991
    [42]Velichenko A B,Baranova E A,Girank D V. Mechanism of electrodeposition of lead dioxide fromnitrate solutions[J]. Russian Journal of Electrochemistry,2003, 39(6):615-621
    [43]梁镇海,王森,孙彦平Ti/SnO2+SbO2+RuO2/Pb2O4阳极研究[J].无机材料学报,1995,10(3):381-384
    [44]Berthome G, Prelot B, Thomas F. Manganese dioxides surface properties studied by XPS and gas adsorption[J]. Journal of the Electrochemical Society, 2004, 151(10):A1611-A1615
    [45]He Deliang, Mho Sun-1. Electrocatalytic reactions of phenolic compounds at ferricion co-doped SnO2、Sb5+ electrodes[J]. Journal of Electroanalytieal Chemistry, 2004,568(1-2):19-27
    [46]Gorodetskii V V, Neburchilov V A. Titanium anodes with active coatings based on iridium oxides:Asublayer between the active coating and titanium[J]. Russian Journal of Electro-Chemistry, 2003,39(10):1111-1115
    [47]Han W, Chen Y, Wang L. Mechanism and kinetics of electrochemical degradation of isothiazolin-ones using Ti/SnO2-SbO2 anode[J]. Desalination, 2011,276(1-3):82-88
    [48]Hwang BJ, Lee KI. Electropolymerization of pyrrole on PbO2/SnO2/Ti substrate[J]. Thin solid films,1996,279(1-2):236-241
    [49]石绍渊,孔江涛,朱秀萍.钛基Sn或Pb氧化物涂层电极的制备与表征[J].环境化学,2006,25(4):429-434
    [50]罗文秀,任鹏程,谭忠恪.Sn02薄层晶体的结构与透明导电性研究[J].功能材料.,1993,24(2):129
    [51]梁镇海,孙彦平Ti/SnO2+Sb2O4+MnO2/PbO2阳极性能的研究[J].无机材料学报,2001,16(1):183-187
    [52]薄占满.掺Sb二氧化锡半导体导电机理的实验探讨[J].无机非金属学报,1990,5(4):324-329
    [53]Meguru Inai, Chiaki Iuarura, Hideo Tamura電気化学プリ工業物理化学.1980,48(7):384-388
    [54]薛彩霞,梁镇海Ti/SnO2-Sb2O4+CF/PbOx电极的制备及其性能研究[J].太原理工大学学报,2007,38(5):431-434.
    [55]徐金法.电积锌阳极材质的发展[J].有色金属(冶炼部分),1995,26(1):39-41
    [56]Lupi,C., Pilone, D.. New lead alloy anode and organic depolarizer utilization in zinc electrowinning[J]. Hydrometallurgy, 1997,44(3):347-358
    [57]I. Ivanov, Y. Stefanov, Z. Noncheva. Insoluble anodes used in hydrometallurgy: Part Ⅰ.Corrosion resistance of lead and lead alloy anodes[J]. Hydrometallurgy, 2000,57(2):125-139
    [58]I. Ivanov, Y. Stefanov, Z. Noncheva. Insoluble anodes used in hydrometallurgy: Part Ⅱ. Anodic behavior of lead and lead-alloy anodes[J]. Hydrometallurgy, 2000,57(2):125-139
    [59]洪波.锌电积用铅基稀土合金阳极性能研究[D].长沙:中南大学.2010
    [60]袁学韬,吕旭东,华志强.电积铜用铅合金阳极的腐蚀行为研究[J].湿法冶金,2010,29(01):20-23
    [61]衷水平,赖延清,蒋良兴.锌电积用Pb-Ag-Ca-Sr四元合金阳极的阳极极化行为[J].中国有色金属学报,2008,18(7):1342-1346
    [62]刘漫博.铅基阳极在锌电积中的应用试验研究[D].西安:建筑科技大学,2008
    [63]Stefanov Y, Dobrev T. Potentiodynamic and electronmicroscopy investigations of lead-cobalt alloy coated lead composite anodes for zinc electrowinning[J]. Transactions of the Institute of Metal Finishing,2005,83(6):296-299
    [64]Rashkov S, Doberev T, Noncheva Z. Lead-cobalt anodes for electrowinning of zinc from sulphate electrolytes[J]. Hydrometallurgy, 1999, (52):223-230
    [65]Hrussanova A, Mirkova L, Dobrev T. Influence of temperature and current density on oxygen overpotential and corrosion rate of Pb-Co3O4, Pb-Ca-Sn, and Pb-Sb anodes for copper electro wining:Part I [J]. Hydrometallurgy, 2004, 72(3-4):205-213
    [66]Hrussanova A, Mirkova L. Dobrev T. Influence of additives on the corrosion rate and oxygen overpotential of Pb-Co3O4, Pb-Ca-Sn, and Pb-Sb anodes for copper electro wining:Part Ⅱ[J]. Hydrometallurgy, 2004,72(3-4):205-213
    [67]Hrussanova A, Russanova A. Mirkova L. Electrochemical properties of Pb-Sb, Pb-Ca-Sn and Pb-Co3O4 anodes in copper electro wining[J]. Journal of Applied Electrochemistry, 2002,32(5):505-512
    [68]Petrova M, Stefanov Y, Noncheva Z. Electrochemical behavior of lead alloys as anodes in zinc electrowinning[J]. British Corrosion Journal,1999,34(3):198-
    [69]P.a.dykstra, C.H.kelsall. Influence of Crystal Structure and Interparticle Contact on the Electrochemical Properties of PbO2 Electrodes[J]. Journal of Applied Electrochemistry,1989,19:697-702
    [70]S.Timur, K.Hein. Metallwissensehaft and Teehnik, 1995,49:7-8
    [71]潘君益,郭忠诚.锌电积用惰性阳极材料的研究现状[J].云南金,2004,33(6):3]-35
    [72]J.K.Walker, J.I.Bishara. Anodes for Electrowinning. ed. Douglas Robinson and Stephen James (Warrendale. PA:The Metallurgical Society of AIME).1994:78
    [73]周雍茂.电积用阳极[M].长沙:中南工业大学出版社,1991.93-102
    [74]曹建春,郭忠诚,潘君益.新型不锈钢基PbO2/PbO2-CeO2复合电极材料的研制[J].昆明理工大学学报,2004,29(5):38-41
    [75]潘君益.锌电积用A1基Pb-WC-ZrO2复合电极材料的研究[D].昆明:昆明理工大学,2005
    [76]苗广治.电沉积法制备SS/PbO2-WC-ZrO2聚苯胺复合惰性阳极材料的研究与应用[D].昆明:昆明理工大学,2005
    [77]叶匀分,王志宏,李承瑞.采用高过电位阳极处理废水中酚的研究[J].上海火攻设计与研究,1999,24(11):18-21
    [78]Feng J, Johnson D C. Electro catalylysis of anodic oxygen-transfer reaction, Alpha-lead dioxide electrodeposited on stainless sunstrates[J]. Journal of Applied Electrochemistry,1990,20(1):116-124
    [79]王桂清,刘敏娜.塑料基体上化学镀二氧化铅[J].电镀与环保,1995,15(3):21-22
    [80]王桂清,刘敏娜.聚丙烯塑料板基体二氧化铅电极的制备[J].材料保护,1995,28(3):18-19
    [81]王桂清,刘敏娜.ABS塑料板基体二氧化铅电极的制备[J].无机盐工业,1995,(4):31-32
    [82]周海晖,陈范才,赵常就.环氧板二氧化铅电极的制备及其性能测试[J].表面技术,2000,29(2):15-16
    [83]陈正方,蒋汉瀛.PbO2-ABS塑料电极的制备及其性能[J].材料保护,1992,25(1):6-7
    [84]2009年锌的产销情况汇总[J].矿产勘查,2010,5:421
    [85]张招贤.钛电极学导论[M].北京:冶金工业出版社,2008:282
    [86]刘静安.铝合金材料的应用与技术开发[M].北京:冶金工业出版社,2004
    [87]Ren Jiangwei, Li Yajiang, Feng Tao. Microstructure characteristics in the interface zone of Ti/Al diffusion bonding [J]. Materials letters, 2002,56(5):647-652
    [88]Trasatti S. Electrocatalysis in the anodic evolution of oxygen and chlorine [J]. Electrochemical Acta,1984,29(11):1503-1512
    [89]Trasatti S. Physical electrochemistry of ceramic oxides [J]. Electrochemical Acta, 1991,36(2):225-241
    [90]陈颙,陈凌.分形几何学[M].北京:地震出版社,1998:1-7
    [91]F.Hine, M.Yasuda, T.Noda, T.Yoshida, J.Okuda, Studies on the Oxide-Coated Metal Anodes for Chlor-Alkali Cells[J]. JElectrochem Soc. 1977,124(4):500-505
    [92]Stanley Langer H, Stephen J.Pietsch. Porous Ruthenium Titanium Oxide Electrodes[J]. J ElectrochemSoc.1979,126(7):1189
    [93]Hrussanova A, MirkovaL, Dobrev T. Anodic behaviour of the Pb-Co3O4 eomposite coating in copper electrowinning[J]. Hydrometallurgy, 2001,60(3):199-213
    [94]刘荣义,张文山,梅光贵.锌电积各种因素对阳极析出MnO2电流效率的影响[J].中国锰业,2000,18(4):29-32
    [95]Kattner U R, Lin J C, Chang Y A. Metallurgical Transactions A,1992, 23A(8):2081
    [96]岳云龙,吴海涛,吴波TiAl化合物的热爆合成热力学与动力学分析[J].济南大学学报,2005,19(2):106
    [97]郭佳鑫,Ti/Al复合材料的界面演变及性能研究[D].昆明:昆明理工大学,2012
    [98]郭鹤桐,电化学教程[M].天津:天津大学出版社,2000
    [99]张招贤,应用电极学[M].北京:冶金工业出版社,2005
    [100]E. Winger. On the Interaction of Electrons in Metals[J]. Phys. Rev.,1934,46(11):1002
    [101]陈延禧.电解工程学[M].天津:天津科学技术出版社,1993:72-74,76
    [102]Milan Calabek. Influence of grid design on current distribution over the electrode surface in a lead-acid cell[J]. Journal of Power Sources,2000,85:145-148
    [104]戚正风.固态金属中的扩散与相变[M].北京:机械工业出版社,1998
    [105]潘金生,仝健民,田民波.材料科学基础[M].北京:清华大学出版社,2005
    [106]蒋淑英Al/Fe、Al/Ni、Al/Ti液/固界面扩散溶解层研究[D].北京:中国石油大学,2010
    [107]Tanaka Y, Kajihara M, Watanabe Y. Growth behavior of compound layers during reactive diffusion between solid Cu and liquid Al [J]. Materials Science and Engineering: A,2007,445-446:355-363
    [108]粱镇海,张福元,孙彦平.耐酸非贵金属Ti/MO2阳极SnO2+Sb2O4中间层研究.稀有金属材料与工程[J].2006,35(10):1605-1609
    [109]Chen Xueming, Chen Guohua. Electrochim Acta[J].2005,50(20):4155
    [110]李荻.电化学原理[M].北京:北京航空航天大学,2000:87
    [111]杨显万,何蔼平,袁宝州.高温水溶液热力学数据计算手册[M].北京:冶金工业出版社,1983
    [112]李仕雄,刘爱心.电解液质量对锌电积过程的影响及其在线控制[J].中国有色金属学报,1998,8(3):519-522
    [113]C. Y. Chen, M.D.Urbani, P. M iovski. Evaluation of saponins as acid mist suppressants in zinc electrowinning[J]. Hydrometallurgy, 2004,73:133-145
    [114]李文超.冶金与材料物理化学[M].北京:冶金工业出版社,2001:457-467
    [115]李荻.电化学原理[M].北京:北京航空航天大学,2000:102-103
    [116]李荻.电化学原理[M].北京:北京航空航天大学,2000(2):73
    [117]Michael E. Hyde, Robert M.J.Jacobs, Richard G.Compton. An AFM study of the correlation of lead dioxide electrocatalytic activity with observed morphology[J]. J.Phys. Chem.B, 2004,108:6381-6390
    [118]Jeanne Burbank. Anodization of lead and lead alloys in sulfuric acid[J]. Journal of Electrochemical Society, 1957,104:693-701
    [119]Minhua Cao, Changwen Hu, Ge Peng. Selected-control synthesis of PbO2 and Pb3O4 single-crystalline nanorodes[J]. J.Am.Chem. Soc, 2003,125:4982
    [120]宋建梅,黄效平,陈康宁.高氧超电极在电解法生产氯酸盐中的应用[J].氯碱工业.2000,6:3-6
    [121]Marco Musiani, Ferdinando Furlanetto, Renzo Bertoncello. Electrodeposited PbO2+RuO2: a composite anode for oxygen evolution from sulphuric acid solution[J]. Journal of Electroanalytical Chemistry, 1999,465:160-167
    [122]D.Devilliers, M.T.Dinh Thi, E. Mahe'. Electroanalytical investigations on electrodeposited lead dioxide[J]. Journal of Electroanalytical Chemistry, 2004, 573:227-239
    [123]A.B.Velichenko, D. Devilliers. Electrodeposition of fluorine-doped lead dioxide[J]. Journal of fluorine chemistry, 2007,128(4):269-276
    [124]王峰,俞斌.一种新型Pb02电极的研制[J].应用化学,2002,19(2):193-195
    [125]陈振芳,蒋汉瀛,舒余德.电沉积Pb02工艺参数、结构组织、机械性能关系的研究[J].化工冶金,1991,12(2):122-128
    [126]庄京,邓兆祥,梁家和β-PbO2纳米棒及Pb304纳米晶的制备与表征[J].高等学校化学学报,2002,23(7):1223-1226
    [127]石绍渊,孔江涛,朱秀萍.钛基Sn或Pb氧化物涂层电极的制备与表征[J].环境化学,2006,25(4)
    [128]吴志荣.影响二氧化铅镀层质量的原因[J].表面技术,1989,5:29-33
    [129]Okido M, Depo J K, Capuano G A. The mechanism of hydrogen evolution on a modified raney-nickel composite-coated electrode by AC impedance [J]. JElectrochem Soc,1993,140(1):127-133
    [130]Feng J, Johason D C. Alpha-lead dioxide electrodeposited on stainless steel substrates [J]. Journal ofApplied Electrochemistry,1990,20(1):116-124
    [131]方惠群,于俊生,史坚.仪器分析[M].北京:科学工业出版社,2010:103-105
    [132]Trasatti S. Electrocatalysis in the anodic evolution of oxygen and chlorine[J]. Electro-chimica Acta,1984,29(11):1503-1512
    [133]张鉴清,曹楚南.电化学原理[M].北京:北京大学出版社,2000:200
    [134]梁镇海,边书田,任所才.硫酸中钛基二氧化铅阳极研究[J].稀有金属材料与工程,2001,30(3):232
    [135]J Kristof, Tamos Szilogyi, Erzsebet Horvoth. Frost, Akos Redey[J]. Thermochim Acta, 2004,423:93
    [136]张鉴清,曹楚南.电化学阻抗谱方法研究评价有机涂层[J].腐蚀与防护,1998,19(3):99
    [137]李荻.电化学原理[M].北京:北京航空航天大学,2000:35
    [138]纯金属的抗拉强度[J].鞍钢技术,1980,4:43
    [139]陈洪荪,尤世武,胡幼芬.金属弹性模量的统计计算[J].稀有金属材料与工程,1993,22(5):67-73
    [140]吴进明,李志章,叶仲屏.快速凝固Al-Ti合金的再结晶[J].材料科学与工程,2000,18(1):36-39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700