灵武大泉地区地下水循环机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灵武大泉地区为宁东能源基地重要的后备水源地,地下水资源是当地水资源的重要组成部分,建立研究区地下水循环模式,全面系统的认识地下水的循环规律,客观的评价地下水的可更新能力,对于促进该地区地下水的合理开发利用、保障能源基地建设的供水安全具有重要意义。
     本论文依托于中国地质调查局地质调查实施项目“宁东能源基地地下水勘察”(水[2010]矿评01-04-20)专题《灵武大泉地区地下水循环机理研究》,在广泛收集灵武大泉地区地质和水文地质资料的基础上,开展了水文地质调查和同位素和水化学样品的采集和测试。首先分析了研究区的水文地质条件和地下水水动力特征,初步查明了研究区地下水补、径、排特征,并在此基础上,结合研究区地下水水化学组分分布规律及大气降水、地表水和地下水环境同位素分布规律,同时利用放射性同位素~3H和~(14)C的计时作用,计算了地下水年龄,最后建立了研究区地下水循环模式。
The thesis relys on the sub-topics Lingwu Daquan groundwater circulationmechanism research of the implementation project named “groundwater explorationin Ningdong energy base” by the Geological Survey of China Geological SurveyBureau (water [2010] mineral assessment01-04-20).This study is mainly on the basisof analysing of the hydrogeological conditions and dynamic characteristics ofgroundwater, using the marks of water chemical and isotope and the timingcharacteristics of the radioactive isotopes to create groundwater circulation patternand estimate the groundwater circulation age.
     LingWu Daquan has been planed as a important backup water source ofNingdong energy base.Although Yellow River water resource is important in thisstudy area, with the construction of Ningdong energy and chemical base, the demandfor water will continue to increase. LingWu Daquan surface water and groundwaterresources are abundant, but compared to the water of the Yellow River, groundwater ismore convenient touse in the energy base. Mainly due to:(1) Yellow River water ismore turbid,easy to plug the pipelines during the transport, and Yellow River water iseasy to contaminated;(2) LingWu Daquan regional has more groundwaterresources, water quality is well, and less susceptible to contamination. So it isnecessary to set up Groundwater circulation patterns of the study area and to estimatethe groundwater circulation age.
     First, groundwater circulation patterns in LingWu Daquan
     Groundwater circulation patterns reflect the general characteristics ofgroundwater recharge, runoff, discharge in the study area, using the followingmethods and means to study the groundwater circulation patterns:(1) characteristicsof groundwater dynamic, the distribution of flow field is basically same in thephreatic aquifer and confined aquifer, the trend is consitent with the terrain. General,the groundwater flow direction is from east to west, from southeast to northwest, fromsouth to north, groundwater pools to plain finally, points to Yellow River. General,phreatic cross-flow supplys confined aquifer.(2) hydrochemistry, The law of thedistribution of Cl~-concentration of groundwater is high in the south and north, lowin the middle of the area. The Cl~-concentration is relatively low from Qingtongxia to Daquan, and from Changliushui to Daquan, we conclude that Daquan town acceptsthe groundwater recharge from Changliushui.(3) environmental isotope methods, The~δD andδ~(18)O are close in the phreatic water and confined water, combined with thehydrodynamic in the study area, we concluded that phreatic water and confined waterhave close hydraulic connection. The values of~δD andδ~(18)O of groundwater in thelow platform close to atmospheric precipitation, we concluded that the rechargesources of groundwater in the low platform are precipitation. The values of~δD andδ~(18)O of groundwater are gradually reduced from east to west, because of irrigation.The values of~δD andδ~(18)O of groundwater are less than the Yellow River water inWuzhong and Jinji, suggesting that the groundwater accepts recharge of groundwaterwith lower~δD andδ~(18)O values.3H can be used to study the aquifer is or notaccepting the modern water supply.~(14)C can be used to calculate the ancientgroundwater age, and play the role of tracer. Combined with the above technicalmeans to establish the groundwater circulation patterns in the study area.
     The recharge source of groundwater in low platform is meteoric water, rechargethe low platform through the rock fissures, fault fracrure zone. Phreatic water inalluvial, lacustrine plain area accepts the recharge of fissure water and Yellow Riverwater. The hydraulic connection of phreatic aquifer is closed with the confined aquifer,phreatic aquifer recharges the confined aquifer in the most place, confined aquiferrecharges the phreatic aquifer in the Lingwu and east of Daquan township. YellowRiver has received a lateral recharge of groundwater. The distribution of flow field isbasically same in the phreatic aquifer and confined aquifer in alluvial, lacustrine plainarea, from low platform point to the plain area, excrtion path of groundwater cocluesartisanal mining,evaporation,groundwater lateral flow. The recharge of groundwaterin Daquan township is not only Yellow River water, but also the lateral recharge ofgroundwater in Changliushui.
     Second, groundwater Renewablity Evaluation in LingWu Daquan
     The main recharge source of low mesa groundwater is precipitation, and then thelow mesa groundwater through the rock fissures, fault fracture zone supply to the lowplatform margin. The phreatic water in alluvial and lacustrine plain area is rechargedby Yellow River water and mesa fissure water infiltration, the phreatic water contactclosely with confined water, and it recharge the confined water in most locations. The groundwater in Daquan town is recharged no mater from Yellow River, but fromChangliushui and Qintongxia groundwater.
     Apply different correction model to calculate the~(14)C age of groundwater, theages of most groundwater samples are older than2000years, and calculate thegroundwater circulation rate is0.9m/year. The renewablity of confined water is weakthan phreatic water.
引文
[1]于慧明.灵武大泉地下水资源构成分析[D].中国地质大学,2011:1-78.
    [2]曹阳.鄂尔多斯白垩系盆地北部典型湖淖区地下水循环模式研究[D].吉林大学,2009:1-5.
    [3] Warren W.W.and Ward E.S.,Chemical and Isotopic Methods For QuantifyingGround-Water Recharge in a Regional Semiarid Environment[J].GroundWater.1994,33(3):458-468.
    [4]孙芳强,侯光才,窦研,等.鄂尔多斯白垩系地下水循环特征的水化学证据以查布水源地为例[J].吉林大学学报,2009,39(2):269-275.
    [5]柳富田,苏小四,董维红,等.同位素技术在地下水循环深度确定中的应用[J].人民黄河,2008,30(4):52-54.
    [6] Seifu K.,Yves T., Tamiru A.L., et a.l, Ground water recharge, circulation andgeochemical evolution in the source region of the Blue Nile River,Ethiopia[J].Applied Geochemistry.2005,20(9):1658-1676.
    [7] Warren W.W.and Ward E.S.,Chemical and Isotopic Methods For QuantifyingGround-Water Recharge in a Regional Semiarid Environment[J].GroundWater.1994,33(3):458-468.
    [8]孙芳强.鄂尔多斯盆地都思图河流域地下水循环及生态环境效应研究[D].长安大学博士学位论文,2010:1-133.
    [9]恒屯.同位素水文地质概论[M].地质出版社,1991.
    [10]张人权.同位素方法在水文地质中的应用[M].地质出版社,1983.
    [11]连珺.银川平原地下水的环境同位素示踪[D].长安大学硕士学位论文,2007:1-12.
    [12] Chen Zhu,Estimate of recharge from radiocarbon dating of groundwater andnumerical and transport modeling[J].Water Resources Research.2000,36(9):2607-2620.
    [13] Payne B.R.,The Status Of Isotope Hydrology Today[J].Journal OfHydrology.1988,100:207-237.
    [14] Leduc C.et al,Groundwater recharge in Niamey,Niger, estimated from tritiummeasurements[J].Comptes Rendus de l'Academie des Science.1996,323(7):599-605.
    [15] Chen Zhu,William M.M.,Estimate of recharge from radiocarbon dating ofgroundwater and numerical flow and transport modeling[J].Water ResourcesResearch.2000,36(9):2607-2620.
    [16] Davisson M. L. et al,Isotope hydrology of Southern Nevada groundwater: Stableisotopes and radiocarbon[J].Water Resources Research.1999,35(l),279-294
    [17]柳富田.基于同位素技术的鄂尔多斯白垩系盆地北区地下水循环规律及水化学演化规律研究[D].吉林大学,2008:1-7.
    [18]卫文.华北平原第四系含水层地下水年龄与补给温度[D].中国地质科学院,2007:2-6.
    [19]俞发康.鄂尔多斯白垩系盆地北区地下水可更新能力研究[D].吉林大学,2007:1-5.
    [20]聂振龙.黑河干流中游盆地地下水循环及更新性研究[D].中国地质科学院研究生部,2004:1-8.
    [21]史超.同位素混合单元模型在黄河下游悬河段(河南段)浅层地下水循环研究中的应用[J].吉林大学,2009:1-6.
    [22]于静洁,宋献方,刘相超,等.基于δD和δ18O及水化学的永定河地下水循环特征解析[J].自然资源学报,2007,22(3):415-422.
    [23]宋献方,李发东,于静洁,等.基于氢氧同位素与水化学的潮白河流域地下水水循环特征[J].地理研究,2007,26(1):11-17.
    [24]王福刚.同位素技术在黄河下游悬河段(河南段)水循环特征研究中的应用[D].吉林大学,2001.11:59-65,110,148.
    [25] Ian C. and Peter F., Environmental Isotopes in Hydrogeology[J]. Springer.1997.
    [26]张应华,仵彦卿.黑河流域中游盆地地下水补给机理分析[J].中国沙漠,2009,29(2).
    [27]苏小四,林学钰,廖资生,等.黄河水δ180、δD和3H的沿程变化特征及其影响因素研究[J].地球化学,2003,32(4):349-356.
    [28] Craig H.,Isotope variations in meteoric water[J].Science.1961,133:1702-1703.
    [29]张应华,仵彦卿,温小虎.环境同位素在水循环研究中的应用[J].水科学进展,2006,17(5):738-747.
    [30]于津生,虞福基,刘德平.中国东部大气降水氢、氧同位素组成[J].地球化学,1987,01.
    [31]张宗祜,沈照理,薛禹群,等.华北平原地下水环境演化[M].地质出版社,2000.
    [32]苏小四.同位素技术在黄河流域典型地区地下水可更新能力研究中的应用—以银川平原和包头平原为例[D].吉林大学博士论文,2002.5:56-62.
    [33]侯光才,苏小四,林学钰,等.鄂尔多斯白垩系地下水盆地天然水体环境同位素组成及其水循环意义[J].吉林大学学报,2007,37(2):255-260.
    [34]张光辉,聂振龙,王金哲,等.黑河流域水循环过程中地下水同位素特征及补给效应[J].地球科学进展,2006,20(5):511-519.
    [35]万玉玉,苏小四,董维红,等.鄂尔多斯白垩系地下水盆地中深层地下水可更新速率[J].吉林大学学报,2010,40(3):623-629.
    [36] Salle L.C.,Marlin C.,Leduc C., et a.l,Renewal rate estmiation of groundwaterbased on radioactive tracers (3H,14C)in an unconfined aquifer in a semi-aridarea, Iullemeden Basin,Niger[J].Journal o f hydrology.2001,254(1):145-156.
    [37] Gerhard A.,Richard E.,A new tritium interface method for determining therecharge rate of deep groundwater in the Bavarian Molasse basin[J.Journal ofHydrology.1985,82(1-2):27-38.
    [38] Salle L.C.,Marlin C.,Leduc C.,et al.,Renewal rate estimation of groundwaterbased on radioactive tracers (3H,14C)in an unconfined aquifer in a semi-arid area,Iullemeden basin, Niger [J]. Journal ofHydrology.2001,54:135-156.
    [39] Viville D., Ladouche B.and Bariac T.,Isotope hydrological study of mean transittime in the granitic Strengbach catchment(Vosges massif,France):application ofthe Flow PC model with modified input function [J].Hydrologicalprocesses.2006,20:1737-1751.
    [40]侯光才,林学钰,苏小四,等.鄂尔多斯白垩系盆地地下水系统研究[J].吉林大学学报,2006,36(3):391-398.
    [42]陈宗宇.利用氚估算太行山前地下水更新速率[J].核技术,2006,29(6):426-431.
    [43]张光辉,聂振龙,谢悦波,等.甘肃西部平原区地下水同位素特征及更新性[J].地质通报,2005,24(2):149-155.
    [44]高淑琴.河南平原第四系地下水循环模式及其可更新能力评价[D].吉林大学博士学位论文,2008.12:4-8.
    [45]李凤琴.近50年来灵武市气温变化特征分析[J].70-79.
    [46]杨超.银川平原地下水水位监测网优化设计[D].长安大学硕士学位论文,2010,6:1-26.
    [47]柴炽章,廖玉华,张文孝,等.灵武断裂晚第四纪古地震及其破裂特征[J].地震地质,2001,23(1):15-23.
    [48]赵卫明,吴忠.灵武地区地质的精确定位和中强地震的发展构造[J].内陆地震,1998,12(4):304-310.
    [49]苏华民.灵武市用水现状及存在问题[J].宁夏引黄业科技,2005,6:84-86.
    [50]李培月,吴建华.宁夏水资源利用现况与水资源量变化规律分析[J].水利科技与经济,2010,16(4):405-407.
    [51]薛奇.银川平原地下水补径排特征及其变化规律[J].地质灾害与环境保护,2011,22(1):56-61.
    [52]王晓娟.银川平原地下水水化学成分演化规律及其形成机制研究[D].长安大学,2005:1-50.
    [53]薛忠歧,余秋生,于艳青,等.银川平原地下水同位素特征分析[J].合肥工业大学学报,2006,29(5):591-596.
    [54]邢译心,孙艺伦.溶解无机碳在地下水中的应用[J].吉林水利,2010,8:19-21.
    [56]尤努斯·居玛.植物光合作用多样性的研究[J].新疆师范大学学报,2009,28(2):58-63.
    [57]李惠娣.测年方法在地下水中的应用[J].水资源与水工程学报,2008,19(1):1—6.
    [58]苏小四,董维红,林学钰.迭代法在现代地下水年龄估算中的应用—以银川平原为例[J].煤田地质与勘探,2006,34(4):33-36.
    [59]林晓波,姜月华,汤朝阳.放射性碳同位素在水文地质中的应用进展[J].地下水,2006,28(3):30-35.
    [60]王杰.天山北麓水环境同位素研究[D].长安大学硕士学位论文,2007,6:1-10.
    [61]钱云平,王玲.同位素水文技术在黑河流域水循环研究中应用[M].黄河水利出版社,2008.
    [62] Malaszewski P.Zuber.A.Lumped parameter models for interpretation ofenvironmental tracer data [A].Mannual on mathematical models in istopehydroneolony[C].Vienna:IAEA,1992.
    [63] Kaufman S,Libby W F.T he natural distribution of tritium[J].PhysicalReview,1954,93:1337-1344.
    [64] Anne A, Simon M F et al.Use of13C to trace origin and cycling of inorganiccarbon in the Rhone river system. Chemical Geology,1999,159:129-145.
    [65] Amiotte Suchet P, Aubert D et al.13C pattern of dissolved inorganic carbon in asmall granitic catchment: The Strengbach case study (Vosges mountains,France).Chemical Geology,1999,159:129-145.
    [66]于艳青.基于同位素技术的银川平原地下水补给及可更新性研究[D].中国地质大学,2005,11:40-45.
    [67]李云峰,李金荣,侯光才,等.从水文地球化学角度研究鄂尔多斯盆地南区白垩系地下水的排泄路径[J].西北地质,2004,37(3):91-95.
    [68] Amold J R,Libby W F.Age determination by radiocotent:Checks with samples ofknownage[J]Science,1949,110(2868):678-680.
    [69]林晓波,姜月华,汤朝阳.放射性碳同位素在水文地质中的应用进展[J].地下水,2006,28(3):30-35.
    [70]万军伟,刘存富,晁念英,等.同位素水文学理论与实践[M].武汉:中国地质大学出版社:2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700