河套盆地西部高砷地下水系统中的地球化学过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内蒙古河套盆地位于我国西北部干旱一半干旱地区,是中国典型的地方性砷中毒病区之一,受威胁人口达30万之多。位于盆地西部的杭锦后旗,是内蒙古自治区最严重的砷中毒旗县,共涉及9个乡镇35个村,高砷暴露人数达七万六千余人,患病人数为1169人,重病区地下水中砷含量在0.35-1.74 mg/l,最高值超过国家生活饮用水卫生标准限定值100多倍。全旗未进行改水的地区继续饮用高砷、高氟及苦咸水的人数达到16.86万,占到全旗人口的半数之多。病区靠近阴山山前自西向东呈带状分布,村民祖祖辈辈饮用高砷水,多数人患有不同程度的砷中毒症状,无法从事正常的生产和生活活动。高砷地下水导致的砷中毒严重危害了老百姓的身体健康,制约了当地的经济和社会发展。国家和地方政府对此高度重视,国家将拿出200亿元解决农村人口的吃水难问题,尤其是砷、氟中毒病区。我国政府已提出,到2010年砷中毒病区要通过改水实现水质达到农村生活饮用水卫生标准。因此,查清高砷地下水成因机制,对于正确指导当前的改水工作、防治砷对环境和人类的危害,促进社会和谐发展,都具有重要的现实意义。
     地下水砷污染问题是世界性的环境问题,也是当今环境科学领域研究的热点。河套盆地是一个中新生代断陷盆地,经历了新生代以来的各种地质环境的变化,包括构造运动、气候变化、黄河的泛滥改道等。此外,引黄灌溉在该区也有近千年的历史。因此,河套地区的地下水系统受到上述各种天然和人类活动的共同影响,使得砷在含水层中的富集和迁移机制更为复杂。因此,开展河套地区高砷地下水系统地球化学过程的研究,查明水砷中毒区的水文地质背景,掌握高砷水的分布规律及砷在含水层中的赋存形态,分析影响砷迁移富集的各种自然和人为活动要素,对揭示该区高砷水的形成机制有着重要的科学意义。
     本文通过分析河套盆地的形成及构造演化历史,古气候及地质环境的变化,确定了河套盆地沉积环境演化的基本框架。河套盆地沉积环境的演变过程与地下水系统的形成演化具有重要的内在联系。河套盆地沉积环境的变化和更新世以来的气候变化直接影响了地下水循环和水化学场的演化。从构造活动、古气候变化及古水文地质等角度,在大的时间尺度下探讨地下水系统的结构及沉积环境的变化,了解地下水演化的总体格局对于科学认识地下水系统的地球化学过程,并合理解释地下水系统中As、B等微量元素的来源和富集原因提供重要的背景。
     以杭锦后旗作为典型研究区,通过大量的野外调查采样及地下水水化学资料的分析,掌握了区内的基本水化学特征:大多数地下水含盐量较高,阴离子以氯离子和重碳酸根离子为主,阳离子以钠离子为主。地下水水化学组成自研究区边缘向中心的低洼地带呈现显著的差异。沿研究区北面的阴山山前和接受黄河水补给的研究区南缘,地下水TDS一般小于1g/1,地下水以Na-(Mg)-HCO_3及Na-HCO_3-Cl型为主;在中部地区,大多为矿化度较高的Na-Cl-HCO_3或Na-Cl型水。值得注意的是,地下水中As、F、B和Br等元素相对富集,在局部地区Ba、U等元素的含量也较高,大大超过国家生活饮用水卫生标准限定值。在高砷地下水中,往往SO_4~(2-)和NO_3~-含量较低,而HPO_4~-、氨氮、硫化物及溶解性有机碳浓度较高,还伴随着一定浓度的V、Sb、Mo和W。
     结合研究区水文地质条件、沉积环境以及人为活动等因素,对研究区进行了浅层地下水水环境分区,即山前溶滤区(Ⅰ)、黄河侧渗区(Ⅱ)、采矿影响区(Ⅲ)、还原环境区(Ⅳ)混合叠加区(Ⅴ)、洼地浓缩区(Ⅵ)。其中,山前溶滤区(Ⅰ)处于地下水补给区,地下水水质较好;黄河侧渗区(Ⅱ)受南部黄河水的影响较大,地下水径流条件略好于水流滞缓蒸发强烈的中部地区,其含盐量明显低于盆地中部。采矿影响区(Ⅲ)的地下水靠近东升庙超大型硫化铁矿床一带,由于黄铁矿的氧化导致水中SO_4~(2-)含量异常。还原环境区(Ⅳ)在靠近山前的平原区,含水层以富含有机质的冲积机质湖积沉积物为主,地下水呈现出显著的还原环境特征。(Ⅴ)混合叠加区位于山前洪积扇的前缘向地形坡度较小的平原区过渡的区域,含水层沉积物变细,透水性变差,地下水的含盐量增加,同时灌渠分布于其中,黄河水通过灌渠渗入地下,淡化混合,水化学类型较为复杂。洼地浓缩区(Ⅵ)位于盆地中心,沉积物颗粒细,且含水层之间有粘土隔水,致使地下水水流不畅,在干旱气候下,强烈的蒸发浓缩作用,使得地下水中TDS及各宏量组分浓度均居全区最高,水质较差,多为氯化物型水和氯化物—硫酸盐型水。
     决定该区水化学特性的主要水文地球化学过程包括:水解过程、溶解沉淀过程、蒸发浓缩过程、氧化还原过程及混合过程。铝硅酸盐等原生矿物的水解过程(非全等溶解)形成了次生矿物高岭土,并使水中的K、Ca、Na、Mg、HCO_3~-等离子的增加;然而,随着水中TDS和Cl~-浓度的逐渐增加,Ca和Mg在水中富集受到了方解石和白云石或者蒙脱石沉淀过程的限制;干旱少雨的气候条件加上水流滞缓的地下水运动特征,使得蒸发浓缩作用成为水中盐度、Na~+和Cl~-浓度增加的主要过程。在盆地中部,沉积物含淤泥质及粘土夹层,富含有机质,逐渐形成了还原性较强的地下水环境,地下水中多组氧化还原反应并存,有利于砷的富集。同时研究区内灌渠纵横交错,灌渠里的黄河水与地下水的混合或淡化,使得区内淡咸水错综分布,水化学环境较为复杂。
     通过微量元素和氢氧同位素地球化学的研究,对地下水系统中的地球化学过程有明显指示作用。表明蒸发浓缩过程对地下水中Na、Cl及微量元素B,Br,As,F的富集具有重要影响;多年的引黄灌溉历史导致地下水位的抬升,加速了表土及浅层地下水盐分的聚集;引黄灌溉对含水层沉积物中某些化学组分(如硼)的释放有重要影响,并与地下水产生明显的混合作用;苏打水环境有利于As、F、B同时富集。随着pH增加,砷会从矿物表面解吸从而进入水相;Ca离子浓度较低的碱性环境利于地下水中的羟基置换含氟矿物中可交换的氟,从而进入地下水:高浓度的HCO_3与硼竞争吸附,使硼从有机质、粘土矿物及金属氧化物表面解吸进入地下水。锶同位素的研究表明靠近山前的地下水受到阴山山前高~(87)Sr/~(86)Sr背景的基岩溶滤的影响,~(87)Sr/~(86)Sr比值明显高于其他地下水样。而远离山前的地下水受到灌渠水的混合作用和蒸发作用的共同影响。此外,锶同位素组成指示了区域和局部的水流方向,并证实来自阴山,尤其是靠近多金属硫化物矿床区域的基岩风化是区内地下水中砷的原始来源之一。
     研究通过对砷中毒病区的调查和高砷地下水水化学类型的系统分析发现:高砷病区靠近阴山山前由西南向东北呈条带状分布。病区居民取水的层位主要位于地下20~35米的深度范围内,砷浓度普遍较高的水化学类型为HCO_3型、Cl-HCO_3型、Cl型及HCO_3-Cl型。TDS平均含量在1500 mg/l,在含盐量更高的水中,砷的浓度不超过50μg/l。高砷地下水的水化学特征表现为:较高的pH和碱度,强的还原环境,水中砷以As(Ⅲ)为主,占溶解的As的比例平均值达到85%,随着地下水中溶解的砷的浓度增加,As(Ⅲ)所占的比例呈增加的趋势;从颗粒态砷占总砷的比例来看,一般都在10%左右,最高超过了30%。此外,地下水中的某些无机组分与砷的浓度分布有密切关系,如磷酸盐、重碳酸盐、Sb、U、W等。这些组分与砷或者有着共同的来源,或者受到某些相同的地球化学过程的控制,如吸附过程或者氧化还原过程等。通过因子分析方法对高砷水化学资料的分析提取出影响高砷地下水化学特征的“盐渍化因子”、“还原环境因子”、“碳影响因子”及“吸附因子”。其中“盐渍化因子”和“碳影响因子”对杭锦后旗高砷地下水水化学特征的影响是本研究与世界其他高砷含水层相比较为突出的特点。
     杭锦后旗浅层高砷地下水的形成与强烈的还原环境密切相关,表现为水中高浓度的DOC、HCO_(3~-)、NH_(4~+)、硫化物,浓度较低的硝酸盐和硫酸盐,以及局部地区高含量的甲烷气体。局部地下水中甲烷最高达到5107.7μg/l,指示出地下水处于极强的还原环境,这与第四纪湖相沉积环境及盆地的快速下降直接相关。通过对地下水还原环境的表征发现,不同区域的地下水经历着不同的氧还还原过程,还原环境的主要驱动力是多样化的,不同的还原环境指示物可以在同一地区同时富集。多种氧化还原敏感组分在地下水中并存的证据表明地下氧化还原分带存在重叠,这可能与在Fe-S-C复杂的地下氧化还原体系中多种微生物群落在新陈代谢过程中电子供体和电子受体复杂的循环过程有关。
     通过对研究区高砷钻孔和对照区钻孔沉积物的岩性变化、矿物组成和化学组成的分析,表明二者有显著区别:高砷区沉积物表层都有约10米的粘土或亚粘土覆盖,主要含水层为黑色或黑灰色中细砂层,砂层之间都被数层粘土夹层隔开,细粒的粘土层中含砷量往往较高。沉积物矿物组成以石英、长石、粘土矿物(蒙脱石、绿泥石、伊利石)为主,含有少量的闪石和方解石。不同岩性的沉积物之间矿物组成差别很大。高砷区沉积物中砷的含量在6.8-58.5 mg/kg,平均值达到16 mg/kg,高砷的层位主要位于地下15-25米的位置。对照区沉积物砷含量3-21.8 mg/kg,平均值为9.9 mg/kg。沙海钻孔沉积物中As与Fe、Sb、B、V、总碳、总S在剖面变化规律上较为一致。
     通过对沉积物中砷赋存形态的表征,从草酸草酸铵和盐酸羟胺选择性提取结果来看,沉积物中约1/3的As与铁的氧化物结合,而与锰的氧化物结合的量较少,仅占2%左右。逐级提取砷形态结果表明除后三步强酸提取的与坚固矿物相结合的砷形态外,强烈吸附态砷(F2)、与无定形氢氧化铁结合的砷(F4)及与挥发性硫、碳酸盐等结合的砷(F3)占主要部分,三者之和占总砷额比例在50%以上。可交换态砷(F1)和与结晶氢氧化铁结合的砷(F5)所占比例很小。砷从矿物表面的解吸和氢氧化铁还原性溶解是控制研究区含水层砷释放的主要地球化学过程,但二者的相对贡献大小在局部地区存在差异。
     砷在地下水系统中的迁移释放是一个宏观—微观多因素综合作用的结果,其成因既受到宏观上区域地质构造背景、第四纪环境演化及局部水动力条件的影响,又受到微观上沉积物矿物表面特征和地下水环境中各种化学组分及氧化还原环境的控制。区域构造地质背景及沉积环境的演化是高砷地下水形成的先决条件,地下水系统中的水文地球化学过程是高砷地下水形成的控制因素,引黄灌溉对高砷地下水的形成有一定影响。
     本文的创新点体现在:(1)系统研究了河套盆地西部As、B、F等微量元素的地球化学行为,并阐述了引黄灌溉对研究区水化学场的影响;(2)通过区域地质构造、古沉积环境演化、水文地球化学过程的研究、地下水化学和沉积物特征及砷在含水层中的赋存形态分析,借助同位素技术,从宏观与微观相结合的角度有效揭示了高砷水的形成机制。
Hetao Basin(the Great Bend of Yellow River)of Inner Mongolia is located in the arid-semiarid region of northwestern China,which is one of the representative arseniasis-affected areas in China,where more than 300,000 victims of arseniasis.Hangjinhouqi county at the western part of Hetao Basin is the most serious and representive endemic arseniasis area in Inner Mongolia.About 76,000 people exposured in arseniasis area in 35 villages from 9 towns,among them there have been 1169 arseniasis patients.Most groundwater from arseniasis area contained high As with the concentration from 0.35 to 1.74 mg/1,which exceeds maximum contaminant level(MCL)based on the health risk associated with arsenic in drinking water(10μg/l)more than 100 times.Up to date,about 50%residents are still using groundwater with high contents of arsenic,TDS or high fluoride as the only source of potable water.Geographically, arseniasis-affected areas stretch southwest-northeast along Yin Mountains front.Residents have taken high arsenic groundwater as their potable water from generation to generation,most of them suffer from the arseniasis to different extent,which affect their daily life and normal production activity.Long-term intake of the high arsenic groundwaters has caused waterborne arsenic poisoning,which seriously endanger the redients and impede the sustainable development of local economy and society.National and local government attach great importance to this problem,20 billion RMB will be spent to resolve the difficulty on safe potable water in rural area, especially the endemic arseniasis and fluorosis area.Therefore,better understanding the genesis of high As groundwater is of pratically significance in correctly guiding current water source transforming and removal of arsenic from groundwater.
     Arsenic contamination in groundwater is a serious environmental issue all over the world, which is also the hot topic in environmental study.Hetao basin is a fault basin formed in Mesozoic and Cenzoic,which experienced geological environment changes since Cenozoic, including tectonic movement,climate change,flowage and watercourse change of Yellow River and son on.Furthermore,irrigation using delivered Yellow River water has a long history for thousands of years at Hetao Plain.Groundwater system in Hetao was influenced by both natural conditions and anthropogenic activities,which makes the arsenic enrichment and mobilization more complicated.Thus,the study on major factors and geochemical processes controlling arsenic mobilization in shallow aquifers at Hetao Basin has important scientific meaning,based on the investigation of the regional hydrogeological background and distribution of high As groundwater in the arseniasis area,the speciation analysis of As in both groundwater and sediments,discussion on natural and anthropogenic factors affecting As enrichment and release.
     The framework of evolution of sedimentary environment in Hetao basin is discussed based on analysis of changes of tectonic movement,paleo-climate,paleo-geology environment.The form and evolution of groundwater in Hetao basin are internally associated with the evolution of sedimentary environment.The changes of sedimentary environment and corresponding climate process directly affect regional groundwater flow and hydrogeochemical evolution.Groundwater system evolution is discussed at long-time scale in view of paleo-climate,paleo-tectonic movement,paleo-geology environment and hydrogeology.The general pattern of groundwater evolution is the most important background for scientifically understanding the geochemical process occurred in groundwater system and for reasonably comprehending the origin and enrichment for some minor elements such as As,B in groundwater system.
     Hangjinhouqi is selected for our case study.According the analysis of regional hydrogeotogical setting and large amounts of groundwater chemical data,the basic hydrochemical characteristics is summarized as follows:Most water samples have high TDS, with Cl and HCO_3 as the dominant anions and Na as the dominant cation.The chemical composition of groundwaters varied from the margins towards the low-lying areas in the centre of the study area.Along the Yin Mountains front in the northern part of this area,as well as the southern part receiving recharge from the Yellow River,shallow groundwaters are generally of Na-HCO_3 or Na-HCO_3-Cl type,while in the central parts of Hangjinhouqi,mostly Na-Cl-HCO_3 or Na-Cl type.
     The study area is located in the Hetao fault depression basin and yellow river diverting irrigation plain with arid and semi-arid climate.Due to paleogeography,hydrology,geological Structure and human activity,with dissolution,mixture,evaporating concentration,ion exchange, oxidation and reduction,the components in groundwater transport and enrich,representing different chemical characteristics.Because of the yellow river's rechannel and irrigation,the fresh water,salt water,high-arsenic water and high-fluorine water distribute interlacedly, hydrochemical enviroment is very complicated.
     Due to differences of groundwater flow condition and hydrogeological units, hydrochemical classification represents zonation in spatial variation.From fan margin to plain center,the flow condition weaken,water quality changes from fresh to salty,salinity increases gradually,and the groundwater types from fresh bicarbonate water turn to saline chloride-sulfate water.The study area affected by yellow river,salinity is relatively low(TDS<1.5 g/l),mainly belong to carbonate water with little bicarbonate-chloride water.
     According to hydrogeological condition,sedimentary environment and human activities,the shallow groundwater in Hang jinhouqi is classified into six zones:piedmont soluable-filter zone (Ⅰ),yellow river lateral seepage zone(Ⅱ),mining affecting zone(Ⅲ),reductive environment zone(Ⅳ),mixing zone(Ⅴ),depression concentrated zone(Ⅵ).Among them,piedmont soluable-filter zone locates in groundwater recharge region,with HCO_3 as main anion and Na~+ as main cation in groundwater.Water quality in this zone is good;yellow river lateral seepage zone (Ⅱ)affected southern yellow river,flow condition is better than central part with slow flow and strong evaporation,with HCO_3~- still as main anion and lowest As and Fe contents;groundwater in mining affecting zone(Ⅲ)has abnormal SO_4~(2-)content,due to oxidation of pyrite,the highest amount could be 1550 mg/l,and the average TDS reaches 2313 mg/l.The hydrochemical type belongs to sulfate-chloride groundwater,reductive environment zone(Ⅳ)is close to piedmont plain,representing strong reductive environment from west to northeast,with the highest contents of DOC,ammonia-nitrogen,sulfide,HPO_4~- and Ba;mixing zone(Ⅴ)locates in transition region from front of proluvial fan to low-slope plain.With hydraulic gradient decreasing,sedimentary in aquifers becomes fine,permeability turns weak,yellow river infiltrates into ground,hydrochemical characteristics become complicated,with chloride-bicarbonate water and bicarbonate-chloride water as main types;depression concentrated zone(Ⅵ)is in depression zone of the plain centre and the front of proluvial fan, with lacustrine deposited fine sand and clay layers between aquifers,which made groundwater flow slow.In arid climate,strong evaporation results into highest contents of TDS and main components,the water type are mainly chloride type or chloride-sulfate type.
     The main hydrogeochemical process defining the hydrochemical characteristics of the study area includes:hydrolysis process,dissolution-precipitation process,evaporating concentration,ion exchange,mixture,oxidation and reduction.The primary mineral,such as aluminosilicate,hydrolysis process forms secondary mineral kaolinite,and increases the contents of K、Ca、Na、Mg、HCO_3~-;However,with the TDS and Cl~- increasing,the enrichment of Ca and Mg is limited by calcite and montmorillonite precipitation;drought climate with slow flow makes the evaporating concentration as the main process increase TDS,Na~+ and Cl~-.In the middle of the plain,the sediment contains silt and clay interlayer,rich in organic components,forming strong reduction environment,which is helpful for arsenic enrichment.The mixture of yellow river and groundwater lead to complex hydrochemical environment.
     Hydrogeochemical behavior and accumulative mechanism of several important trace elements,such as B,Br,F was discussed,especially the genesis of groundwater salinization and the relationship between soda-water environment and high concentration of boron,arsenic and fluoride.With the stable isotope analysis(hydrogen oxygen isotopes and strontium isotope),the dissertation identified the main factors controlling the hydrochemical characteristics of the study area,the ratio of strontium isotope revealed the flow direction and sources direction of regional groundwater.The main understandings are as follows:1).The study on hydrochemisty and hydrogen oxygen isotopes of the study area suggestes that evaporating concentration played an important role in accumulation of Na,Cl and some trace elements,such as B,Br,As,F.2).The genesis of groundwater salinization is associated with geological structure,evolution of paleoclimate,variation of quaternary sedimentary environment,groundwater flow condition and human activities.3).Sodawater environment is benefitfle for simutaneous accumulation of As,F, B.With pH increasing,arsenic will come into groundwater desorbing from minerals;alkaline condition with low concentration of Ca is helpful for hydroxy displacement in groundwater;high concentrtion of HCO_3 makes boron easier to desorbe from organic matters,clay minerals and metal oxide.4).Long-term irragation from yellow river leads to groundwater table increasing, which speeds up salinity accumulation in surface soil and shallow groundwater;besides, geochemical data of trace elements and isotopes verify that irrigation from yellow river playes a significant role in releasing some chemical element(such as boron)and mixing effect.5).The study on strontium isotope suggest that piedmont groundwater affected by bedrock lioxiviation with high ~(87)Sr/~(86)Sr background value,~(87)Sr/~(86)Sr value is higher that other samples,which may affected mainly by mixing process and evaporation effect.In addition,the components of strontium isotope reveal the regional flow direction and verify that the original source of arsenic in groundwater is bedrock weathering which is close to polymetallic sulfide deposit.
     The formation of high arsenic groundwater in Hang jinhouqi is relative to strong reductive environment,representing high level DOC,HCO_3~-,NH_4~+,sulfide,methane gas in some region and low content of nitrates and sulfate.Forming reductive environment is inseparable with basin tectonic activities and change of sedimentary environment.Quaternary in Hetao basin is composited by river-lake sedimentary system.In middle pleistocene,giant thick lake sediments was formed in basin.Mudstone rich in organic matter and humus developed well in north of the basin,besides,a lot of buried herbaceous plants provied material sources for methane bacteria growth.Hetao basin experienced fault-developing stage and depression sedimentation stage, while Hang jinhouqi located in the centre of sedimentation,with 5000m-thick pliocene formation and 1.85 mm/a sedimentary speed.The fast sedimentation leaded to the geochemical environment which was helpful for accumulation and biochemical reaction of organic matter.
     High-arsenic groundwater mainly represent As(Ⅲ),accounting to 41~98%of total soulable As,average value 85%.This also verified that the groundwater is in strong reduction environment.It should be mentioned that the particle arsenic in groundwater of the study area is up to 172.5μg/l,more than 1/3 water samples the particle arsenic over 50μg/l.The proportion of particle arsenic to total arsenic is about 10%,with the highest exceeding 30%.
     Based on quantitive hydrochemical data,using factor analysis method,the disstertation identified four factors controlling hydrochemical characteristics in high-arsenic groundwater: salinization factor,reducing environment factor,carbon effecting factor and absorption factor. Among them,the the first three factors affect obviously.Salinization factor and carbon effecting factor is theprominent characteristics different from other high arsenic aquifers.The hydrogeochemical characteristics are quite different from those from other high-As groundwater regions under reducing conditions,such as Bangladesh,West Bangal and Hungary,as well as Datong basin in Shanxi province and Huhhot Basin in Inner Mongonia of China,due to extremely strong evapotranspiration resulting from the arid climate,also affected by regional geology,sedimentology,palaeoclimate evolution,paleohydrogeology,water-rock interaction and human activities.
     The evolution of high-As shallow groundwater in Hangjinhouqi with high content of DOC、HCO_3~-、NU_4~+、and sulfide,low content of nitrates and sulfates and highly concentrated methane in some area,which reaches 5107.7μg/l is closely correlated to the intense reducing environment caused by quaternary lacustrine sediments and rapid subsidence of the basin.According to the characterization of the reducing environment in groundwater,different districts have been through different oxidation-reduction processes.The driving force for reducing environment is varying and different indicators can concentrate in the same region at the same time.
     Two cored boreholes(Shahai and Tuanjie village)were drilled in hydrogeologically distinct areas with the depth of 50 m.The observed range of total As concentrations in sediments are 7.7-34.6 mg/kg and 6.8-58.5 mg/kg,respectively.The concentrations correlate positively with Fe oxides.High sulfur content is detected in the sediments of Shahai,up to 0.194%assocaiated with high As concentration(34.6 mg/kg)with the depth of 25 m.Another borehole was drilled for comparison in Erdaoqiao in the south of our study area,where the concentration of As in groundwater is quite low(2μg/l).The range of As concentration in the sediments is 3-21.8mg/kg, with the average value of 9.9 mg/kg.
     Up to one third of arsenic is ammonium oxalate-extractable and taken to be associated largely with Fe oxides.Only 2%of arsenic is hydroxylamine hydrochloride-extractable and taken to be associated with Mn oxides.Selectively sequentical extraction procedure has been used to investigate sediment As associations.Results show that approximately 35%of total As extracted by PO_4(strongly absorbed As)in sediments,also higher percentage of Oxalate-extractable As(As incorporated in amorphous iron oxides),concentrated HNO_3 and H_2O_2 extractable As(As associated with sulfides and organic matter),HCl-extractable As (targeting acid volatile sulfides,carbonates and amorphous metal oxides).The release of As into solution is believed to be by desorption coupled with reductive dissolution of the Fe oxide minerals.
     The release of As in groundwater system is an integration of macro-micro multifactor;its cause of formation is affected macrocosmically by regional geological structure,quaternary environment revolution and hydraulic dynamics,and also microcosmically by mineralogical properties of sediments and chemical constituents in groundwater.The former factor is the precondition for the formation of high-As groundwater and the latter is the controlling factor. Besides,irrigation using deliverd Yellow River water impose some influence on the formation of high-As groundwater to some extent.
     The major advances achieved in this dissertation are as follows:1)trace elements geochemical behavior in Hetao basin such as As,F,B was systematicly studied,the influence of irrigation using deliverd Yellow River exerting on the hydrogeochemistry was also discussed;2) the formation mechanism of high-arsenic groundwater was analyzed from macro to micro scope on the basis of hydrogeology,regional geological structure,paleosedimentary evolution, hydrogeochemical and sedimentary characteristics study and arsenic speciation analysis.
引文
[1] Aggarwal PK, Basu AR, Kulkarni KM Comment on "Arsenic mobility and groundwater extraction in Bangladesh." Science, 2003, 300: 584.
    [2] Ahmann D, Krumholz LR, Hemond HF, et al. Microbial mobilization of arsenic from sediments of the Aberjona Watershed. Environmental Science and Technology, 1997, 31:2923-2930.
    [3] Akai J, Izumi K, Fukuhara H, et al. Mineralogical and geomicrobiological investigations on groundwater arsenic enrichment in Bangladesh. Applied Geochemistry, 2004,19: 215-230.
    [4] Anawar HM, Akai J, Komaki K, et al. Geochemical occurrence of arsenic in groundwater of Bangladesh: source and mobilization processes. J Geochem Explorer, 2003, 77:109-131.
    [5] Anawar HM, Akai J, Sakugawa H. Mobilization of arsenic from subsurface sediments by effect of bicarbonate ions in groundwater. Chemosphere, 2004,54: 753-762.
    [6] Anderson MA, Ferguson JF, Gavis J. Arsenate adsorption on amorphous aluminum hydroxide. J Colloid Interface Sci, 1976, 54: 391-399.
    [7] Appelo CAJ, Van der Weiden MJJ, Tournassat C, et al. Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environmental Science and Technology, 2002, 36:3096-3103.
    [8] Arad A, Kafri U, Halicz L, et al. Genetic identification of the saline origins of groundwaters in Israel by means of minor elements. Chemical Geology, 1986, 54,251-270.
    [9] Aten CF, Gupta SK. On heavy metals in soil; rationalization of extractions by dilute salt solutions, comparison of the extracted concentrations with uptake by ryegrass and lettuce, and the possible influence of pyrophosphate on plant uptake. The Science of the Total Environment, 1996,178: 45-53.
    [10] Bargar JR, Reitmeyer R, Lenhart JJ, et al. Characterization of U(VI)-carbonato ternary complexes on hematite: EXAFS and electrophoretic mobility measurements. Geochimica et Cosmochimica Acta. 2000, 64:2737-2749.
    
    [11] Bednar AJ, Garbarino JR, Burkhardt MR, et al. Field and laboratory arsenic speciation methods and their application to natural-water analysis. Water Research, 2004, 38: 355-364.
    
    [12] Belzile N, Tessier A. Interactions between arsenic and iron oxyhydroxides in lacustrine sediments. Geochimica et Cosmochimica Acta, 1990,54:103-109.
    [13] Belzile N, Chen YW, Wang Z. Oxidation of antimony (III) by amorphous iron and In manganese oxyhydroxides, Chemical Geology, 2001,174:379-387.
    [14] Berg M, Stengel C, Trang PTK, et al. Magnitude of arsenic pollution in the Mekong and Red River Deltas-Cambodia and Vietnam. The Science of the Total Environment, 2007,372:413-425.
    [15] Berg M, Tran HC, Nguyen TC, et al. Arsenic contamination of groundwater and drinkingwater inVietnam: a human health threat. Environmental Science and Technology, 2001, 35:2621-2626.
    [16] BGS/DPHE. Arsenic contaminationof groundwater in Bangladesh. In: Kinniburgh D. G., Smedley P.L. (eds) British Geological Survey Technical Report WC/00/19, British Geological Survey, Keyworth, 2001.
    [17] Bhattacharya P, Tandukar N, Neku A, Valero AA, et al. Geogenic arsenic in groundwaters from Terai alluvial plain of Nepal. J Physique IV France, 2003,107:173-176.
    [18] Bhattacharya P, Welch AH, Stollenwerk KG, et al. Arsenic in the environment: Biology and Chemistry. Science of the Total Environment, 2007, 379: 109-120.
    [19] Bhumbla DK, Keefler RF. Arsenic mobilization and bioavailability in soils. Niragu JO Arsenic in the Environment, Part I, Cycling and Characterization, John Wiley & Sons, New York Ed. Book, 1994. 51-82.
    [20] Bilali LE, Rasmussen PE, Hall GEM, et al. Role of sediment composition in trace metal distribution in lake sediments. Applied Geochemistry, 2002,17(9):1171-1181.
    
    [21] Bloom PR. Phosphorus adsorption by an aluminium-peat complex. Soil Sci Soc Am J, 1981,45,267-272.
    [22] Blum JD, Erel Y. Radiogenic isotopes in weathering and hydrology. In: Drever, J.I. (Ed.), Surface and Ground Water, Weathering, and Soils. Treatise on Geochemistry. Elsevier. 2005. 365-392
    [23] Boronina A, Balderera W, Renardb P, et al. Study of stable isotopes in the Kouris catchment (Cyprus) for the description of the regional groundwater flow. J. Hydrol, 2005,308,214-226.
    [24] Bostic RE, Kane RL, Kipfer KM, et al. Water Resources Data, Nevada Water Year 1996. USGS Water-Data Report NV-96-1.1997.
    [25] Bowell RJ. Sorption of arsenic by iron oxides and oxyhydroxides in soils. Applied Geochemistry, 1994, 9: 279-286.
    [26] Bradley PM, Chapelle FH, Lovley DR. Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene. Appl Environ Microbiol, 1998, 64: 3102-3105.
    [27] Brannon JM, Patrick WH. Fixation, transformation, and mobilization of arsenic in sediments. Environmental Science and Technology, 1987,21: 450-459.
    [28] Breault RF, Colman JA, Aiken GR, et al. Copper speciation and binding by organic matter in copper-contaminated streamwater. Environmental Science and Technology, 1996, 30: 3477-3486.
    [29] Breit GN, Foster AL, Sanzalone RF, et al. Arsenic cycling in eastern Bangladesh: the role of phyllosilicates. Geol. Soc. Am., Abstracts with Programs, 2001,32 (7): A192.
    [30] Bullen TD, Kendall C. Tracing of weathering reactions and water flow paths: a multi-isotope approach. In: Kendall, C.K.,McDonnell, J.J. (Eds.), Isotope Tracers in Catchment Hydrology. Elsevier, 1998. 611-646.
    [31] Cai Y, Cabrera JC, Georgiadis M, et al. Assessment of arsenic mobility in the soils of some golf courses in South Florida. The Science of the Total Environment, 2002,291: 123-134.
    [32] Capo RC, Stewart BW, Chadwick OA. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma, 1998, 82,197-225.
    [33] Cartwright I, Weaver TR, Fifield LK. Cl/Br ratios and environmental isotopes as indicators of recharge variability and groundwater flow: an example from the southeast Murray Basin, Australia. Chemical Geology, 2006,231:38-56.
    [34] Cartwright I, Weaver TR, Fulton S, et al. Hydrogeochemical and isotopic constraints on the origins of dryland salinity, Murray Basin, Victoria, Australia. Applied Geochemistry, 2004,19,1233-1254.
    [35] Chakraborti D, Basu GK, Biswas BK, et al. Characterization of arsenic bearing sediments in Gangetic delta of West Bengal-India. In: Chappell WR, Abernathy CO, Calderon RL (eds) Arsenic Exposure and Health Effects, Elsevier Science, Amsterdam-Lausanne-New York-Oxford-Tokyo, 2001,27-52.
    [36] Chakraborti D, Rahman MM, Paul K, et al. Arsenic calamity in the Indian subcontinent: What lessons have been learned? Talanta, 2002, 58: 3-22.
    [37] Chakraborty S, Wolthers M, Chatterjee D, et al. Adsorption of arsenite and arsenate onto muscovite and biotite mica. Journal of Colloid and Interface Science, 2007, 309:392-401.
    [38] Chang JW, Ji XL. A new hydride generation system applied in determination of arsenic species with ion chromatography-hydride generation-atomic fluorescence spectrometry(IC-HG-AFS). Talanta, 2007, (73): 540-545.
    [39] Charlet L, Chakraborty S, Varma S, et al. Adsorption and heterogeneous reduction of arsenic at the phyllosilicate-water interface. Advances in arsenic research ACS SYMPOSIUM SERIES, 2005, 915: 41.
    [40] Chen HW, Frey MM, Clifford D, et al. Arsenic treatment considerations. J. Amer. Water Works Assoc, 1999,91(3): 74-85.
    [41] Chen SL, Deng SR, Yang MH, et al. Arsenic species in groundwaters of the Blackfoot disease areas, Taiwan. Environmental Science and technology, 1994, 28: 877-881.
    [42] Chen YW, Deng TL, Filella M, et al. Distribution and antimony species in sediments and Porewaters of fresh water lakes, Environmental Science and technology, 2003,37:1163-1168.
    [43] Cherry JA, Shaikh AU, Tallman DE, et al. Arsenic species as an indicator of redox conditions in groundwater. Journal Hydrology, 1979, 43: 373-392.
    [44] Chou TT. Selective dissolution of manganese oxides from soils and sediments with acidified hydroxylamine hydrochloride. Soil Sci. Soc. Am. Proc. 1972. 36, 764-768.
    [45] Conrad R. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol. Ecol, 1999,28, 193-202.
    [46] Cornell RM, Schwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses. VCH, Weinheim. 1996.
    [47] Cornu S, Saada A, Breeze D, et al. Influencede composes organiques sur F adsorption de F arsenic par les kaolinites. Comptes Rendus de l' Academie des Sciences - Series IIA - Earth Planet Sci, 1999, 28: 877-881.
    
    [48] Craig H. Isotopic variations in meteoric waters. Science, 1961,133,1702-1703.
    [49] Crecelius EA, Bothner MH, Carpenter R. Geochemistries of arsenic, antimony, mercury, and related elements in sediments of Puget Sound. Environmental Science and technology, 1975, 9, 325-333.
    [50] Cruz JV, Silva MO. Groundwater salinization in Pico Island (Azores, Portugal): origin and mechanisms. Environ Geol, 2000, 39(10): 1181-1189.
    
    [51] Cullen WR, Reimer KJ. Arsenic Speciation in the Environment. Chemical Rviews, 1989, 89(4): 713-764.
    [52] Darling WG, Gooddy DC. The hydrogeochemistry of methane: evidence from English groundwaters. Chemical Geology, 2006,229:293-312.
    [53] Das A, Chatterjee G, Samanta BK, et al. Arsenic contamination in groundwater in six districts of West Bengal, India: the biggest arsenic calamity in the world. Analyst, 1994,119:168-170.
    [54] Davis A, Kempton JH, Nicholson A, et al. Groundwater transport of arsenic and chromium at a historical tannery, Woburn, Massachusetts. Appl. Geochem., 1994, 9: 569-582.
    [55] Davis SN, Whittemore DO, Fabryka MJ. Uses of chloride/bromide ratios in studies of potable water. Ground Water, 1998, 36:338-350.
    [56] De Vries JJ, Simmers I. Groundwater recharge: an overview of processes and challenges. Hydrogeol. J. 2002,10, 5-17.
    [57] Del Razo LM, Arellano MA, Cebrian ME. The oxidation states of arsenic in well-water from a chronic arsenicism area of northern Mexico. Environ Pollut, 1990,64:143-153.
    [58] Deutsch WJ. Groundwater Geochemistry, Fundamentals and Applications to Contamination. Lewis Publishers, Boca Raton, NY. 1997.
    [59] Dotsika E, Poutoukis D, Michelot JL, et al. Stable isotope and chloride, boron study for tracing source of boron contamination in groundwater: Boron contents in fresh and thermal water in different areas in Greece. Water, Air and Soil Pollution, 2006, 174:19-32.
    [60] Dowling CB, Poreda RJ, Basu AR. The groundwater geochemistry of the Bengal Basin: Weathering, chemisorption, and trace metal flux to the oceans. Geochimica et Cosmochimica Acta, 2003, 67: 2117-2136.
    [61] DPHE/BGS. Groundwater Studies for Arsenic Contamination in Bangladesh. Final Report Summary. 2000.
    [62] Dror G, Ronoen D, Stiller M, et al. Cl/Br ratios of Lke Kinneret, pore water and associated springs. J Hydrol., 1999,225:130-139.
    
    [63] Edmunds WM. Bromine geochemistry of British groundwaters. Mineral Mag, 1996,60:275-284.
    [64] Edmunds WM, Ma JZ, Aeschbach-Hertig W, et al. Groundwater recharge history and hydrogeochemical evolution in the Minqin Basin, North West China. Applied Geochemistry, 2006,21:2148-2170.
    [65] Eick MJ, Peak JD, Brady WD. The effect of oxyanions onthe oxalate-promoted dissolution of goethite. Soil Sci SocAmJ, 1999, 63: 1133-1141.
    [66] Fabrika-Mart'in JT, Whittmeore DO, Davis SN, et al. Geochemistry of halogens in the Milk River aquifer, Alberta Canada. Applied Geochemistry, 1991, 6:447-464.
    [67] Fakir Y, Mernissi ME, Kreuser T, et al. Natural tracer approach to characterize groundwater in the coastal Sahel of Oualidia (Morocco). Environ Geol, 2002,43:197-202.
    [68] Farquhar ML, Charnock JM, Livens FR, et al. Mechanisms of arsenic uptake from aqueous solution by interaction with goethite, lepidocrocite, mackinawite and pyrite: an X-ray absorption spectroscopy study. Environmental Science and Technology, 2002,36:1757-1762.
    [69] Fein JB, Martin AM, Wightman PG Metal adsorption onto bacterial surfaces: Development of a predictive approach. Geochimica et Cosmochimica Acta, 2001, 65(23): 4267-4273.
    [70] Fendorf S, Eick MJ, Grossl P, et al. Arsenate and chromate retention mechanisms on goethite: 1. Surface structure. Environmental Science and Technology, 1997, 31: 315-320.
    [71] Filella M, Belzile N, Chen YW. Antimony in the environment: a view focused on natural waters I. Occurrence. Earth-Science Reviews, 2002, 57(2): 125-176.
    [72] Fonte JC, Matray JM. Geochemistry and origin of formation brines from the Paris basin, France: 1. Brines associated with Triassic salts. Chemical Geology, 1993,109: 149- 175.
    [73] Fontes MR, Weed SB, Bowen LH. Association of microcrystalline goethite and humic acid in some Oxisols from Bazil. Soil Sci Soc Am J, 1992, 56: 982-990.
    [74] Foster AL, Breit GN, Welch AH, et al. In-situ identification of arsenic species in soil and aquifer sediments from Ramrail, Brahmnabaria, Bangladesh. Eos Trans. Am. Geophy. Union, 2000, 81 (48): F523.
    [75] Foster AL, Brown GE, Parks JGA, et al. XAFS Determination of As(V) Associated with Fe(III) Oxyhydroxides in Weathered Mine Tailings and Contaminated Soil from California, U.S.A. in J. Goulon, C. Goulon-Ginet and N.B. Brooks, (eds.), Proc. 9th International Conference on X-Ray Absorption Fine Structure, Grenoble J. de Physique IV 7, 1997, C2-815.
    [76] Fuller CC, Davies JA, Waychunas GA. Surface chemistry of ferrihydrite: part 2. Kinetics of arsenate adsorption and coprecipitation. Geochimica et Cosmochimica Acta, 1993, 57: 2271-2282.
    [77] Gao C. Study on the arsenic pollution of groundwater—A case study in the Hetao Plain of Inner Mongolia, China-Dr. paper of Graduate School of Science and Technology, Niigata University, Japan. 2000. (in Japanese with English abstract)
    [78] Gao C. The geological setting of arsenic contamination in Inner Mongolia, China. The Special Issue of "Chigaku-Kyoiku to Kagaku Undo", 1997,28-33. (in Japanese with English abstract)
    [79] Gao C. Research Group for Applied Geology, Inner Mongolia Groundwater Research Sub-Group Arsenic pollution of groundwater in the Hetao Plain of Inner Mongolia, China. Earth Science, 1999, 53: 434-451. (in Japanese with English abstract)
    [80] Gao C, Toshiaki I, Akio K, et al. Salinization of soil and arsenic polluted groundwater in the Hetao Plain, Inner Mongolia, China. Earth Science, 1998,52:431-432. (in Japanese)
    [81] Gao Y, Mucci A. Acid base reactions, phosphate and arsenate complexation, and their competitive adsorption at the surface of goethite in 0.7 M NaCl solution. Geochim. Cosmochim. Acta, 2001, 65: 2361-2378.
    [82] Garcia SA, Moyano A, Mayorga P. High arsenic contents in groundwater of central Spain. Environemntal Geology, 2005,47:847-854.
    [83] Gault AG, Islam FS, Polya DA, et al. Microcosm depth profiles of arsenic release in a shallow aquifer, West Bengal. Mineralogical Magazine, 2005, 69: 855-863.
    [84] Gautam S, Dennis AC. Preservation of Inorganic Arsenic Species in Groundwate. Environ. Sci. Techno, 2005,39:8877-8882.
    [85] Geelhoed JS, Hiemsta T, Riemsdijk WHV. Competitive adsorption between phosphate and citrate on goethite. Environ Sci Technol, 1998,32: 2119-2123.
    [86] Georgiadis M, Cai Y, Solo-Gabriele HM. Extraction of arsenate and arsenite species from soils and sediments. Environmental Pollution, 2006,141: 22-29.
    [87] Gerritse RG, George RJ. The role of soil organic matter in the geochemical cycling of chloride and bromide. J Hydrol, 1988,101:83- 85.
    [88] Goldberg S, Johnston CT. Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. J Colloid Interface Sci, 2001,234: 204-216.
    
    [89] Goldberg S. Reactions of boron with soils. Plant Soil, 1997,193: 35-48.
    [90] Goldberg S, Lesch SM, Suarez DL. Predicting boron adsorption by soils using soil chemical parameters in the constant capacitance model. Soil Sci. Soc. Am. J., 2000, 64:1356-1363.
    [91] Gomez-Ariza JL, Sanchez-Rodas D, Giraldez I. Selective extraction of iron oxide associated arsenic species from sediments for speciation with coupled HPLC-HG-AAS. Journal of Analytical Atomic Spectrometry, 1998,13: 1375-1379.
    [92] Gong Z, Lu X, Watt C, et al. Speciation analysis of arsenic in groundwater from Inner Mongolia with an emphasis on acid-leachable particulate arsenic. Analytica Chimica Acta, 2006, 555:181-187.
    [93] Grafe M, Eick MJ, Grossl PR, et al. Adsorption of arsenate and arsenite on ferrihydrite in the presence and absence of dissolved organic carbon. J Environ Qual, 2002,31:1115-1123.
    [94] Gu B, Schmitt J, Chen Z, et al. Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environmental Science and Technology, 1994, 28: 38-46.
    [95] Guo HM, Wang YX. Geochemical charactics of shallow groundwater in Datong basin, northwestern China. J Geochem Explor., 2005, 87:109-120.
    [96] Guo F, Yost RS. Quantifying the available soil phosphorus pool with the acid ammonium oxaiate method. Soil Sci. Soc. Am. J, 1999,63:651-656.
    [97] Gupta SK, Vollmer MK, Krebs R. The importance of mobile, mobilizable and pseudo total heavy metal fractions in soil for three-level risk assessment and risk management. Science Total Environment, 1996, 178: 11-20.
    [98] Harvey CF, Swartz CH, Badruzzaman ABM, et al. Arsenic mobility and groundwater extraction in Bangladesh. Science, 2002, 298:1602-1606.
    [99] Harvey CF, Swartz CH., Badruzzaman ABM, et al. Groundwater arsenic contamination in the Ganges Delta: biogeochemistry, hydrology, human perturbations and human suffering on a large scale. Comptus Rendus Geoscience, 2005,337:285-296.
    [100] Hem JD. Study and interpretation of chemical characteristics of natural water. US Geol Surv Water-Supply Paper 1985, 2254.
    [101] Hering JG, Chiu VC. Arsenic Occurrence and Speciation in a Municipal Groundwater- Based Supply System. J. Environ. Eng., 2000,126:471-474.
    [102] Herreweghe SV, Swennen R, Vandecasteele C, et al. Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples. Environmental Pollution, 2003,122:323-342.
    [103] Hisa TH, Lo SL, Lin CF, et al. Characterization of arsenate adsorption on hydrous iron oxide using chemical and physical methods. Colloids Surfaces A: Physicochem Eng Aspects, 1994, 85: 1-7.
    [104] Hoeft SE, Kulp TR, Stolz JF, et al. Dissimilatory arsenate reduction with sulfide as electron donor: Experiments with Mono Lake water and isolation of strain MLMS-1, a chemoautotrophic arsenate-respirer. Applied and Environmental Microbiology, 2004, 70: 2741-2747.
    [105] Hoehler TM, Alperin MJ, Albert DB, et al. Field and laboratory studies of methane oxidation in an anoxic marine sediment. Glob. Biogeochem. Cycles, 1994, 8: 451-463.
    [106] Holdren GC, Amstrong DE. Factors affecting phosphorus release from intact lake sediment cores. Environmental Science and Technology, 1980, 14: 79-86
    [107] Hollibaugh JT, Carini S, Gurleyuk H, et al. Arsenic speciation in Mono Lake, California: Response to seasonal stratification and anoxia. Geochimica et Cosmochimica Acta, 2005, 69: 1925-1937.
    [108] Horneman A, van Geen A, Kent DV, et al. Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part 1: Evidence from sediment profiles. Geochimica et Cosmochimica Acta, 2004,68: 3459-3473.
    [109] Hudson-Edwards KA, Houghton SL. Osborn A. Extraction and analysis of arsenic in soils and sediments. Trends Analytical Chemistry, 2004, 23(10-11): 745-752.
    [110] Huerta-Diaz MA, Morse JW. A quantitative method for determination of trace metal concentrations in sedimentary pyrite. Mar. Chem, 1990, 29:119-144.
    [111] Islam FS, Gault AG, Boothman C, et al. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature, 2004,430: 68-71.
    [112] Jacks G, Bhattacharva P, Chaudhary V, et al. Controls on the genesis of some high-fluoride groundwaters in India. Applied Geochemistry, 2005, 20: 221-228.
    [113] Jin K, Nriagu J. Oxidation of arsenite in groundwater using ozone and oxygen. The Science of Total Enironment, 2000, 247: 71-79.
    [114] Kalbitz K, Wennrich R. Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter. The Science of Total Enironment, 1998, 209: 27-39.
    [115] Karro E, Marandi A, Vaikmae. The origin of increased salinity in the Cambrian-Vendian aquifer system on the Kopli Peninsula, Northern Estonia. Hydrogeol. J., 2004,12 :424- 435.
    [116] Keon NE, Swartz CH, Brarander DJ, Harvey C, Hemond HF. Validation of an arsenic sequential extraction method for evaluating mobility in sediments. Environmental Science and Technology, 2001, 35(13): 2778-2784.
    [117] Kim MJ. Separation of inorganic arsenic species in groundwater using ion. exchange method. Bull. Environ. Contam. Toxicol., 2001, 67: 46-51.
    [118] Kinniburgh DG, Kosmus W. Arsenic contamination in groundwater: some analytical considerations. Talanta, 2002, 58: 165-180.
    
    [119] Kletzin A, Adams MWW. Tungen in biological systems. FEMS Microbiol. Rev, 1996,18: 5-63.
    [120] Kloppmann W, Negrel PH, Casanova J, et al. Halite dissolution derived brines in the vicinity of a Permian salt dome (N German Basin). Evidence from boron, strontium, oxygen, and hydrogen isotopes. Geochimica et Cosmochimica Acta, 2001, 65,4087-4101.
    [121] Kostka JE, Luther GW. Partitioning and speciation of solid phase iron in saltmarsh sediments. Geochimica et Cosmochimica Acta, 1994,58: 1701-1710.
    [122] Kowk RK, Mendola P, Liu YZ, et al. Drinking water arsenic exposure and blood pressure in healthy women of reproductive age in Inner Mongolia, China. Toxicology and Applied Pharmacology, 2007, 222: 337-343.
    [123] Krabbenhoft DR, Bowser CJ, Anderson MP, et al. Estimating groundwater exchange with Lakes 1. The stable isotope mass balance method. Water resources Research, 1990, 26(10): 2445-2453.
    [124] Kuivila KM, Murray JW, Devol AH, et al. Methane production, sulfate reduction and competition for substrates in the sediments of Lake Washington. Geochim. Cosmochim. Acta, 1989, 53:409-416.
    [125] Le XC, Yalcin S, Ma M. Speciation of submicrogram per liter levels of arsenic in water: On-site species separation integrated with sample collection. Environmental Science and Technology, 2000, 34: 2342-2347.
    [126] Lemarchand E, Schott J, Gaillardet J. Boron isotooic fraction related to Boron sorption on humic acid and the structure of surface complexes formed. Geochimica et Cosmochimica Acta., 2005, 69(14): 3519-3533.
    [127] Lenhart JJ, Honeyman BD. Uranium(VI) sorption to hematite in the presence of humic acid. Geochimica et Cosmochimica Acta., 1999,63: 2891-2901.
    [128] Lin HT, Wang MC, Li GC. Complexation of arsenate with humic substance in water extract of compost. Chemosphere, 2004, 56: 1105-1112.
    [129] Lin LF, Tang J, B J.M. Characteristics of environmental geochemistry in the arsenisis area of the Inner Mongolia of China. Environmental Geochemistry and Health, 2002,24: 249-259.
    [130] Lin TH, Huang YL, Wang MY. Arsenic species in drinking water, hair, fingernails, and urine of patients with blackfoot disease. Toxicology and Environmental Health, 1998, 53(2): 85-93.
    [131] Lin Z, Puls RW. Adsorption, desorption and oxidation of arsenic affected by clay minerals and aging process. Environ. Geol., 2000, 39: 753-759.
    [132] Livesey NT, Huang PM. Adsorption of arsenate by soils and its relation to selected chemical properties and anions. Soil Sci., 1981, 131: 88-94.
    [133] Lloyd JR, Oremland RS. Microbial Transformations of Arsenic in the Environment: From soda lakes to Aquifers. Elements, 2006, 2(2): 85-90.
    [134] Luo Z, Zhang Y, Ma L, et al. Chronic arsenicism and cancer in Inner Mongolia. In: Abernathy, C.O., Calderon, R.L., Chappell, W.R (Eds.), Arsenic Exposure and Health Effects. Chapman & Hall, London, 1997: 55-68.
    [135] Maison A, Rose J, Ziarelli F, et al. NMR evidence of arsenic binding to silica colloids. Goldschmidt Conference Abstract, 2006.
    [136] Manful G Occurrence and Ecochemical Behaviour of Arsenic in a Goldsmelter Impacted Area in Ghana. PhD dissertation, Centrum voor milieusaneringen aan de RUG 1992.
    [137] Manning BA, Goldberg S. Adsorption and stability of arsenic(III) at the clay mineral-water interface. Environmental Science and Technology, 1997,31: 2005-2011.
    [138] Manning BA, Goldberg S. Modeling arsenate competitive adsorption on kaolinite, montmorillonite, and illite. Clays Clay Minerals, 1996b, 44: 609-623.
    [139] Manning BA, Goldberg S. Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals. Soil Sci Soc Am J, 1996a, 60:121-131.
    [140] Mather JD, Porteous NC. The geochemistry of boron and its isotopes in groundwaters from marine and non-marine sandstone aquifers. Applied Geochemistry, 2001,16: 821-834.
    [141] Matisoff GC, Khourey CJ, Hall JF, et al. The nature and source of arsenic in northeastern Ohio groundwater. Ground Water, 1982,20: 446-456.
    [142] McArthur JM, Ravenscroft P, Safiullah S, et al. Arsenic in groundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resour Research, 2001, 37:109-117.
    [143] McArthur JM, Banerjee DM, Hudson-Edwards KA, et al. Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: the example of West Bengal and its worldwide implications. Applied Geochemistry, 2004, 19: 1255-1293.
    [144] McCarty KM, Senn DB, Kile ML, et al. Antimony: An Unlikely Confounder in the Relationship between Well Water Arsenic and Health Outcomes in Bangladesh. Environmental Health Perspectives, 2004, 112(8): 809-811.
    [145] McNutt RH, Strontium isotopes. In: Cook, P.G., Herczeg, A.L. (Eds.), Environmental Tracers in Subsurface Hydrology. Kluwer Academic Publishers, 2000:234-260.
    [146] Min MZ, Peng XJ, Zhou XL, et al. Hydrochemistry and isotope compositions of groundwater from the Shihongtan sandstone-hosted uranium deposit, Xinjiang, NW China. Journal of Geochemical Exploration, 2007,93:91-108.
    [147] Mok WM, Wai CM. Mobilization of arsenic in contaminated river waters. Nriagu JO Arsenic in the Environment, Part I: Cycling and Characterization, John Wiley & Sons, New York Ed. Book. 1994, 99-117.
    [148] Morin G, Juillot F, Casiot C, et al. Bacterial Formation of Tooeleite and Mixed Arsenic(III) or Arsenic(V)-Iron(III) Gels in the Carnoules Acid Mine Drainage, France. A XANES, XRD, and SEM Study. Environmental Science and Technology, 2003, 37(9): 1705-1712.
    [149] Mukhopadhyay D, Sanyal SK. Complexation and release isotherm of arsenic in arsenic-humic/fulic equlibrium study. Australian Journal of Soil Research, 2004, 42: 815-824.
    [150] Myneni SCB, Traina SJ, Waychunas GA, et al. Experimental and Theoretical Vibrational Spectroscopic Evaluation of Arsenate coordination in Aqueous solutions and Solids. Geochim Cosmochim Acta, 1998, 62: 3285-3300.
    [151] Nativ R, Adar E, Dahan O, et al. Water salinization in arid regions—observations from the Negev desert, Israel. Journal of Hydrology, 1997, 196: 271-296.
    [152] Newman DK, Beveridge TJ, Morel FMM. Precipitation of Arsenic Trisulfide by Desulfotomaculum auripigmentum. Appl. Environ. Microbiol., 1997,63: 2022-2028.
    [153] Nickson RT, McArthur JM, Burgess WG, et al. Arsenic poisoning of Bangladesh groundwater. Nature, 1998,395: 338.
    [154] Nickson RT, McArthur JM, Ravenscroft P, et al. Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 2000,15:403-413.
    [155] Nickson RT, McArthur JM, Shrestha B, et al. Arsenic and other drinking water quality issues in Muzaffargarh District, Pakistan. Applied Geochemistry, 2005,20: 55-68.
    
    [156] Nirel PMV, Morel FMM. Pitfalls of sequential extractions. Water Research, 1990,24(8): 1055-1056.
    [157] Nordstrom DK. Worldwide occurrences of arsenic ingroundwater. Science, 2002,296:2143-2144.
    [158] Norra S, Berner ZA, Agarwala P, et al. Impact of irrigation with As rich groundwater on soil and crops: A geochemical case study in West Bengal Delta Plain, India. Applied Geochemistry, 2005,20: 1890-1906.
    [159] Ogden PR. Arsenic behavior in soil and groundwater at a Superfund site. In Superfund 90. Silver Spring, MD: Hazardous Materials Control Research Institute, 1990:123-127.
    [160] Oremland RS, Dowdle PR, Hoeft S, et al. Bacterial dissimilatory reduction of arsenate and sulfate in meromictic Mono Lake, California. Geochimica et Cosmochimica Acta, 2000, 64: 3073-3084.
    [161] Oremland RS, Kulp TR, Switzer BJ, et al. A microbial arsenic cycle in a saltsaturated, extreme environment. Science, 2005, 308:1305-1308.
    [162] Oremland RS, Stolz JF, Hollibaugh JT. The microbial arsenic cycle in Mono Lake, California. FEMS Microbiology Ecology, 2004, 48: 15-27.
    
    [163] Oremland RS, Stolz J.F. The ecology of arsenic. Science, 2003, 300: 939-944.
    [164] Pal T, Mukherjee PK, Sengupta S. Nature of arsenic pollutants in groundwater of Bengal basin, a case study from baruipur area, West Bengal, India. Curr Sci, 2002, 82: 554-561.
    [165] Palmer NE, Freudenthal JH, von Wandruszka R. Reduction of arsenate by humic materials. Environmental Chemistry, 2006,3(2): 131-136.
    [166] Pantsar-Kallio M, Manninen PKG Speciation of mobile arsenic in soil samples as a function of pH. The Science of the Total Environment, 1997, 204: 193-200.
    [167] Parkhurst DL. Users Guide to PHREEQC-A Computer Program for Speciation, Reaction-path, Advective-Transport, and Inverse Geochemical Calculations. U.S. Geol. Surv. Water Resour. Invest. Rep. 95-4227.1995.
    [168] Parkhurst DL, Christenson S, Breit GN. Ground-Water-Quality Assessment of the Central Oklahoma Aquifer, Geochemical and Geohydrologic Investigations. U.S. Geol. Surv. Open-File Report 92-642. 1993.
    [169] Perya FJ, Kammereck R. Phosphate-enhanced movement of arsenic out of lead arsenate-contaminated topsoil and through uncontaminated subsoil. Water Air Soil Pollut. 1997, 93: 243-254.
    [170] Peters SC, Blum JD, Klaue B, et al. Arsenic Occurrence in New Hampshire Drinking Water. In: Geological Society of America, 1998 annual meeting. Boulder Co., USA. 1998: 58
    [171] Pierce ML, Moore CB. Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Research, 1982,16: 1247-1253.
    [172] Queste A, Lacombe M, Hellmeier W, et al. High concentrations of fluoride and boron in drinking water wells in the Muenster region - results of a preliminary investigation. Internat. J. Hygiene Environ. Health, 2001,203:221-224.
    [173] Rasul SB, Munir AKM, Hossain ZA, et al. Electrochemical Measurement and Speciation of Inorganic Arsenic in Groundwater of Bangladesh. Talanta, 2002,58: 33-43.
    [174] Ravenscroft P, McArthur JM. Mechanism of regional enrichment of groundwater by boron: the examples of Bangladesh and Michigan, USA. Applied Geochemistry, 2004,19,1413-1430.
    [175] Redman AD, Macalady D, Ahmann D. Natural organic matter affects arsenic speciation and sorption onto hematite. Environmental Science and Technology, 2002, 36:2889-2896.
    [176] Richter BC, Kreitler CW. Geochemical techniques for identifying sources of groundwater salinization. CRC press Inc, 1993,258.
    [177] Rimstidt JD, Chermark JA, Gagen PM. Rates of reaction of galena, sphaleritem chalcopyrite and arsenopyrite, with Fe(III) in acidic solution. In: Alpers, C.N., Blowes, D.W. (Eds.), Environmental Geochemistry of Sulfide Oxidation. Am. Chem. Soc. Symp., Series, 1994, 550, 2-13.
    [178] Roman-Ross G, Cuello GJ, Turrillas X, et al. Arsenite sorption and co-precipitation with calcite Chemical Geology, 2006,233 (3-4): 328-336.
    [179] Roussel C, Bril H, Fernandez A. Arsenic speciation: involvement in evaluation of environmental impact caused by mine wastes. J. Environ. Qual., 2000,29: 182-188.
    [180] Rowland HAL, Polya DA, Gault AG, et al. Microcosm studies of microbially mediated arsenic release from contrasting Cambodian sediments. Geochimica et Cosmochimica Acta, 2004,68: A390.
    [181] Ruttenberg KC, Berner RA. Authigenic apatite formation and burial in extraction method for different forms of phosphorus in marine sediments. Limnol Oceanogr, 1992, 37(7): 1460-1482.
    [182] S'anchez-Martos F, Pulido-Bosch A, Molina-S'anchez L, et al. Identification of the origin of salinization in groundwater using minor ions (Lower Andarax, Southeast Spain) The Science of the Total Environment, 2002, 297:43-58.
    [183] Saada A, Breeze D, Crouzet C, et al. Adsorption of arsenic (V) on kaolinite-humic acid complexes: Role of humic acid nitrogen groups. Chemosphere, 2003, 51: 757-763.
    [202] Stollenwerk KG Geochemical processes controlling transport of arsenic in groundwater: a review of adsorption. In: Welch, A.H., Stollenwerk, K.G (Eds.), Arsenic in Ground Water: Geochemistry and Occurrence. Kluwer Academic Publishers, Boston, MA, 2003: 67-100.
    [203] Stumm W, Morgan JJ. Aquatic chemistry, 3rd edn. Wiley, New York, 1996.
    [204] Stuben D, Berner Z, Chandrasekharam D, et al. Arsenic enrichement in groundwater of West Bangal, India: geochemical evidence for mobilization of As under reducing conditions. Applied Geochemistry, 2003, 18:1417-1434.
    [205] Subyani A M. Hydrochemical identification and salinity problem of groundwater in Wadi Yalamlam basin , Western SaudiArabia. Journal of Arid Environments, 2005, 60: 53 -66.
    [206] Sun X, Doner HE. An investigation of arsenite and arsenate bonding structures on goethite by FTIR. Soil Sci, 1996,161:865-872.
    [207] Swartz CR, Blute NL, Badruzzman B, et al. Mobility of arsenic in a Bangladesh aquifer: Inferences from geochemical profiles, leaching data, and mineralogical characterization. Geochimica et Cosmochimica Acta, 2004,68(22): 4539-4557.
    [208] Switzer BJ, Burns BA, Buzzelli J, et al. Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens sp. nov: two haloalkaliphiles from Mono Lake, California, that respire oxyanions of selenium and arsenic. Archives of Microbiology, 1998,171: 19-30.
    [209] Takahashi Y, Minai Y, Ambe S, Makide Y, Ambe F. Comparison of adsorption behavior of multiple inorganic ions on kaolinite and silica in the presence of humic acid using the multitracer technique. Geochim Cosmochim Acta, 1999,63: 815-836.
    [210] Tandukar N, Bhattacharya P, Neku A, et al. Extent and severity of arsenic poisoning in Nepal. In: Naidu R, Smith E,Owens G, Bhattacharya P, Nadebaum P, editors. Managing arsenic in the environment: from soil to human health. Melbourne, Australia: CSIRO Publishing, 2006, 595-604.
    [211] Tessier A, Campbell PG, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 1979, 51: 844-850.
    [212] Thanabalasingam PW, Pickering F. Arsenic sorption by humic acids. Environmental Pollution Series B - Chemical and Physical, 1986,12(3): 233-246.
    [213] Tongesayi T, Smart R.B. Arsenic speciation: reduction of As(V) to As(III) by fulic acid. Environmental Chemistry, 2006,3(2): 137-141.
    [214] Tseng WP, Chu HM, How SW, et al. Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J Natl Cancer Inst, 1968,40:453-463.
    [215] Uhlman K, The Geochemistry of boron in a landfill monitoring program. Ground Monit. Rev. 1991.11, 139-143.
    [216] Ure A, Quevauviller PH, Muntau H, Griepink B. Improvements in the determination of extractable contents of trace metals in soil and sediment prior to certification. Report EUR 14763 EN, CEC, Brussels. 1993.
    [217] Van Geen A, Ahmed KM, Seddique AA, et al. Community wells to mitigate the arsenic crisis in Bangladesh. Bulletin of the World Health Organization, 2003, 81: 632-638.
    [218] Van Geen A, Rose J, Thoral S, et al. Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part II: Evidence from sediment incubations. Geochimica et Cosmochimica Acta, 2004, 68: 3475-3486.
    [219] Van Geen A, Roberson AP, Leckie JO. Complexation of carbonate species at the goethite surface: Implications for adsorption of metal ions in natural waters. Geochimica et Cosmochimica Acta, 1994, 58: 2073-2086.
    [220] Varsanvi I, Kovacs L. Arsenic, iron and organic matter in sediments and groundwater in the Pannonian Basin, Hungary. Applied Geochemistry, 2006,21: 949-963.
    [221] Vengosh A, Pankratov I. Chloride-bromide and chloride-fluoride ratios of domestic sewage effluents and associated contaminated ground water. Ground Water, 1998, 36: 815-824.
    [222] Wallschlager D, Stadey CJ. Arsenic geochemistry in reducing environments - influence of arsenicsulfide interaction on mobility. Fate of arsenic, antimony and similar elements in the environment (Abstract). Geochimica et Cosmochimica Acta, 2004,68 (11): A514-A514 Suppl.
    [223] Wang SL, Mulligan CN. Effect of natural organic matter on arsenic release from soils and sediments into groundwater. Environmental Geochemistry and Health, 2006,28: 197-214.
    [224] Wang YX, Shvartsev SL, Su CL. Genesis of arsenic/fluoride-enriched soda water: a case study at Datong, northern China. Applied Geochemistry, 2008. (in press).
    [225] Warwick P, Inam E, Evans N. Arsenic's interaction with humic acid. Environmental Chemistry, 2005, 2: 119-124.
    [226] Waychunas GA, Rea BA, Fuller CC, Davis JA. Surface chemistry of ferrihydrite:Part l.EXAFS study of geometry of coprecipitated and adsorbed arsenate. Geochem et Cosmochim Acta, 1993, 57:2251-2269.
    [227] Welch AH, Lico MS. Factors controlling As and U inshallow ground water, southern Carson Desert, Nevada. Applied Geochemistry, 1998,13:521-539.
    [228] Welch AH, Westjohn DB, Helsel DR, et al. Arsenic in groundwater of the United States-occurrence and geochemistry. Groundwater, 2000,38(4): 589-598.
    [229] Wenzel WW, Kirchbaumer N, Prohaska T, et al. Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples. Analytica Chimica Acta, 2001, 436: 309-323.
    [230] Whittemore DO. Geochemical differentiation of oil and gas brine from other saltwater sources contamination water resources: case studies from Kansas and Oklahoma. Environ Geosci, 1995,2(1): 15-31.
    [231] WHO. Supplement to 1993. Guidelines for Drinking Water Quality, 2ed. World Health Organization, Geneva, 1998.
    [232] Williams L B, Hervig RL, Wieser ME, et al. The influence of organic matter on the boron isotope geochemistry of the gulf coast sedimentary basin, USA. Chem. Geol., 2001, 174: 445-461.
    [233] Wilson NJ, Hunter DC. Antimony distribution and environmental mobility at an historic antimony smelter site, New Zealand. Environmental Pollution, 2004,129:257-266.
    [234] Wolthers M, Charlet L, van Der Weijden CH, et al. Arsenic mobility in the ambient sulfidic environment: Sorption of arsenic(V) and arsenic (III) onto disordered mackinawite. Geochimica et Cosmochimica Acta, 2005, 69: 3483-3492.
    [235] Xu H, Allard B, Grimvall A. Effects of acidification and natural organic materials on the mobility of arsenic in the environment. Water Air Soil Pollut, 1991, 57/58:269-278.
    [236] Xu H, Allard B, Grimvall A. Influence of pH and organic substance on the adsorption of As(V) on geological materials.Water Air Soil Pollut,1988,40:293-305.
    [237]Yong RN,Mulligan CN.Natural Attenuation of Contaminants in Soils.Boca Raton:CRC Press,2004.
    [238]Yu XY.Humic acids from endemic arsenicosis areas in Inner Mongolia and from the blackfoot-disease areas in Taiwan:a comparative study.Environmental Geochemistry and Health,2001,23:27-42.
    [239]Zhang H.Heavy-metal pollution and arseniasis in Hetao region,China.Ambio,2004,33:138-140.
    [240]Zhang H,Ma D,Hu X.Arsenic pollution in groundwater from Hetao area,China.Environmental Geology,2002,41:638-643.
    [241]Zheng Y,Stute M,van Geen A,et al.Redox control of arsenic mobilization in Bangladesh groundwater.Applied Geochemistry,2004,19:201-214.
    [242]Zheng Y.The Heterogeneity of arsenic in the Crust:A Linkage to occurrence in groundwater.Quaternary Science,2007,27(1):6-19.
    [243]Zobrist J,Dowdle PR,Davis JA,et al.Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate.Environmental Science and Technology,2000,34:4747-4753.
    [244]车自成,刘良,罗金海.中国及邻区区域大地构造学[M].北京:科学出版社,2002.278-305.
    [245]陈瑄.浅析河套灌区地下咸水环境[J].河套大学学报,2007,4(2):57-59.
    [246]邓必阳,黄惠芝,谢建新.氢化物连续发生电感耦合等离子体原子发射光谱法测定高纯铟中砷锑锡[J].理化检验,化学分册,2006,(42):347-348.
    [247]邓起东,张培震,冉勇康等.中国活动构造基本特征[J].中国科学(D辑),2002,32(12):1020-1030.
    [248]董兵,刘健荣.内蒙地区水砷和人体血、尿砷含量的测定[J].中国卫生检验杂志,2006,16(9):1098-1099.
    [249]范成万,娜仁高娃,张玉敏等.呼和浩特盆地西部饮用水砷含量分析及其富砷因素的探讨[J].环境与健康杂志,1993,10(2):56-58.
    [250]付松波,陈志.我国地方性砷中毒基础研究工作进展[J].中国地方病学杂志,2006,25(5):585-587.
    [251]高存荣.河套平原地下水砷污染机理的探讨[J].中国地质灾害与防治学报,1999,10(2):25-32.
    [252]高胜利,任战利,崔君平.河套盆地古气候演化与生物气勘探[J].地质科技情报,2007,26(2):35-39.
    [253]郭泽清,李本亮,曾富英等.生物气分布特征和成藏条件[J].天然气地球科学,2006,17(3):407-413.
    [254]候少范,王五一,李海蓉等.我国地方性砷中毒的地理流行病学规律及防治对策[J].地理学科学进展,2002,21(4):391-400.
    [255]胡继兰.呼包平原及河套地区第四纪自然景观的变迁[M].北京:地质出版社,1981.
    [256]黄天明.应用环境同位素研究巴丹吉林沙漠地下水补给来源[D].兰州大学硕士学位论文,2007.
    [257]嘉世旭,张先康.华北不同构造块体地壳结构及其对比研究[J].地球物理学报,2005,48(3):611-620.
    [258]蒋玲,鲁生业,何敏等.地砷病流行区水砷含量与水源深度的探讨[J].中国公共卫生学报,1994,13(5):378.
    [259]蒋玲,石云,鲁生业等.内蒙临河市地方性砷中毒病区井水中砷及其重金属含量调查研究[J].环境与健康杂志,1997,14(1):1-3.
    [260]蒋少涌.硼同位素及其地质应用研究[J].高校地质学报,2000,1(6):1-16.
    [261]金银龙,梁超柯,何公理等.中国地方性砷中毒分布调查(总报告)[J].卫生研究,2003,32(6):519-540.
    [262]康晏,王万春,任军虎.生物气生成的地球化学因素分析[J].矿物岩石地球化学通报,2004,23(4):350-354.
    [263]李炳元,葛全胜,郑景云.近2000年来后套平原黄河河道演变[J].地理学报,2003,58(2):239-246.
    [264]李建彪,冉康勇,郭文生.呼包盆地第四纪地层与环境演化[J].第四纪研究,2007,27(4):632-643.
    [265]李建彪.河套盆地晚第四纪成湖环境变化与构造活动研究[D].中国地震局地质研究所博士学位论文,2006.7-19.
    [266]李树范,李浩基.内蒙古河套地区地方性砷中毒区地质环境特征与成因探讨[J].中国地质灾害与防治学报.1994,5(增刊):213-219.
    [267]李英,祁思敬,张振飞等.阴山超大型硫化物矿床形成的有利条件[J].化工矿产地质,1997,19(4):217-225.
    [268]林年丰,汤洁,卞建民.内蒙古砷中毒病区环境地球化学特征研究[J].世界地质,1999,18(2):83-88.
    [269]林年丰,汤洁,杨建强等.人工神经网络方法在内蒙古砷中毒病区的应用[J].中国地方病学杂志,1999,18(3):180-183.
    [270]林年丰,汤洁.我国砷中毒病区的环境特征研究[J].地理科学,1999,19(2):136-139.
    [271]林祚顶.同位素在水文水资源领域的应用[J].水利水电技术,2003,34(7):6-8.
    [272]刘桂华,汪丽.HPLC-ICP-MS在紫菜中砷形态[J].分析测试学报,2002,21(4):88-90.
    [273]刘嘉麒,刘强.中国第四纪地层[J].第四纪研究,2001,20(2):129-138.
    [274]刘五洲,林年丰,汤洁等.呼包平原环境地质特征与砷中毒的关系[J].水文地质工程地质.1996,5:20-22.
    [275]卢光明,戚其平,于文学等.内蒙三个地砷病区饮水中形态砷化物水平及其对发病的影响[J].中华预防医学杂志,1996,3(1):55-56.
    [276]卢光明,史根生.离子交换--原子荧光法测定地砷病区饮水中砷形态[J].中国地方病防治杂志,1996,11(1):21-24.
    [277]卢光明,赵霖,戚其平等.内蒙地砷病病区人群的形态砷暴露研究[J].中国地方病学杂志.1997,16(4):193-196.
    [278]吕锋洲,李家海,刘聪桂等.内蒙古砷中毒病区与台湾乌脚病区饮水腐殖酸的红外光谱对比研究[J].中国地方病学杂志,1995,14(4):219-221.
    [279]马杏垣.解析构造学[M].北京:地质出版社,2004,189-192.
    [280]邱立萍.砷污染危害及治理技术[J].新疆环境保护,1999,21(3):15-19.
    [281]沈雁峰,孙殿军,赵新华等.中国饮水型地方性砷中毒病区和高砷区水砷筛查报告[J].中国地方病学杂志,2005,24(2):172-175.
    [282]孙殿军,孙贵范.地方性砷中毒预防手册[M].北京:人民卫生出版社,2005,1-10.
    [283]汤洁,林年丰,卞建民等.内蒙河套平原砷中毒病区砷的环境地球化学研究[J].水文地质工程地质,1996.1:49-54.
    [284]汤洁.内蒙砷中毒区砷的环境化学研究[D].长春科技大学博士学位论文,1997,4-5.
    [285]王雷,张美云,罗振东.呼和浩特盆地富砷地下水的分布、特征及防治对策[J].内蒙古民族大学学报(自然科学版),2003,18(5):402-404.
    [286]王连方,孙幸之,冯兆悦等.地下水砷含量及其与居民慢性砷中毒关系[J].环境与健康杂志,1986,3(5):22-25.
    [287]王晓飞,段凤鸣,苏永光等.杭锦后旗防砷改水的初步探讨[J].内蒙古地方病防治研究,1994,19(4):154-155.
    [288]王焰新,郭华明,阎世龙等.浅层孔隙地下水系统环境演化及污染敏感性分析[M].北京:科学出版社,2004:62.
    [289]文东光.用环境同位素论区域地下水资源属性[J].地球科学--中国地质大学学报,2002,27(2):141-147.
    [290]徐苑苑,李昕,梁秀芬等.内蒙古不同浓度砷暴露人群尿砷代谢产物研究[J].中国公共卫生,2006,22(8):956-957.
    [291]杨华,李民才,崔永平.河套盆地生物气藏成藏条件及勘探前景[J].石油地质,2005,3:16-21.
    [292]杨瑞瑛,叶军,王珂等.阿左旗地方性砷中毒病区环境水中砷的化学形态中子活化分析[J].核技术,2001,24(8):705-710.
    [293]杨瑞瑛,叶军,武克恭等.巴音毛道地方性砷中毒病区井水中微量元素的特征[J].中国地方病学杂志,2000,19(6):445-447.
    [294]杨瑞瑛,朱旭萍,夏雅娟等.杭锦后旗地方性砷中毒区水环境的研究[J].中国地方病学杂志,1998,17(1):5-8.
    [295]杨瑞瑛,朱旭萍.中子活化分析法测定巴彦淖尔盟地区环境水中As的种态及微量元素[J].核化学和放射化学.1998,20(4):234-241.
    [296]杨素珍,郭华明,唐小惠等.内蒙古河套平原地下水砷异常分布规律研究[J].地学前缘,2008,15(1):242-248.
    [297]杨友运.内蒙河套盆地第四系生物气藏形成地质条件分析[J].西安科技大学学报,2004,24(3):320-323.
    [298]于艳青,余秋生,薛忠歧等.同位素技术判定银川平原地下水补给模式[J].宁夏工程技术,2005,4(3):208-212.
    [299]余孝颖,吕锋洲,郑宝山等.内蒙古病区腐殖酸对脂质过氧化反应的影响[J].中华预防医学杂志,1999,33(1):26-29.
    [300]余孝颖,吕锋洲,郑宝山等.内蒙古砷中毒和台湾乌脚病病区井水中腐殖酸性质的比较[J].中国地方病学杂志,2002,21(1):37-40.
    [301]余孝颖,郑宝山,吕锋洲等.内蒙古砷中毒与台湾乌脚病区饮水中腐殖酸的提取与谱学对比研究[J].中华预防医学杂志,1996,30(4):196-198.
    [302]袁瑞强,刘贯群,张贤良等.黄河三角洲浅层地下水中氢氧同位素的特征[J].山东大学学报(理学版),2006,41(5):138-143.
    [303]张国平,刘虹,刘丛强等.离子色谱-等离子体质谱联用测定热泉水样的砷形态[J].分析实验室,2007,26(9):17-20.
    [304]张美云,张玉敏,王春雨等.呼和浩特富砷地下水的分布及砷的迁移与释放[J].中国地方病学杂志,2000,19(6):442-444.
    [305]张美云,张玉敏,张阁有等.呼和浩特慢性砷中毒地区地下水水质分析[J].环境与健康杂志,2002,19(3):220-222.
    [306]张玉敏,马亮,罗振东等.呼和浩特盆地西部大面积富砷地下水水质检测分析[J].农村生态环境学报,1994,10(1):59-61.
    [307]中国第四纪委员会.中国第四纪研究[M].北京:科学出版社,1985.
    [308]钟海玲,李栋梁,陈晓光.近40年来河套及其邻近地区降水变化趋势的初步研究[J].高原气象,2006,25(5):900-905.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700